

SUBMITTAL TRANSMITAL

luna 10, 2012

			ne 19, 2012 I No: 13121-005
PROJECT:	Harold Thompson Regiona Birdsall Rd. Fountain, CO 80817 Job No. 2908		
ENGINEER:	GMS, Inc. 611 No. Weber St., #300 Colorado Springs, CO 8090 719-475-2935 Roger Sams		
OWNER:	Lower Fountain Metropolit Sewage Disposal District 901 S. Santa Fe Ave. Fountain, CO 80817 719-382-5303 James Heck		
CONTRACTOR:	Heath Steel 141 Racquette Dr Fort Collins, CO 80522 970-490-8031 Randy Gater rgates@heathsteel.com	5	
		of Anchor Rod Plans, Final Do n Calculations, Frame Fabric	
SPEC SECTION: 13	121		
PREVIOUS SUBMIS	SSION DATES:		
DEVIATIONS FROM	SPEC: YES X N	0	
		wed by Weaver Construction Mana e with the intent of the contract docu	
Contractor's Stamp) :	Engineer's Sta	mp:
Date: 6/19/12			
Reviewed by: Tyle	er Ammerman		
() Reviewed With (X) Reviewed With			
ENGINEER'S COMMENTS:			

Project: HDTWRF Project

Location: Fountain, CO

Supplier: Heath Steel

Date: 6/19/12

Submittal for: Operations Addition

Submittal Comments:

1) WCMI recognizes that the preliminary drawings have the out to out dimension of the Ops building at 51'-0" and the supplier's drawings show 51'-1/2". This is to match the dimensions of the existing equipment and maintenance building.

3942 Old West Highway 30 P.O. Box 2078 Grand Island, Nebraska 68802-2078 Phone 308/389-7200 - Fax 308/389-7221

June 7, 2012

Chief Order No. Re:

B3004915

Description:

51'-0 1/2" x 39' x 19'-4"

Builders Name:

Heath Steel

Building Owners Name: Weaver Construction Management

Jobsite City, State:

Fountain, CO

Gentlemen:

Please accept this letter as certification that the Chief components, produced for the above described project to be furnished to Heath Steel, for Weaver Construction Management, Fountain, CO, have been designed for the following criteria as specified by Purchaser in the order documents:

2006 MBMA Occupancy Category	Substantial Hazard	Seismic	
Roof Live Load	20 psf	Spectral Response Short Periods (S _s)	18.5%
(Tributary Area Reduction Not Allow	ed)	Spectral Response 1 s Period (S ₁)	5.9%
Collateral Load	3 psf	Seismic Importance Factor	1.25
Ground Snow Load (Pg)	30 psf	Design Category	В
Exposure Factor (C _e)	1.0	Site Class	D
Thermal Factor (Ct)	1.0	Seismic Resisting System	
Importance Factor (I)	1.1	Longitudinal Direction	Steel System (R=3.0)
Flat Roof Snow Load (Pf)	23.10 psf	Lateral Direction	Steel System (R=3.0)
Minimum Roof Snow	30.0 psf	Seismic Response Coefficient (Cs)	0.082
Building Enclosure	Enclosed	Spectral Response Parameter Short Period (Sps)	0.197
Wind Speed	100 mph (GCpi ± 0.18)	Spectral Response Parameter 1 s Period (S _{D1})	0.094
Exposure Category	C	Analysis Procedure	ELF
Importance Factor (I)	1.15	Base Shear	2112 lbs.
Wind Pressure (q)	23.52 psf	Other Loads:	
		None	

and applied in accordance with the Pikes Peak Regional 2011 Building Code.

The design of Chief structural steel components is in accordance with the provisions of the 13th Edition of AISC and the NASPEC 2007 AISI Standard.

These Chief components as supplied, when properly erected as furnished, on an adequate foundation, will meet the loading requirements supplied to Chief by Purchaser in accordance with good engineering practices.

This certification does not cover field modifications nor does it cover materials furnished by someone other than Chief Industries, Inc.; nor the connection between Chief components and those manufactured or supplied by someone other than Chief Industries, Inc.

Chief design and detailing facilities: Grand Island, NE and Lincoln, NE. Chief Fabrication facilities: Grand Island, NE and Rensselaer, IN.

Sincerely

Quentin L. Yada, P.E. Sr. Project Engineer

Chief Industries, Inc. - Buildings E

QY/tl

a division of Chief Industries, Inc.
P.O. Box 2078
3942 W. Old Highway 30
Grand Island, NE 68802-2078
Phone (308) 389-7200 FAX (308) 389-7370

6/8/2012

Heath Steel
141 Racquette Drive
PO Drawer H
Fort Collins, CO 80522
Attn: Randy Gates

Re: B3004915 / Weaver Construction Management/Lower Fountain Metro Sewage

For Construction

Drawings or items included are as follows:

No. of Sets	Revision No.	Latest Revision Date	Description
3			Complete Sets of Anchor Rod Plans
3			Final Design Drawings - For Permit Use Only
2			Letters of Certification
2			Design Calculations
3			Frame Fabs

For questions concerning this mailing, contact:

Shawn Springer P.O. Box 2078 3942 W. Old Highway 30 Grand Island, NE 68802-2078

Phone: (308) 385-4632

E-mail: shawn.springer@chiefind.com

Design Calculations For:

WEAVER CONST MANAGEMENT

Fountain, CO

Builder: Heath Steel

B3004915

Chief Buildings
A Division of Chief Industries, Inc.
(308)389-7466
P.O. Box 2078
Grand Island, NE 68802-2078

NOTWITHSTANDING THE ADJACENT SEAL, NEITHER THE ENGINEER NAMED NOR CHIEF BUILDINGS IS ACTING AS THE ENGINEER OF RECORD. THE ENGINEER NAMED AND CHIEF BUILDINGS RESPONSIBILITY IS LIMITED TO THE STRUCTURAL PERFORMANCE OF THE PRE-ENGINEERED COMPONENTS DESIGNED BY CHIEF BUILDINGS

Design Calculations B3004915 CHIEF Job No.: Heath Steel CDL By: Chief Buildings Fountain, CO Date: 6/5/2012 Page: Design Criteria A (1) - A.I.S.C. **Building** ASD Manual of Steel Construction 13th Edition. Type RF Width 51'-0 1/2" (2) - A.I.S.I. Cold Formed Steel Length 39'-0" NASPEC 2007 Standard Eave Height 19'-4" (3) -IBC 2009 Occupancy Category - III Bays 18'-6", 20'-6" MBMA: Substantial Hazard Roof Slope 3:12 Occupancy Roof Live Load 20.00 psf Roof Top Units: N/A (Tributary Area Reduction Not Allowed) Collateral load 3.00 psf Ground Snow Load (Pg) 30.00 psf Mezzanine Loads: N/A Exposure Factor (C_e): 1.0 Thermal Factor (C_t): 10 Importance Factor (I_s): 1.10 Flat-Roof Snow Load (P_f): 23.10 psf Minimum Roof Snow Load: 30.00 psf Cranes: N/A Wind Speed 100.00 mph Exposure Category: C

Importance Factor (I_w): 1.15

Wind Pressure (q): 23.52 psf

Building Enclosure : $Enclosed - (GCpi = \pm 0.18)$

Seismic Analysis Equivalent Lateral Force

Short response acceleration-(S_s): 0.185

0.197 $S_{DS} =$

One second response acceleration- (S_1) : 0.059

0.094

 $S_{D1} =$

Seismic design category:

Seismic site class: D

Occupancy Category - III

Importance Factor (I_E):

Seismic resisting systems:

1.25

Response coefficient(s):

Additional Loads: N/A

Structural Steel Systems

В

R = 3.00

Cs = 0.082

Maximum Base Shear: 2112.0 lbs

Design Calculations

Roof Panel Design

Job No:

B3004915

By:

Date:

CDL Page:

6/5/2012

2

Roof Panels - Design Criteria & Loads

Seam-Loc

24 Gage - 50 ksi 24 in

Metal Sales Seam-Loc 24

4.00 ft Panel Span

4 - Span Condition

Uniform Live Load = 20.00 psf

Maximum Balanced or Unbalanced Snow Load = 38.17 psf

Maximum Snow & Drifted Snow Load at the Endwalls = 38.17 psf

Allowable Pressure = $1.000 \times 93.0 = 93.00 \text{ psf}$ O.K.

4'-0"5pm. Interior Zone Wind Suction = 25.40 psf

Allowable = 49 psf

4'-0" Spec. Edge Zone Wind Suction = 44.22 psf

Allowable = 2/9psf Allowable = 70psf

2 -0" Spr. Corner Zone Wind Suction = 65.39 psf

Allowable Suction = 1.000 x 70.0

 $= 70.00 \, psf$

O.K.

(Applied Loads / Allowable Loads) < 1.03 Therefore Roof Panels are O.K.

Design Calculations

Wall Panel Design

Job No:

B3004915

By: Date: CDL Page:

6/5/2012

3

Wall Panels - Design Criteria & Loads

Stucco

20 Gage - 50 ksi

16"

Stucco Wall Panel

4.00 ft Panel Span

4 - Span Condition

Wind Pressure = 27.73 psf

Interior Zone Wind Suction = 30.08 psf

Corner Zone Wind Suction = 37.20 psf

I - Check for Bending

(One-Third Stress Increase is NOT Allowed.)

Allowable Pressure = 1.000 x 73

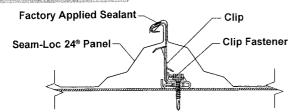
 $73.300 = 73.30 \, psf$

O.K.

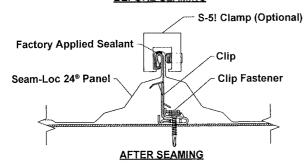
Allowable Suction = 1.000 x

73.300

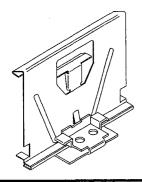
 $00 = 73.30 \, psf$

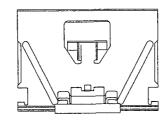

O.K.

(Applied Loads / Allowable Loads) < 1.03 Therefore Wall Panels are O.K.


SEAM-LOC 24®

Condensed Technical Reference


ATTACHMENT DETAILS



BEFORE SEAMING

PANEL CLIP

GENERAL INFORMATION

▶ Slope

The minimum recommended slope for the Seam-Loc 24° roof panel is 1/4:12.

Substructure

Seam-Loc 24® is designed to be utilized over open structural framing or a solid substrate.

► Clips

Clip spacing is based upon the spacing of structural framing members and loading requirements.

Coverage

Seam-Loc 24° panels are available in a 211/16" seam height with a 24" or 18" width coverage.

▶ Length

Minimum factory cut length is 5'-0". Maximum recommended panel length is 45'-0". Longer panels require additional consideration in packaging, shipping, and erection. Please consult Metal Sales for recommendations.

▶ Fasteners

The fastener selection guide should be consulted for choosing the proper fastener for specific applications.

Quantity and type of fastener must meet necessary loading and code requirements.

NOTE: All panels are subject to surface distortion due to improperly applied fasteners. Overdriven fasteners will cause stress and induce oil canning across the face of the panel at or near the point of attachment.

Availability

Finishes: Acrylic Coated Galvalume® and PVDF (Kynar 500). Gauges: 24ga and 22ga

	SECTION PROPERTIES								ALLOWABLE UNIFORM LIVE LOADS PSF (3 or More Equal Spans)										
	Width	Yield	Weight	Top in Cor	mpression	Bottom in C	ompression	Inward (Gravity / Deflection				on) Outward Uplift (Stress) Load							
Ga.	(in.)	KSI	PSF	lxx	Sxx	lxx	,, , , , , , , , , , , , , , , , , , , ,				au								
	, ,			In⁴/ft	In³/ft	łn⁴/ft	ln³/ft	2'	3,	3.5'	4'_	4.5'	5'	2'	3'	3.5'	4'	4.5'	5'
24	24"	50	1.09	0.2055	0.0952	0.0920	0.0653	342	161	120	93	74	60	70	59	54	49	43	38
24*	24"	50	1.09	0.2055	0.0952	0.0920	0.0653	342	161	120	93	74	60	131	105	92	79	66	54
24	18"	50	1.15	0.2480	0.1221	0.1220	0.0869	455	214	160	123	98	80	93	78	70	62	54	46
24*	18"	50	1.15	0.2480	0.1221	0.1220	0.0869	455	214	160	123	98	80	169	134	117	100	83	66
22	24"	50	1.43	0.2725	0.1263	0.1280	0.0882	458	217	161	125	99	81	74	64	59	54	49	44

- I. Theoretical section properties have been calculated per AISI 2007 "Specification for the Design of Cold-formed Steel Structural Members." Ixx and Sxx are effective section properties for deflection and bending.
- Allowable load is calculated in accordance with AISI 2007 specifications considering bending, shear, combined bending and shear, deflection, and
 ASTM E-1592 testing and fastener pullout from 16 ga. supports. Allowable load considers the worst case of 3 and 4 equal span conditions. Allowable load
 does not address web crippling. Panel weight is not considered.
- 3. Deflection consideration is limited by a maximum deflection ratio of L/180 of span.
- Allowable loads do not include a 1/3 stress increase in uplift.
- * Loads determined using the S-5! Clamp at each panel clip.

metal sales

Kent, WA 800.431.3470 Temple, TX 800.543.4415 Longmont, CO 800.289.7663 Antioch, TN 800.251.8508 Woodland, CA 800.759.6019 Rogers, MN 800.3289316 Spokane, WA 800.572.6565 Jefferson, OH 800.321.5833 Rock Island, IL 800.747.1206 Sellersburg, IN 800.999.7777 Jacksonville, FL 800.394.4419 Orwigsburg, PA 800.544.2577 Independence, MO 800.747.0012 Fontana, CA 800.782.7953 Anchorage, AK 866.640.7663 Bay City, MI 888.777.7640 Detroit Lakes, MN 888.594.1394 Mocksville, NC 800.228.6119 Fort Smith, AR 877.452.3915

www.metalsales.us.com

CUSTOM PANEL SYSTEMS PRE-FINISHED STUCCO WALL PANEL

20 GA STEEL, 16" WIDE (WITH M-1 STRUCTURAL SEALANT IN SIDE JOINTS)

NEGATIVE DESIGN LOADS

CDAN	ULTIMATE TEST	DESIGN
SPAN	LOAD (PSF)	LOAD (PSF)
<u>(FT)</u>	161.0	107.0
25	•	100.2
4.3		93.5
3		86.8
3.5		80.0
4.		73.3
4.5	100.2	66.6
1 D' _		

NOTES:

- 1) The above loads were derived from uplift tests done in accordance with ASTM E1592-95 (see Farabaugh Engineering and Testing, Inc. Test Report No. T201-01 for specific test data)
 - 2) Design values are interpolated from tests performed at spans of 2'-0" and 5'-0" only.
 - 3) Design Load contains a 2.0 factor of safety and a 33% increase due to wind per AISI 1996.
 - 4) This material is subject to change without notice. Please contact Custom Panel for most current data.
 - 5) Yield of steel min. 50 ksi.

53,6%

Project No. T201-01

							ì	
·		- OD 401 CI	ICTOM WA	II PANEL	20 GA W/	SEALANT,	3 SPANS	20 5 '-0" oc
TEST DAT	A	OK 16" CL	ON DIAL R	FADINGS	INCHES)		The state of the s
			DIAL 2	DIAL 3	DIAL 4	DIAL 5	DIAL 6	REMARKS
LOAD (PS) P	DIAL I	DOL 2					
		0	0	0	0	0	0	PANEL WT.
	1.9				0.122	0.081	0.134	
1	2.3		-0.027		-0.012		0.01	PANEL WT.
	1.9						0.197	
1	7.5							PANEL WT.
	1.9	<u></u>		1				
2	2.7							PANEL WT.
	1.9							
2	27.8							PANEL WT.
	1.8	0.125			1			
	33.1	0.5						PANEL WT.
	1.8	0.153						
	43.							PANEL WT.
	1.9	0.26						
	53.	0.80	0.839					PANEL WT.
	1.9	_1	8 0.28	3 0.27	7 0.31	7 0.23	0 0.343	LUIATE AA 1.

ULTIMATE TEST LOAD = 100.2 PSF (FASTENER PULLOVER)

NOTE: SEE SKETCH 1 FOR LOCATION OF FASTENER PULLOVER.

CHIEF INDUSTRIES INC. SEISMIC DESIGN REPORT - BDS V12.02

ENGINEER : CL

PAGE NO. 7
JOB NO. B3004915
BUILDING A
DATE 6-JUN-12
TIME 08:03:58

BUILDING DATA SNOW LOAD : 30.00 PSF BLDG CODE : IBC2009 EXP C LIVE LOAD : 20.00 PSF RF 51.04 X 39 X 19.33 WIND LOAD : 23.52 PSF

ROOF PITCH: 3.00/12 COLLATERAL LOAD: 3.00 PSF

SW A WEIGHT = 4.5 PSF EW B WEIGHT = 0.0 PSF SW C WEIGHT = 4.5 PSF EW D WEIGHT = 4.5 PSF

SEISMIC CODE: ASCE 7-05

Ss= 18.5% Sl= 5.9% R = 3.00 (SW A) R = 3.00 (SW C)

R = 3.00 (FRAMES) R = 3.00 (EW B) R = 3.00 (EW D)
Occupancy Category= III Seismic Design Category = B

Occupancy Category= III Seismic Design Category = B I = 1.25
Seismic Site Class= D Fa = 1.600 Fv= 2.400 SDS = 0.197 SD1 = 0.094
Tot Bldg Wt = 25687. Lbs. Longitudinal Cs= 0.082 Base Shear = 2112. Lbs.

**** LONGITUDINAL DIRECTION ****

TOTAL ROOF WEIGHT = 14187. LBS ENDWALL B WEIGHT = 0. LBS ENDWALL D WEIGHT = 2357. LBS WT FOR ROOF DIAPHRAGM = 16544. LBS

> DIAPHRAGM SHEAR=Vd=Cs*W = 1360. LBS EQUIVILENT ASD DIAPHRAGM SHEAR LOAD = 952. LBS WIND DIAPHRAGM SHEAR = 10226. LBS

W > 0.7*E THEREFORE WIND CONTROLS ROOF BRACING

WT FOR SW A BRACING = 9968. LBS WT FOR SW C BRACING = 9968. LBS

> SEISMIC TO SW A = Cs*W= 820. LBS SEISMIC TO SW C = Cs*W= 820. LBS WIND SHEAR SW (A) = 5113. LBS WIND SHEAR SW (C) = 5113. LBS

W > 0.7*E THEREFORE WIND CONTROLS SW (A) BRACING W > 0.7*E THEREFORE WIND CONTROLS SW (C) BRACING

CHIEF INDUSTRIES INC. SEISMIC DESIGN REPORT - BDS V12.02

ENGINEER : CL

PAGE NO. 5
JOB NO. B3004915
BUILDING A
DATE 6-JUN-12
TIME 08:03:58

**** LATERAL DIRECTION ****

TOTAL ROOF WEIGHT = 363.8 PLF
SIDEWALL A WEIGHT = 39.0 PLF
SIDEWALL C WEIGHT = 39.0 PLF
WT FOR INTERIOR FRAMES = 441.8 PLF

SEISMIC SHEAR TO FRAMES = Cs*W = 36.3 PLF 50 YEAR LATERAL WIND SHEAR = 177.4 PLF W > 0.7*E THEREFORE WIND CONTROLS LATERAL LOAD ON FRAMES

P-DELTA CHECK: (See ASCE 7-05 Eq. 12.8-17)

LIMIT SEISMIC FRAME DEFLECTION TO .250*H*V/WT = H/69 (V = 25.4 PLF)

NOTE: Seismic deflection limit is for combinations with 0.7*E

USE H/60 FOR 10 YEAR WIND DEFLECTION

CHIEF INDUSTRIES INC. SEISMIC DESIGN REPORT - BDS V12.02

ENGINEER : CL

PAGE NO. 9 JOB NO. B3004915 BUILDING A DATE 6-JUN-12 TIME 08:03:58

*** ENDWALL BRACING DESIGN ***

LATERAL WEIGHT EW B = 4086.3 LBS. LATERAL WEIGHT EW D = 7163.5 LBS.

ORDINARY MOMENT FRAME DESIGN AT ENDWALL D ______

NUMERICAL COEFFICIENT, R = 3.000

FOR EW D: Cs = 0.082

SEISMIC SHEAR EW (D) = V = Cs*W = 589.0 LBS. EQUIV. FORCE @ EW (D) = 0.7*V = 412.3 LBS. WIND FORCE AT EW (D) = 2839.2 LBS.

WIND CONTROLS ENDWALL D OMF DESIGN

http://www.chiefbuildings.com

We Engineer Relationships.

Sersmic Bracing

B3004915

CAL 6-6-12

Existing SW A Sei Load = 193915 (Does not include EWD Wt.)

New SW A Sei Load = 820 16.

total 276016

276016 x 0.7 = 193216 < 536216.

* Word Controls Bracing *

CHIEF INDUSTRIES INC. WES Heath Steel PAGE INDEX FOR COMPUTER CA	ALCULAT	IONS	;									JC DA	B NO). 6	B30 -JU	0491! N-12
MATERIAL REPORT	· • • •				•		•		•	•	•	•	. PA	\GE	; -	2
CABLE BRACING DESIGN				 •	•								. PA	\GE	-	. 3
FRAME DESIGN SUMMARY				 •									. PA	\GE	; -	4
BUILDING A FRAME B3004915						 •					•		PAGE	F	· _	6
BUILDING A FRAME B3004915 RIGID FRAME DESIGN				•	•					•		•	PAGE	F	' <u>-</u>	33
BUILDING A ENDWALL (D) ENDWALL DESIGN				 •			•		•	•	•	•	PAGE	ΞE	; -	60
BUILDING A SIDEWALL (A) GIGIRT DESIGN	RTS		•				•	•	•	•	•		PAGE	: G	: -	64
BUILDING A SIDEWALL (C) GIGIRT DESIGN	IRTS		•				•	•	•	•	•	•	PAGE	: G	-	68
BUILDING A ENDWALL (D) GIFGIRT DESIGN	RTS			 •		 •	•				٠	•	PAGE	: G	. –	72
BUILDING A PURLINS PURLIN DESIGN				 •	•		•				•		PAGE	; P	-	76
BUILDING A WIND DESIGN SIE WIND BRACING DESIGN	DEWALL	(A)									•		PAGE	: W	· –	83
BUILDING A WIND DESIGN SIEWIND BRACING DESIGN							•	•		-			PAGE	: W	' _	87

MATERIAL REPORT

JOB NO. B3004915 DATE 6-JUN-12

MATERIAL SPECIFICATIONS

The following is a list of the different materials used in this building. included are ASTM Specifications and Nominal Strength.

	ASTM Designation	Nominal Strength		
Plate and Bar	A1011-XX, SS A572-XX or A529-XX	Fy = 55 ksi		
C&Z Sections	A1011-XX, SS	Fy = 55 ksi		
Wind Bracing Cable	e A475-XX Extra High Strength	(see cable charts)		
Paneling CS, AP & LTC MSC & STC	A792-XX, SS A792-XX, SS, Class 1	Fy = 80 ksi Fy = 50 ksi		
Structural Bolts	A325-XX	Ft = 90 ksi		

Revised 1/12/09

CABLE BRACING DESIGN CHART

CABLE BRACING LOAD CAPACITIES

Strand Size	Breaking Strength	Working Strength	Eyebolt Size	Eyebolt Force
1/4"	6.65 k	3.33 k ++	1/2"	3.76 k
3/8"	15.40 k	7.70 k	5/8"	5.87 k
1/2"	26.90 k	13.45 k	7/8"	++ 11.51 k ++

(1) Breaking Strength - Values from ASTM A475 for extra high ----- strength strand.

- (2) Working Strength Calculated from the Breaking Strength ---- 2.0 for a Safety Factor.
- (3) Eyebolt Force Based on ASTM A36 threaded fasteners.

revised 1/12/09

PAGE NO. - 4 JOB NO. B3004915 DATE 6-JUN-12

FRAME DESIGN AND OUTPUT SUMMARY

A. General

FRAME DESIGN SUMMARY

The frames are designed as a fully rigid jointed plane frames using a two-dimensional force analysis. All column bases are typically designed as pin supports. Interior columns (when applicable) may be either designed as pinned or fixed at the top connection to the rafter depending on the stiffness and other design requirements for the frame. Lean-to frames (when applicable) have one exterior column and a simply supported rafter beam that is supported at the high side by another frame. Column and rafter beam lateral support is provided by the girts or purlins. The inside flange lateral support is provided at the designated locations by flange braces connected between the member inside flange and the girt or purlin.

B. Analysis

The frame is analyzed using a stiffness matrix method with nonprismatic member stiffness properties. The joint deflections and member cross sectional forces for all loading cases are calculated and are used in the stress analysis. Bending, axial, and shear stress analysis are based on AISC Specifications. The bending and axial load combined stress ratio is normally held below 1.03.

C. Frame Stability

Frames are designed for the stability requirements of the 13th edition of AISC using either the Direct Analysis Method or a Design by First-Order Analysis using notional loads to account for Second-Order Effects.

D. Loads

Load combinations are based on the applicable building code and loading indicated on the building order.

The snow and live loads are applied on the horizontal projection. The wind load is applied on the frame in accordance with the applicable building code. Increased tributary loading is applied to the interior frame in two bay buildings with continuous purlins.

PAGE NO. - 5 JOB NO. B3004915 DATE 6-JUN-12

FRAME DESIGN AND OUTPUT SUMMARY

(Continued)

FRAME DESIGN SUMMARY

E. Moment End-Plate Connecion Design

Moment connections are designed in accordance with the AISC/MBMA Steel Design Guide 16 "Flush and Extended Multiple-Row Moment End-Plate Connections" published in 2002 using fully tensioned A325 bolts.

Shear transfer between the plates is based on a bearing type shear connections. Bolt shear is taken as average shear on each bolt used for resisting the shear force. All bolt stress values are in accordance with AISC 13th edition specifications for ASTM A325 bolts in tension, shear, and combined tension and shear.

F. Output

Output include the follow reports.

- 1. Frame Design Data
- 2. Loading Summary
- 3. Frame Reaction and Deflection Report
- 4. Design Summary Report
- 5. Flange Brace Locations Report
- 6. Weld Summary Report
- 7. Conection Report

Based on the size and type of frame the following reports may be included.

- 1. Dimensions and Properities Report
- 2. Forces, Moments and Stresses Report
- 3. Deflections and Rotations Report

The reports are self-explanatory with the exception of joints and sections. Joints are located at the base and top of exterior and interior columns (when applicable) and where the roof slope changes. Joint numbers start at the base of the left exterior column. Sections occur between joints, with a maximum of 8 sections allowed between joints. Web thickness and flange width and thickness are constant within a section.

CONFIGURATION (NON-SYMMETRIC FRAME)

BUILDING WIDTH 51.04 FT. NUMBER OF SPANS SPAN WIDTHS 51.04 DESIGN BAY SIZE = 23.59 FT. LEFT EAVE HEIGHT = 17.33 FT. RIGHT EAVE HEIGHT = 17.33 FT.

RIGHT EAVE HEIGHT = 17.33 FT.

LEFT RAFTER SLOPE (R/12) = 3.00 RIGHT RAFTER SLOPE (R/12) = -3.00= 8.00 IN. = 10.00 IN. GIRT OUTSET PURLIN DEPTH STEEL YIELD: FLANGES 55. KSI 55. KSI WEBS LOADINGS ...

DEAD LOAD = 2.627 PSF (Dead Load of Rigid Frame is calculated internally)

COLLATERAL= 3.000 PSF LIVE LOAD = 20.000 PSF SNOW LOAD = 30.000 PSF WIND LOAD = 23.523 PSF

LOAD CONDITIONS ...

1 = DEAD + LIVE LOAD100. DL 100. LL 100. COL 2 = DL + SNOW LOAD100. DL 100. SL 100. DL 100. SL 100. DL 100. SL 100. COL 3 = DL + SNOW LOAD100. COL 4 = .6DL+WLL (NASI) 60. DL 100. WLL 5 = .6DL+WLR (NASI) 60. DL 100. WLR 6 = .6DL+WL2 (NASI) 60. DL 100. WL2 7 = .6DL+WR2 (NASI) 60. DL 100. WR2 8 = .6DL+WLE+BR1 (NASI) 60. DL 100. WE2 100. BR1 9 = .6DL+WE2+BR1 (NASI) 60. DL 100. WE2 100. BR1 10 = DL + .75(SL + WE2 + BR2) (NASI)100. DL 100. COL 75. SL 75. WE2 75. BR2 11 = DL+WE2+BR2 (NASI)100. DL 100. COL 100. WE2 100. BR2 12 = DL + COL + .75(LL + WLL) (NASI) 100. DL 100. COL 75. LL 75. WLL 13 = DL + COL + .75(LL + WLR) (NASI)100. DL 100. COL 75. LL 75. WLR 14 = DL + COL + .75(SL + WLL) (NASI) 100. DL 100. COL 75. SL 75. WLL 15 = DL + COL + .75(SL + WLR) (NASI)100. DL 100. COL 75. SL 75. WLR 16 = DL + UNBAL. SL #1 16 = DL + UNBAL. SL #1 100. DL 100. COL 100. SL4 17 = DL + UNBAL. SL #2 100. DL 100. COL 100. SL3 18 = DL+SEISMIC LEFT*0.7 103. DL 103. COL 70. SEI 19 = DL+SEISMIC RIGHT*0.7 103. DL 103. COL -70. SEI 20 = .6 DL+SEISMIC LEFT*0.7 57. DL 70. SEI

PAGE NO. F - 7 JOB NO. B3004915

CL DATE 06-06-12

LOAD CONDITIONS ... (CONTINUED)

21 = .6 DL+SEISMIC RIGHT*0.7

57. DL -70. SEI

BUILDING A FRAME B3004915A01 COL LINES 5

22 = .6 DL + SB1*0.7 57. DL 70. SB1 23 = DL + SB2*0.7 103. DL 103. COL 70. SB2

100. BR2

LOAD CONDITIONS FOR REACTIONS & DEFLECTIONS ...

POI	Δ D	CONDITIONS	FOR	REACTIONS	
24	=	DL		100.	$\mathrm{D}\mathbf{L}$
25	=	COL		100.	COL
26	=	LL		100.	${ m LL}$
27	=	SL		100.	\mathtt{SL}
28	=	WLL		100.	\mathtt{WLL}
29	=	WLR		100.	WLR
30	=	WL2		100.	WL2
31	=	WR2		100.	WR2
32	=	WLE		100.	\mathtt{WLE}
33	=	WE2		100.	WE2
34	=	SL4		100.	SL4
35	=	SL3		100.	SL3
36	=	SEI		100.	SEI
37	=	SB1		100.	SB1
38	=	SB2		100.	SB2
39	=	BR1		100.	BRI

41 = SECOND ORDER SEED 100. 000

40 = BR2

CHIEF BUILDINGS FRAME DESIGN V09.01 LOADING SUMMARY

PAGE NO. F - 8

JOB NO. B3004915

BUILDING A FRAME B3004915A01 COL LINES	5	CL	DATE 06-06-12

J1	J2	GROUP	SYST	DIR	TYPE	DIST	LOAD	*E or L	LOAD	
1	2	BR1	GLOB	Z	CONC	0.000	5.113	~ <u>-</u> -		
1	2	BR1	GLOB	Y	CONC	0.250		,		
2	1	BR2	GLOB	Y	CONC	0.000	-4.606			
5	4	BR1	GLOB	Z	CONC	0.000	5.113			
5	4	BR1	GLOB	Y	CONC	0.250	4.606			
4	5	BR2	GLOB	Y	CONC	0.000				
1	2	SB1	GLOB	Z	CONC	0.000				
1	2	SB1	GLOB	Y	CONC	0.250				
2	1	SB2	GLOB	Y	CONC	0.000				
5	4	SB1	GLOB	Z	CONC	0.000				
5	4	SB1	GLOB	Y	CONC	0.250	0.738			
4	5	SB2	GLOB	Y	CONC	0.000	-0.738			
2	1	SEI	GLOB	X	CONC	0.000	0.428			
4	5 3	SEI	GLOB	X	CONC	0.000	0.428	10 200	0 011	
2	3	WLE WE2	MEMB MEMB	Y	UNIF	0.000		10.208		
4 2	3	SL3	GLOB	Y Y	UNIF UNIF	0.000		10.208	-0.211	
3	2	SL3	GLOB	Y	UNIF	0.000		8.980	-0.345	
3	4	SL3 SL4	GLOB	Y	UNIF	0.000		0.500	-0.345	
3	4	SL4	GLOB	Y	UNIF	0.000		8.980	-0.345	
2	3	SL4	GLOB	Y	UNIF	0.000		0.500	0.545	
3	4	SL3	GLOB	Ÿ	UNIF	0.000				
5	_	023	CHOD	_	ONTI	0.000	0.135			
(AUTO	LOA	DS)								
1	2	m DL	GLOB	Y	UNIF	0.000	-0.025			DLWT
1	2	$M\Gamma\Gamma$	GLOB	Х	UNIF	0.000				WLLX
1	2	WLR	GLOB	Х	UNIF	0.000				WLRX
1	2	WL2	GLOB	X	UNIF	0.000	0.324			WL2X
1	2	WR2	GLOB	X	UNIF	0.000	-0.097			WR2X
1	2	WLE	GLOB	X	UNIF	0.000	-0.306			\mathtt{WLEX}
1	2	WE2	GLOB	X	UNIF	0.000	-0.304			WE2X
2	3	LL	GLOB	Y	UNIF	0.000	-0.458			LIVE
2	3	${f L}{f L}$	GLOB	Y	CONC	0.000	-0.776			LIVE
2	3	LĹ	GLOB	Ż	TMOM	0.000	0.658			LIVE
2	3	SL	GLOB	Y	UNIF	0.000	-0.686			SNOW
2	3	SL3	GLOB	Y	CONC	0.000	-0.897			SNOW
2	3	SL3	GLOB	Z	TMOM	0.000	0.761			SNOW
2	3	SL4	GLOB	Y	CONC	0.000	-0.270			SNOW
2	3	SL4	GLOB	Z	MOMT	0.000	0.229			SNOW
2	3	SL	GLOB	Y	CONC	0.000	-1.164			SNOW
2	3	SL	GLOB	Z	MOMT	0.000	0.987			SNOW
2	3	DL	GLOB	Y	UNIF	0.000	-0.060			DEAD
2	3 3	DL	GLOB	Y	CONC	0.000	-0.102			DEAD
2 2	3	DL	GLOB GLOB	Z Y	MOMT UNIF	0.000 0.000	0.086 -0.020			DEAD DLWT
2	3	COL	GLOB	Y	UNIF	0.000	-0.020			COLL
2	3	COL	GLOB	Y	CONC	0.000	-0.116			COLL
2	3	COL	GLOB	Z	MOMT	0.000	0.099			COLL
2	3	WLL	GLOB	X	UNIF	0.000	-0.125			WLLX
2	3	WLL	GLOB	Y	UNIF	0.000	0.501			WLLY
2	3	WLR	GLOB	X	UNIF	0.000	-0.090			WLRX
2	3	WLR	GLOB	Y	UNIF	0.000	0.358			WLRY
2	3	WL2	GLOB	X	UNIF	0.000	-0.073			MT5X

CHIEF BUILDINGS FRAME DESIGN V09.01

LOADING SUMMARY

BUILDING A FRAME B3004915A01 COL LINES 5

PAGE NO. F - 9 JOB NO. B3004915

CL DATE 06-06-12

J1	J2	GROUP	SYST	DIR	TYPE	DIST	LOAD	*E or L	LOAD	
2	3	WL2	GLOB	Y	UNIF	0.000	0.293			WL2Y
2	3	WR2	GLOB	X	UNIF	0.000	-0.038			WR2X
2	3	WR2	GLOB	Y	UNIF	0.000	0.151			WR2Y
2	3	\mathtt{WLE}	GLOB	Х	UNIF	0.000	-0.125			WLEX
2	3	WLE	GLOB	Y	UNIF	0.000	0.501			WLEY
2	3	WE2	GLOB	Х	UNIF	0.000	-0.125	i		WE2X
2	3	WE2	GLOB	Y	UNIF	0.000	0.501			WE2Y
3	4	$\mathbf{L}\mathbf{L}$	GLOB	Y	UNIF	0.000	-0.458			LIVE
4	3	${ m LL}$	GLOB	Y	CONC	0.000	-0.776			LIVE
4	3	$\mathbf{L}\mathbf{L}$	GLOB	\boldsymbol{z}	TMOM	0.000	-0.658			LIVE
3	4	SL	GLOB	Y	UNIF	0.000	-0.686			SNOW
4	3	SL3	GLOB	Y	CONC	0.000	-0.270			SNOW
4	3	SL3	GLOB	Z	TMOM	0.000	-0.229			SNOW
4	3	SL4	GLOB	Y	CONC	0.000	-0.897			SNOW
4	3	SL4	GLOB	\boldsymbol{z}	TMOM	0.000	-0.761			SNOW
4	3	SL	GLOB	Y	CONC	0.000	-1.164			SNOW
4	3	\mathtt{SL}	GLOB	Ż	TMOM	0.000	-0.987			SNOW
3	4	\mathtt{DL}	GLOB	Y	UNIF	0.000	-0.060			DEAD
4	3	\mathtt{DL}	GLOB	Y	CONC	0.000	-0.102			DEAD
4	3	${ m DL}$	GLOB	\mathbf{Z}	TMOM	0.000	-0.086			DEAD
3	4	DL	GLOB	Y	UNIF	0.000	-0.020			DLWT
3	4	COL	GLOB	Y	UNIF	0.000	-0.069			COLL
4	3	COL	GLOB	Y	CONC	0.000	-0.116			COLL
4	3	COL	GLOB	Z	TMOM	0.000	-0.099			COLL
	4	\mathtt{WLL}	GLOB	Х	UNIF	0.000	0.090			WLLX
3 3 3	4	WLL	GLOB	Y	UNIF	0.000	0.358			WLLY
3	4	WLR	GLOB	Х	UNIF	0.000	0.125			WLRX
3	4	WLR	GLOB	Y	UNIF	0.000	0.501			WLRY
3	4	WL2	GLOB	Х	UNIF	0.000	0.038			WL2X
3	4	WL2	GLOB	Y	UNIF	0.000	0.151			WL2Y
3	4	WR2	GLOB	Х	UNIF	0.000	0.073			WR2X
3	4	WR2	GLOB	Y	UNIF	0.000	0.293			WR2Y
3	4	\mathtt{WLE}	GLOB	Х	UNIF	0.000	0.125			WLEX
3	4	WLE	GLOB	Y	UNIF	0.000	0.501			WLEY
3	4	WE2	GLOB	X	UNIF	0.000	0.125			WE2X
3	4	WE2	GLOB	Y	UNIF	0.000	0.501			WE2Y
5	4	\mathtt{DL}	GLOB	Y	UNIF	0.000	-0.025			DLWT
5	4	$\mathtt{W} \bot \mathtt{L}$	GLOB	X	UNIF	0.000	0.273			WLLX
5	4	WLR	GLOB	X	UNIF	0.000	-0.149			WLRX
5	4	WL2	GLOB	X	UNIF	0.000	0.098			WL2X
5	4	WR2	GLOB	Х	UNIF	0.000	-0.324			WR2X
5	4	WLE	GLOB	Х	UNIF	0.000	0.306			WLEX
5	4	WE2	GLOB	X	UNIF	0.000	0.306			WE2X

^{*} E = eccentricity for concentrated loads. L = load length for uniform loads.

PAGE NO. F - 10 JOB NO. B3004915 L DATE 06-06-12

COEFFICIENTS FOR WLL (WIND FROM THE LEFT)

BUILDING A FRAME B3004915A01 COL LINES 5

LEFT WALL COEFFICIENT = 0.2460

LEFT ROOF COEFFICIENT = -0.8700

RIGHT ROOF COEFFICIENT = -0.6230

RIGHT WALL COEFFICIENT = -0.4500

COEFFICIENTS FOR WLR (WIND FROM THE RIGHT)

LEFT WALL COEFFICIENT = -0.4500

LEFT ROOF COEFFICIENT = -0.6230

RIGHT ROOF COEFFICIENT = -0.8700

RIGHT WALL COEFFICIENT = 0.2460

COEFFICIENTS FOR WL2 (WIND FROM THE LEFT CASE 2)

LEFT WALL COEFFICIENT = 0.5340

LEFT ROOF COEFFICIENT = -0.5100

RIGHT ROOF COEFFICIENT = -0.2630

RIGHT WALL COEFFICIENT = -0.1620

COEFFICIENTS FOR WR2 (WIND FROM THE RIGHT CASE 2)

LEFT WALL COEFFICIENT = -0.1600

LEFT ROOF COEFFICIENT = -0.2630

RIGHT ROOF COEFFICIENT = -0.5100

RIGHT WALL COEFFICIENT = 0.5340

COEFFICIENTS FOR WLE (WIND ON THE ENDWALL)

LEFT WALL COEFFICIENT = -0.5040

LEFT ROOF COEFFICIENT = -0.8700

RIGHT ROOF COEFFICIENT = -0.8700

RIGHT WALL COEFFICIENT = -0.5040

COEFFICIENTS FOR WE2 (WIND ON THE ENDWALL CASE 2)

LEFT WALL COEFFICIENT = -0.5000

LEFT ROOF COEFFICIENT = -0.8700

RIGHT ROOF COEFFICIENT = -0.8700

RIGHT WALL COEFFICIENT = -0.5040

CHIEF BUILDINGS FRAME DESIGN V09.01
DIMENSIONS AND PROPERTIES
BUILDING A FRAME B3004915A01 COL LINES 5

PAGE NO. F - 11 JOB NO. B3004915

CL DATE 06-06-12

MEMBER SECTIO		1- 2 1 LENG	LENGTH	15.84 06' OF=		NGLE OF 0.2500	MEMBER WEB=0			.00 X	0.3750
ANAL POINT	X (FT)	Y (FT)	DEPTH (IN)	AREA	IX (IN4)	SOX (IN3)	SIX (IN3)	RX (IN)	RY (IN)	RTO (IN)	RTI (IN)
1* 100 101 102 103 104 105	0.00 0.04 0.11 0.18 0.25 0.32	2.00 2.94 4.82 6.70 8.58 10.46 12.35	10.00 10.78 12.34 13.91 15.47 17.03	6.46 6.59 6.83 7.08 7.32 7.56 7.81	124.5 146.6 196.7 255.1 322.1 397.9 482.8	21.8 23.9 28.1 32.4 36.9 41.5 46.3	29.0 31.6 36.9 42.3 47.8 53.4	4.39 4.72 5.37 6.01 6.63 7.25 7.86	2.01 1.98 1.94 1.91 1.88 1.85	2.204 2.191 2.165 2.142 2.119 2.098 2.078	2.266 2.249 2.233 2.218 2.204 2.190
106 107 108*	0.46 0.53 0.57	14.23 16.11 17.05	20.16 21.72 22.50	8.05 8.30 8.42	577.3 681.5 737.4	51.2 56.3 58.9	64.9 70.9 73.9	8.47 9.06 9.36	1.79	2.059 2.040 2.031	2.164

CHIEF BUILDINGS FRAME DESIGN V09.01
DIMENSIONS AND PROPERTIES
BUILDING A FRAME B3004915A01 COL LINES 5

PAGE NO. F - 12 JOB NO. B3004915

CL DATE 06-06-12

			· 		 -	- 				- -	 -
MEMBE:		2- 3	LENGTH			NGLE OF	MEMBER		2 DEG		
	ON NO.	1 LENG				0.2500		.1875			0.3125
SECTI	ON NO.	2 LENG	STH 14.	02' OF=	6.00 X	0.2500	WEB=0	.1250	IF= 6	5.00 X	0.3125
ANAL	 Х	Y	DEPTH	~	+						-
POINT		(FT)		AREA	IX	SOX	SIX	RX	RY	RTO	RTI
LOTMI	(FI)	\r_1/	(IN)	(IN2)	(IN4)	(IN3)	(IN3)	(IN)	(IN)	(IN)	(IN)
111*	1.17	17.97	24.00	7.77	673.4	53.7	58.8	9.31	1.14	1.422	1.493
112	1.97	18.21	23.25	7.63	625.3	51.4	56.4	9.05		1.430	
113	3.57	18.67	21.75	7.35	535.4	47.0	51.7	8.54		1.447	
114	5.17	19.14	20.25	7.07	453.8	42.7	47.2	8.01		1.463	
115	6.77	19.60	18.75	6.79	380.1	38.5	42.8	7.48		1.481	
116	8.37	20.07	17.25	6.50	314.1	34.5	38.5	6.95		1.500	
117	9.97	20.53	15.75	6.22	255.3	30.7	34.4	6.41	1.28	1.519	1.577
118*	10.78	20.77	15.00	6.08	228.6	28.8	32.3	6.13	1.29	1.529	1.585
118*	10.78	20.77	15.00	5.18	212.7	26.6	30.4	6.41	1.40	1.591	1.636
119	11.63	20.98	15.00	5.18	212.7	26.6	30.4	6.41	1.40	1.591	1.636
120	13.33	21.41	15.00	5.18	212.7	26.6	30.4	6.41	1.40	1.591	1.636
121	15.03	21.83	15.00	5.18	212.7	26.6	30.4	6.41	1.40	1.591	1.636
122	16.73	22.26	15.00	5.18	212.7	26.6	30.4	6.41	1.40	1.591	1.636
123	18.43	22.68	15.00	5.18	212.7	26.6	30.4	6.41	1.40	1.591	1.636
124	20.13	23.10	15.00	5.18	212.7	26.6	30.4	6.41	1.40	1.591	1.636
125	21.83	23.53	15.00	5.18	212.7	26.6	30.4	6.41	1.40	1.591	1.636
126	23.53	23.95	15.00	5.18	212.7	26.6	30.4	6.41	1.40	1.591	1.636
3*	24.38	24.17	15.00	5.18	212.7	26.6	30.4	6.41	1.40	1.591	1.636

FRAME DESIGN V09.01 CHIEF BUILDINGS DIMENSIONS AND PROPERTIES

37.13 20.98 15.00 5.18 212.7

15.00 5.18

15.00 6.08

17.25 6.50

18.75 6.79

20.25 7.07

134

136 137

138

139

141

135* 37.98 20.77

135* 37.98 20.77

41.98

43.58

140 45.18 18.67

38.78 20.54

40.38 20.07

46.78 18.21 142* 47.59 17.97

19.60

19.14

PAGE NO. F - 13 JOB NO. B3004915 D3000 06 06 10

26.6 30.4 6.41 1.40 1.591 1.636

26.6 30.4 6.41 1.40 1.591 1.636 28.8 32.3 6.13 1.29 1.529 1.585

314.1 34.5 38.5 6.95 1.25 1.500 1.560 380.1 38.5 42.8 7.48 1.22 1.481 1.544 453.8 42.7 47.2 8.01 1.20 1.463 1.529

BUILD	OING A	FRAME B	3004915	A01 COL I	LINES	5 		CL	D	ATE 06	5-06-12
MEMBER SECTION SECTION		3 - 4 1 LENG 2 LENG		02' OF≈	6.00 X	NGLE OF 0.2500 0.2500	MEMBER WEB=0. WEB=0.	1250	IF= 6		0.3125 0.3125
ANAL POINT	X (FT)	Y (FT)	DEPTH (IN)	AREA	IX (IN4)	SOX (IN3)	SIX (IN3)	RX (IN)	RY (IN)	RTO (IN)	RTI (IN)
128 129 130 131	24.38 25.23 26.93 28.63 30.33 32.03 33.73	24.17 23.95 23.53 23.10 22.68 22.25 21.83	15.00 15.00 15.00 15.00 15.00 15.00	5.18 5.18 5.18 5.18 5.18 5.18 5.18	212.7 212.7 212.7 212.7 212.7 212.7 212.7	26.6 26.6 26.6 26.6 26.6 26.6	30.4 30.4 30.4 30.4 30.4 30.4	6.41 6.41 6.41 6.41	1.40 1.40 1.40 1.40 1.40	1.591 1.591 1.591 1.591 1.591	1.636 1.636 1.636 1.636 1.636 1.636
133	35.43	21.41	15.00	5.18	212.7	26.6	30.4	6.41	1.40	1.591	1.636

212.7

15.75 6.22 255.3 30.7 34.4 6.41 1.28 1.519 1.577

21.75 7.35 535.4 47.0 51.7 8.54 1.17 1.447 1.514 23.25 7.63 625.3 51.4 56.4 9.05 1.15 1.430 1.500 24.00 7.77 673.4 53.7 58.8 9.31 1.14 1.422 1.493

228.6

CHIEF BUILDINGS FRAME DESIGN V09.01
DIMENSIONS AND PROPERTIES
BUILDING A FRAME B3004915A01 COL LINES 5

PAGE NO. F - 14 JOB NO. B3004915 CL DATE 06-06-12

MEMBER NO. SECTION NO.	5- 4 1 LENG	LENGTH	15.84)6' OF=		NGLE OF 0.2500	MEMBER WEB=0	-		.00 X	0.3750
ANAL X POINT (FT)	Y (FT)	DEPTH (IN)	AREA (IN2)	IX (IN4)	SOX (IN3)	SIX (IN3)	RX (IN)	RY (IN)	RTO (IN)	RTI (IN)
5* 48.76 144 48.72 145 48.65 146 48.58 147 48.51 148 48.44 149 48.37 150 48.30 151 48.22 152* 48.19	2.00 2.94 4.82 6.70 8.58 10.46 12.35 14.23 16.11 17.05	10.00 10.78 12.34 13.91 15.47 17.03 18.59 20.16 21.72 22.50	6.46 6.59 6.83 7.08 7.32 7.56 7.81 8.05 8.30 8.42	124.5 146.6 196.7 255.1 322.1 397.9 482.8 577.3 681.5 737.4	21.8 23.9 28.1 32.4 36.9 41.5 46.3 51.2 56.3 58.9	29.0 31.6 36.9 42.3 47.8 53.4 59.1 64.9 70.9	4.39 4.72 5.37 6.01 6.63 7.25 7.86 8.47 9.06 9.36	2.01 1.98 1.94 1.91 1.88 1.85 1.82	2.204 2.191 2.165 2.142 2.119 2.098 2.078 2.059 2.040 2.031	2.266 2.249 2.233 2.218 2.204 2.190 2.177 2.164

PAGE NO. F - 15 JOB NO. B3004915 CL DATE 06-06-12

	REACT		REACT	MOMENT REACTION (KIP-FT)	DEFL	HORIZ DEFL (IN)
1 2 3	16.4	7.1	0.0		0.000 0.002 -1.547 -0.001	0.000 -0.416 -0.049
4 5	16.3	-6.9	0.0	0.0	0.000	0.318 0.000
AD COND	2 - DL + 5	SNOW LOAD				
	REACT (KIP)			MOMENT REACTION (KIP-FT)	VERT DEFL (IN)	HORIZ DEFL (IN)
1 2 3 4	22.2	9.4	0.0	0.0	0.000 -0.003 -2.130 0.004	0.000 -0.401 0.089
5	22.5	-9.9	0.0	0.0		
AD COND	3 - DL + S	ENOW LOAD				
JOINT NUMBER	VERT REACT (KIP)	X REACT (KIP)			VERT DEFL (IN)	HORIZ DEFL (IN)
1 2 3 4	22.5	9.9	0.0	0.0	0.000 0.004 -2.130 -0.003	0.000 -0.580 -0.089 0.401
5	22.2	-9.4	0.0	0.0		0.000
AD COND	46DL+V	VLL (NASI)				
JOINT NUMBER	VERT REACT (KIP)	X REACT (KIP)	Z REACT (KIP)	MOMENT REACTION (KIP-FT)	VERT DEFL (IN)	HORIZ DEFL (IN)
1 2 3	-10.7	-6.6	0.0	0.0	0.000 -0.013 0.614	0.000 0.520 0.363
4	-7.5	0.8	0.0	0.0	0.013 0.000	0.212

PAGE NO. F - 16 JOB NO. B3004915 CL DATE 06-06-12

LOAD COND	56DL+7	NLR (NASI)				
JOINT NUMBER	VERT REACT (KIP)	X REACT (KIP)		MOMENT REACTION (KIP-FT)	VERT DEFL (IN)	HORIZ DEFL (IN)
1 2 3 4	-7.5	-0.8	0.0	0.0	0.013 0.614	
5	-10.7	6.6	0.0	0.0		• •
LOAD COND	66DL+V	NL2 (NASI)				
JOINT NUMBER	VERT REACT (KIP)	X REACT (KIP)	REACT	MOMENT REACTION (KIP-FT)	DEFL (IN)	HORIZ DEFL (IN)
1 2 3 4	-5.6	-5.9	0.0	0.0		0.000 0.452 0.363 0.280
5	-2.4	0.0	0.0	0.0		0.000
LOAD COND	76DL+V	WR2 (NASI)				
JOINT NUMBER		X REACT (KIP)	(KIP)	MOMENT REACTION (KIP-FT)	DEFL (IN)	HORIZ DEFL (IN)
1 2 3 4	-2.4	-0.1	0.0	0.0	0.000 0.012 0.334 -0.013	0.000 -0.278 -0.361 -0.450
5	-5.6	5.9	0.0	0.0	0.000	0.000
LOAD COND	86DL+V	VLE+BR1 (NA	ASI)			
JOINT NUMBER	VERT REACT (KIP)	X REACT (KIP)	Z REACT (KIP)	MOMENT REACTION (KIP-FT)	VERT DEFL (IN)	HORIZ DEFL (IN)
1 2 3 4	-17.1	-2.2	5.1	0.0	0.000 0.009 0.627 -0.005	0.000 -0.017 -0.168 -0.323
5	-15.9	2.7	5.1	0.0	0.000	0.000

PAGE NO. F - 17 JOB NO. B3004915 CL DATE 06-06-12

LOAD COND	96DL+V -	VE2+BR1 (NA	ASI)						
		X REACT (KIP)	REACT	MOMENT REACTION (KIP-FT)	VERT DEFL (IN)	HORIZ DEFL (IN)			
2 3 4	-15.9		5.1	0.0	-0.005 0.628 0.009	0.000 0.327 0.172 0.021			
5	-17.1	2.2	5.1	0.0	0.000	0.000			
LOAD COND 10) - DL+.7	5(SL+WE2+B	R2) (NASI)						
				MOMENT REACTION (KIP-FT)	VERT DEFL (IN)	HORIZ DEFL (IN)			
	11.7		0.0	0.0	0.000 -0.007 -1.126 0.006	0.000 -0.120 0.157			
5	10.9	-5.8	0.0	0.0	0.000				
LOAD COND 13	l - DL+WE2	2+BR2 (NASI	[)						
	VERT REACT (KIP)	X REACT (KIP)	REACT	MOMENT REACTION (KIP-FT)	VERT DEFL (IN)	HORIZ DEFL (IN)			
1 2 3 4	-3.9	-1.4	0.0	0.0	0.000 -0.008 0.375 0.006	0.000 0.263 0.172 0.084			
5	-5.1	0.8	0.0	0.0	0.000	0.000			
LOAD COND 12	2 - DL + (COL + .75(I	T + MTT)	(NASI)					
JOINT NUMBER	VERT REACT (KIP)	X REACT (KIP)	Z REACT (KIP)	MOMENT REACTION (KIP-FT)	VERT DEFL (IN)	HORIZ DEFL (IN)			
1 2 3 4	4.2	0.3	0.0	0.0	0.000 -0.010 -0.703 0.011	0.000 0.109 0.285 0.465			
5	6.6	-4.7	0.0	0.0	0.000	0.000			

1035 GOVE 44						
LOAD COND 13	- DL + (ЮL + .75(I	L + WLR)	(NASI)		
		X REACT (KIP)	REACT	REACTION	VERT DEFL (IN)	HORIZ DEFL (IN)
1 2 3 4	6.6	4.7	0.0	0.0	0.000 0.011 -0.703 -0.010	0.000 -0.465 -0.285 -0.109
5	4.2	-0.3	0.0	0.0	0.000	0.000
LOAD COND 14	l - DL + (COL + .75(S	L + WLL)	(NASI)		
		X REACT (KIP)		MOMENT REACTION (KIP-FT)	VERT DEFL (IN)	HORIZ DEFL (IN)
1 2 3 4	8.6	2.2		0.0	0.000 -0.010 -1.142 0.012	0.000 0.020 0.299 0.583
5	11.2	-6.8	0.0	0.0	0.000	0.000
LOAD COND 15	5 - DL + (COL + .75(S	L + WLR)	(NASI)		
JOINT	REACT (KIP)	(KIP)	REACT (KIP)	(KIP-FT)	DEFL (IN)	DEFL (IN)
1 2 3 4	11.2	6.8	0.0	0.0	0.000 0.012 -1.142	-0.583 -0.299
* 5	8.6	-2.2	0.0	0.0	-0.010 0.000	-0.020 0.000
LOAD COND 16	5 - DL + U		:1			
JOINT NUMBER	VERT REACT (KIP)	X REACT (KIP)	Z REACT (KIP)	MOMENT REACTION (KIP-FT)	VERT DEFL (IN)	HORIZ DEFL (IN)
1 2 3 4	12.2	6.9	0.0	0.0	0.000 0.026 -1.547 -0.022	0.000 -0.905 -0.528 -0.164
	10 6			2 2	2 222	0.000

5 17.6 -6.6 0.0 0.0 0.000 0.000

	(KIP)	(KIP)	REACT (KIP)	(KIP-FT)	\mathtt{DEFL}	DEFL (IN)
1 2 3 4	17.6	6.6	0.0	0.0	0.000 -0.022	0.000 0.164 0.528
5	12.2	-6.9	0.0	0.0		
D COND 1	8 - DL+SE	ISMIC LEFT	*0.7			
	REACT	REACT	REACT	MOMENT REACTION (KIP-FT)	\mathtt{DEFL}	HORIZ DEFL (IN)
1 2 3 4		1.4				0.000 0.051 0.148
5	4.6	-2.1	0.0	0.0	0.000	
D COND 1	9 - DL+SE: -	ISMIC RIGHT	Γ*0.7			
	REACT		REACT (KIP)	MOMENT REACTION (KIP-FT)	DEFL	HORIZ DEFL (IN)
1 2 3 4				0.0		0.000 -0.247 -0.148
5	4.2	-1.4	0.0	0.0		
D COND 2	06 DL	+SEISMIC L	EFT*0.7			
NUMBER	REACT (KIP)	(KIP)	REACT (KIP)	(KIP-FT)	DEFL (IN)	DEFL (IN)
1 2 3	1.2	0.2	0.0	0.0	0.000 -0.005 -0.117	0.000 0.112 0.141
4 5	1.6	-0.8	0.0	0.0	0.005 0.000	0.172 0.000

PAGE NO. F - 20 JOB NO. B3004915 CL DATE 06-06-12

JOINT NUMBER	VERT REACT (KIP)	X REACT (KIP)	Z REACT (KIP)	MOMENT REACTION (KIP-FT)	VERT DEFL (IN)	HORIZ DEFL (IN)
1 2 3	1.6	0.8	0.0	0.0	0.000 0.005 -0.117	0.000 -0.172 -0.141
4 5	1.2	-0.2	0.0	0.0	-0.005 0.000	
D COND 2	26 DL	+ SB1*0.7				
JOINT NUMBER	REACT (KIP)	X R EA CT (KIP)	REACT (KIP)	MOMENT REACTION (KIP-FT)	DEFL (IN)	HORIZ DEF L (IN)
1 2 3 4	0.9	0.5	0.6	0.0	0.000 0.000 -0.117 0.000	0.000 -0.027 0.003
5	0.9	-0.5	0.6	0.0	0.000	
D COND 2	3 - DL + 3	SB2*0.7				
	VERT REACT (KIP)		Z REACT (KIP)		VERT DEFL (IN)	HORIZ DEFL (IN)
1 2 3 4	4.9	1.8	0.0	0.0	0.000 0.000 -0.390 -0.001	0.000 -0.112
5	4.9	-1.8	0.0	0.0	0.000	0.000
D COND 2	4 - DL - 1	DEAD LOAD			•	
JOINT NUMBER	VERT REACT (KIP)	X REACT (KIP)	Z REACT (KIP)	MOMENT REACTION (KIP-FT)	VERT DEFL (IN)	HORIZ DEFL (IN)
1	2.5	0.9	0.0	0.0	0.000	0.000
2 3 4					0.000 -0.205 0.000	-0.052 0.000 0.052

PAGE NO. F - 21 JOB NO. B3004915 CL DATE 06-06-12

						-
LOAD COND 25	- COL-	COLLATERAL				
				REACTION	VERT DEFL (IN)	HORIZ DEFL (IN)
1 2 3 4		0.8	0.0	0.0	0.000 0.000 -0.175	0.000
5	1.8	-0.8	0.0	0.0	0.000	0.000
LOAD COND 26	5 - LL -	LIVE LOAD				
		REACT	REACT	MOMENT REACTION (KIP-FT)	VERT DEFL (IN)	HORIZ DEFL (IN)
1 2 3 4	12.0	5.3	0.0	0.0	0.000 0.001 -1.167	0.000 -0.299 0.000 0.299
5	12.0	-5.3	0.0	0.0		0.000
LOAD COND 27	7 - SL -	SNOW LOAD				
	REACT		REACT	MOMENT REACTION (KIP-FT)		HORIZ DEFL (IN)
1 2 3 4	18.1	7.9	0.0	0.0		0.000 -0.449 0.000 0.449
5	18.1	-7.9	0.0	0.0	0.000	0.000
LOAD COND 28	3 - WLL-	WIND FROM L	EFT			
JOINT NUMBER	VERT REACT (KIP)	X REACT (KIP)	Z REACT (KIP)	MOMENT REACTION (KIP-FT)	VERT DEFL (IN)	HORIZ DEFL (IN)
1 2 3 4	-12.2	-7.1	0.0	0.0	0.000 -0.013 0.737 0.013	0.000 0.552 0.363 0.180
5	-9.0	1.3	0.0	0.0	0.000	0.000

PAGE NO. F - 22 JOB NO. B3004915 CL DATE 06-06-12

	REACT	X REACT (KIP)	REACT	MOMENT REACTION (KIP-FT)	VERT DEFL (IN)	HORIZ DEFL (IN)
1 2 3 4	-9.0	-1.3	0.0	0.0	0.000 0.013 0.737 -0.013	0.000 -0.180 -0.363
5		7.1 VIND LT CAS		0.0		
	-			MOMENT	TTC TT	UOD T 7
	REACT	REACT	REACT	REACTION (KIP-FT)	\mathtt{DEFL}	DEFL (IN)
1 2 3 4	-7.1	-6. 4		0.0	0.000 -0.013 0.457	0.000 0.484 0.363 0.248
5		0.6 VIND RT CAS		0.0		
	_			MOMENT	VERT	HORT Z
NUMBER	REACT (KIP)	REACT (KIP)	REACT (KIP)	REACTION (KIP-FT)	DEFL (IN)	DEFL (IN)
1 2 3	-3.9	-0.6	0.0	0.0	0.000 0.012 0.457 -0.013	-0.246 -0.361
						-0 482
4 5	-7.1	6.4	0.0	0.0	0.000	-0.482 0.000
4 5		6.4 WIND ON EN		0.0		
4 5				MOMENT REACTION (KIP-FT)	0.000 VERT DEFL (IN)	0.000 HORIZ DEFL (IN)
4 5 COND 3	2 - WLE- V - VERT REACT	VIND ON ENI X REACT	OWALL Z REACT	MOMENT REACTION	0.000 VERT DEFL	0.000 HORIZ DEFL

PAGE NO. F - 23 JOB NO. B3004915 CL DATE 06-06-12

JOINT NUMBER		X REACT (KIP)	REACT	MOMENT REACTION (KIP-FT)	VERT DEFL (IN)	HORIZ DEFL (IN)
1 2 3 4	-12.8	-3.3	0.0	0.0	0.000 -0.005 0.751 0.009	0.000 0.358 0.172
5	-14.0	2.7	0.0	0.0	0.000	
OAD COND 3	4 - SL4- S	SNOW LOAD				
	REACT	X REACT (KIP)	REACT	MOMENT REACTION (KIP-FT)	\mathtt{DEFL}	HORIZ DEFL (IN)
1 2 3 4	7.8	5.0	0.0	0.0	0.000 0.023 -1.165 -0.020	-0.801
5	13.4	-5.0	0.0	0.0	0.000	
AD COND 3	5 - SL3- S	SNOW LOAD				
JOINT NUMBER	VERT REACT (KIP)	X REACT (KIP)	Z REACT (KIP)	MOMENT REACTION (KIP-FT)	VERT DEFL (IN)	HORIZ DEFL (IN)
1 2 3 4	13.4	5.0	0.0	0.0		0.000 0.202 0.496 0.801
5	7.8	-5.0	0.0	0.0		0.000
AD COND 3	6 - SEI- S	SEISMIC LO	A D			
JOINT NUMBER	VERT REACT (KIP)	X REACT (KIP)	Z REACT (KIP)	MOMENT REACTION (KIP-FT)	VERT DEFL (IN)	HORIZ DEFL (IN)
1 2 3	-0.3	-0.4	0.0	0.0	0.000 -0.007 0.000	0.000 0.198 0.196
4 5	0.3	-0.4	0.0	0.0	0.007 0.000	0.198

PAGE NO. F - 24 JOB NO. B3004915 CL DATE 06-06-12

		SEISMIC BRA	_			
JOINT NUMBER	VERT REACT (KIP)	X REACT (KIP)	Z REACT (KIP)	MOMENT REACTION (KIP-FT)	VERT DEFL (IN)	HORIZ DEFL (IN)
1 2 3 4	-0.7	0.0	0.8	0.0	0.000 0.000 0.000 0.000	0.000 0.000 0.000
5				0.0	0.000	
LOAD COND 3	8 - SB2- S -	SEISMIC BRA	ACING			
JOINT NUMBER	VERT REACT (KIP)	X REACT (KIP)	Z REACT (KIP)	MOMENT REACTION (KIP-FT)	VERT DEFL (IN)	HORIZ DEFL (IN)
1 2 3 4	0.7	0.0	0.0	0.0	0.000 -0.001 0.001 -0.001	0.000 0.000 0.000
5	0.7	0.0	0.0	0.0	0.000	
LOAD COND 3	9 - BR1- V	NIND BRACIN	NG 1			
	_					
JOINT NUMBER	VERT REACT (KIP)			MOMENT REACTION (KIP-FT)	DEFL (IN)	HORIZ DEFL (IN)
NUMBER 1 2 3	REACT	REACT	REACT	REACTION	DEFL (IN) 0.000 0.000 0.000	DEFL (IN) 0.000 0.000 0.000
NUMBER 1 2	REACT (KIP)	REACT (KIP) 0.0	REACT (KIP)	REACTION (KIP-FT) 0.0	DEFL (IN) 0.000 0.000	DEFL (IN) 0.000 0.000
NUMBER 1 2 3 4 5	REACT (KIP) -4.6	REACT (KIP) 0.0	REACT (KIP) 5.1	REACTION (KIP-FT) 0.0	DEFL (IN) 0.000 0.000 0.000	DEFL (IN) 0.000 0.000 0.000
NUMBER 1 2 3 4 5 LOAD COND 4 JOINT NUMBER	REACT (KIP) -4.6	REACT (KIP) 0.0	REACT (KIP) 5.1	REACTION (KIP-FT) 0.0	DEFL (IN) 0.000 0.000 0.000 0.000 VERT DEFL (IN)	DEFL (IN) 0.000 0.000 0.000
NUMBER 1 2 3 4 5 LOAD COND 4 JOINT	REACT (KIP) -4.6 -4.6 0 - BR2- V VERT REACT	REACT (KIP) 0.0 0.0 VIND BRACIN X REACT	REACT (KIP) 5.1 5.1 NG 2 REACT	REACTION (KIP-FT) 0.0 0.0 MOMENT REACTION	DEFL (IN) 0.000 0.000 0.000 0.000 VERT DEFL	DEFL (IN) 0.000 0.000 0.000 0.000 HORIZ DEFL

CHIEF BUILDINGS FRAME DESIGN V09.01 PAGE NO. F DESIGN SUMMARY REPORT JOB NO. B BUILDING A FRAME B3004915A01 COL LINES 5 CL DATE 0	- 25 3004915 5-06-12					
MEMBER NO. 1- 2 LENGTH 15.84 FT MEMBER ANGLE 87.84 DEG WEIGHT	404. LB					
SECT LENGTH START END OUTSIDE WEB INSIDE COMB. AT NO (FT) DEPTH DEPTH FLANGE THICK FLANGE RATIO DIST 1 15.06 10.00 22.50 8.0 X 1/4 5/32 8.0 X 3/8 1.011 15.1	COND					
(CONTROLLING ACTIONS)						
AXIAL -ALLOW STRESSES MAXIMUM STRESSES UNITY C	HECK-					
SECT FORCE MOMENT FA FBO FBI AXIAL FBO FBI - COMPONE	NTS -					
NO (KIP) (KIP-FT) (KSI) (KSI) (KSI) (KSI) (KSI) (KSI) FA FBO 1 22.46 -135.80 20.8 29.4 23.4 2.67 -27.68 22.05 0.06 0.94	0.95					
MEMBER NO. 2-3 LENGTH 24.61 FT MEMBER ANGLE 14.92 DEG WEIGHT						
SECT LENGTH START END OUTSIDE WEB INSIDE COMB. AT NO (FT) DEPTH DEPTH FLANGE THICK FLANGE RATIO DIST 1 10.00 24.00 15.00 6.0 X 1/4 3/16 6.0 X 5/16 1.004 1.4	LOAD					
NO (FT) DEPTH DEPTH FLANGE THICK FLANGE RATIO DIST	COND					
1 10.00 24.00 15.00 6.0 X 1/4 3/16 6.0 X 5/16 1.004 1.4	3					
2 14.02 15.00 15.00 6.0 X 1/4 1/8 6.0 X 5/16 0.793 22.0	2					
(CONTROLLING ACTIONS) AXIAL -ALLOW STRESSES MAXIMUM STRESSES UNITY CONTROLLING MOMENT FA FBO FBI AXIAL FBO FBI COMPONE	HECK-					
SECT FORCE MOMENT FA FBO FBI AXIAL FBO FBI - COMPONE	NTS -					
NO (KIP) (KIP-FT) (KSI) (KSI) (KSI) (KSI) (KSI) FA FBO	FBI					
1 14.72 -120.11 18.7 29.8 27.1 1.93 -28.04 25.55 0.05 0.94	0.95					
2 9.86 46.34 20.0 28.8 25.1 1.90 20.94 -18.27 0.05 0.74	0.73					
MEMBER NO. 3-4 LENGTH 24.61 FT MEMBER ANGLE -14.92 DEG WEIGHT 498. LB						
SECT LENGTH START END OUTSIDE WEB INSIDE COMB. AT	LOAD					
NO (FT) DEPTH DEPTH FLANGE THICK FLANGE RATIO DIST	COND					
1 14.02 15.00 15.00 6.0 \times 1/4 1/8 6.0 \times 5/16 0.793 2.6	3					
2 10.00 15.00 24.00 6.0 X 1/4 3/16 6.0 X 5/16 0.928 24.0	2					
(CONTROLLING ACTIONS)	an cu					
AXIAL -ALLOW STRESSESMAXIMUM STRESSESUNITY C SECT FORCE MOMENT FA FBO FBI AXIAL FBO FBI - COMPONE						
NO (KIP) (KIP-FT) (KSI) (KSI) (KSI) (KSI) (KSI) FA FBO						
1 9.86 46.34 20.0 28.8 25.1 1.90 20.94 -18.27 0.05 0.74						
2 14.91 -133.76 19.0 34.5 31.5 1.92 -29.91 27.30 0.05 0.87						

1.92 -29.91 27.30 0.05 0.87 0.88

-133.76

19.0 34.5 31.5

CHIEF BUILDINGS FRAME DESIGN V09.01 PAGE NO. F - 2 DESIGN SUMMARY REPORT JOB NO. B30049 BUILDING A FRAME B3004915A01 COL LINES 5 CL DATE 06-06-	15
MEMBER NO. 5-4 LENGTH 15.84 FT MEMBER ANGLE 92.16 DEG WEIGHT 404.	LB
SECT LENGTH START END OUTSIDE WEB INSIDE COMB. AT LO.	AD
NO (FT) DEPTH DEPTH FLANGE THICK FLANGE RATIO DIST CO	ND
	2
(CONTROLLING ACTIONS)	
AXIAL -ALLOW STRESSES MAXIMUM STRESSES UNITY CHECK-	
SECT FORCE MOMENT FA FBO FBI AXIAL FBO FBI - COMPONENTS -	
NO (KIP) (KIP-FT) (KSI) (KSI) (KSI) (KSI) (KSI) FA FBO FB	Ι
1 22.46 -135.80 20.8 29.4 23.4 2.67 -27.68 22.05 0.06 0.94 0.9	5

TOTAL FRAME WEIGHT IS 1804. LBS.

DEPTH

PAGE NO. F - 27 JOB NO. B3004915

ΣL	DATE	06-06-12

COLUMN 1 - 2 GIRT AT 3.50 SIZE SIDES CONN. HOLE LOC FLG AREA DEPTH	8.00	12.00				
RAFTER 2 - 3 PURLIN AT 0.72 SIZE A2 SIDES 1 CONN. 1-1 HOLE LOC 2 FLG AREA 1.88 DEPTH 23.88	4.74	8.76 A2 1 1-1 2 1.88 16.65	12.77	16.79 A2 1 1-1 2 1.88 15.00	20.80	23.82 A2 1 1-1 2 1.88 15.00
RAFTER 3 - 4 PURLIN AT 0.79 SIZE A2 SIDES 1 CONN. 1-1 HOLE LOC 2 FLG AREA 1.88 DEPTH 15.00	3.81	7.82 A2 1 1-1 2 1.88 15.00	11.84	15.85 A2 1 1-1 2 1.88 16.65	18.36	22.38 A2 1 1-1 2 1.88 22.52
COLUMN 5 - 4 GIRT AT 3.50 SIZE SIDES CONN. HOLE LOC FLG AREA	8.00	12.00				

CHIEF BUILDINGS FRAME DESIGN V09.01 PAGE NO. F - 28 FLANGE BRACE REPORT JOB NO. B3004915 BUILDING A FRAME B3004915A01 COL LINES 5 CL DATE 06-06-12 HAUNCH CORNER FLANGE BRACE LEFT COLUMN NO RIGHT COLUMN NO STANDARD ANGLE FLANGE BRACE SIZES: A1 - 1.0 X 1.0 X 1/8" A2 - 1.5 X 1.5 X 1/8" A3 - 2.0 X 2.0 X 1/8" A4 - 2.5 X 2.5 X 3/16" A5 - 3.0 X 3.0 X 1/4"

WELD SUMMA	ARY REPOR A FRAME	B3004915A0								JOB	NO.	F - B3004 06-06	915
			Q	=				Х	Y	/	I		
COLUMN 1-	- 2 SI	ECTION 1	Q MAX	=	901	11. X	3.00) X	4.10	/	124	52	
				=	890.4	LBS/	IN AT	ANA:	LYSIS	POI	NT	1	
WELD SI	IZE FOR 1	THE SECTION	=0.18	75	INCH,	WE]	LD ONE	SI	DE ON	LΥ			
RAFTER 2-	- 3 SE	ECTION 1	Q MAX	=	1604	2. X	1.88	x :	10.93	/	625.	26	
				=	525.7	LBS/	IN AT	ANA:	LYSIS	POI	NT 11	2	
WELD SI	IZE FOR 1	THE SECTION	=0.18	75	INCH,	WE]	D ONE	sI	DE ON	LY			
RAFTER 2-	- 3 SE	ECTION 2	Q MAX	=	916	54. X	1.88	X	6.83	/	212.	72	
				=	551.9	LBS/	IN AT	ANA]	LYSIS	POII	NT 11	.8	
WELD SI	IZE FOR T	THE SECTION	=0.12	50	INCH,	WE	LD ONE	SI	DE ON	LY			
RAFTER 3-	- 4 SE	ECTION 1	Q MAX		916	4. X	1.88	X	6.83	/	212.	72	
				=	551.9	LBS/	IN AT	ANA]	LYSIS	POI	NT 13	5	
WELD SI	IZE FOR 1	THE SECTION	=0.125	50	INCH,	WE	LD ONE	SI	DE ON	LY			
RAFTER 3	~ 4 SE	ECTION 2	Q MAX	=	1604	2. X	1.88	X :	10.93	/	625.	26	-
				=	525.7	LBS/	IN AT	ANA]	LYSIS	POI	NT 14	.1	
WELD SI	IZE FOR T	THE SECTION	=0.18	75	INCH,	WE	D ONE	si	DE ON	LY			
COLUMN 5-	- 4 SE	ECTION 1	Q MAX	=	901	.1. X	3.00	X	4.10	/	124.	52	
				=	890.4	LBS/	IN AT	ANA]	LYSIS	POII	NT	5	

WELD SIZE FOR THE SECTION =0.1875 INCH, WELD ONE SIDE ONLY

PAGE NO. F - 30 JOB NO. B3004915 CL DATE 06-06-12

BUILDING	Α	FRAME	B3004915A01	COL	LINES	5
----------	---	-------	-------------	-----	-------	---

	CD DAIL 00-00-12
CONNECTION DESIGN DATA FOR MEMBER 2- 3 AT DEPTH 1:	RF KNEE SPLICE (1)
SPLICE DEPTH: 24.0000 INCHES WEB DEPTH: 23.4375 INCHES	CONTROLLING ACTIONS
SPLICE DATA LEFT RIGHT	SHEAR -9.09 KIPS
SECTION DEPTH 22.5000 24.0000 OS FLANGE WIDTH 8.0000 6.0000 OS FLANGE THICK 0.2500 0.2500 WEB THICKNESS 0.1563 0.1875 IS FLANGE WIDTH 8.0000 6.0000 IS FLANGE THICK 0.3750 0.3125	NEG MOMENT -133.76 FT-KIPS AXIAL LOAD 14.91 KIPS SHEAR 16.71 KIPS
	MAX SHEAR 16.71 KIPS AXIAL LOAD 14.91 KIPS MOMENT -133.76 FT-KIPS LOAD CONDITION 3
LENGTH - 27.000" DIAM 0.625" TOP ROWS 3 WIDTH - 8.000" GAUGE - 3.500" BOT ROWS 2 THICK - 0.625" PITCH - 2.750" CON TYPE 1	EDGE DIST TOP 1.500" EDGE DIST BOT 2.063" TOP PROJECTION 2.750"
CORNER WEB - 0.156" THICK WITH 0.125" WELD ON 2 SIDE *** NOTE STANDARD 0.125 S.A.W. IS NOT ADEQUATE (2.6 *** NOTE STANDARD 0.188 1 SIDE G.M.A.W. IS NOT ADEQU CONNECTION DESIGN DATA FOR MEMBER 2- 3 AT DEPTH 9:	25 K/IN) *** (ATE (2.784 K/IN) ***
SPLICE DEPTH: 15.0000 INCHES WEB DEPTH: 14.4375 INCHES	CONTROLLING ACTIONS
SPLICE DATA LEFT RIGHT SECTION DEPTH 15.0000 15.0000	POS MOMENT 42.65 FT-KIPS AXIAL LOAD 9.65 KIPS SHEAR -0.14 KIPS LOAD CONDITION 2
OS FLANGE WIDTH 6.0000 6.0000 OS FLANGE THICK 0.2500 0.2500 WEB THICKNESS 0.1250 0.1250 IS FLANGE WIDTH 6.0000 6.0000 IS FLANGE THICK 0.3125 0.3125	NEG MOMENT -13.59 FT-KIPS AXIAL LOAD -7.29 KIPS SHEAR -0.15 KIPS LOAD CONDITION 5
	MAX SHEAR -3.70 KIPS AXIAL LOAD 6.72 KIPS MOMENT 33.02 FT-KIPS LOAD CONDITION 17
WIDTH - 6.000" GAUGE - 3.500" BOT ROWS 2	EDGE DIST TOP 1.500" EDGE DIST BOT 1.500" TOP PROJECTION 2.750"

PAGE NO. F - 31 JOB NO. B3004915

BUILDING A FRAME B3004915A01 COL LINES 5 CL DATE 06-06-12

CONNECTION DESIGN DATA FOR MEMBER 3-4 AT DEPTH 1:	RIDGE SPLICE (3)
SPLICE DEPTH: 15.0000 INCHES WEB DEPTH: 14.4375 INCHES	CONTROLLING ACTIONS
SPLICE DATA LEFT RIGHT SECTION DEPTH 15.0000 15.0000	POS MOMENT 42.65 FT-KIPS AXIAL LOAD 9.65 KIPS SHEAR -0.14 KIPS LOAD CONDITION 2
OS FLANGE WIDTH 6.0000 6.0000 OS FLANGE THICK 0.2500 0.2500 WEB THICKNESS 0.1250 0.1250 IS FLANGE WIDTH 6.0000 6.0000 IS FLANGE THICK 0.3125 0.3125	AXIAL LOAD -7.29 KIPS SHEAR -0.15 KIPS
	MAX SHEAR -3.70 KIPS AXIAL LOAD 6.72 KIPS MOMENT 33.02 FT-KIPS LOAD CONDITION 17
LENGTH - 21.188" DIAM 0.625" TOP ROWS 2 WIDTH - 6.000" GAUGE - 3.500" BOT ROWS 2 THICK - 0.375" PITCH - 3.000" CON TYPE 3	
CONNECTION DESIGN DATA FOR MEMBER 3-4 AT DEPTH 9:	RF KNEE SPLICE (1)
SPLICE DEPTH: 24.0000 INCHES	CONTROLLING ACTIONS
WEB DEPTH: 23.4375 INCHES SPLICE DATA LEFT RIGHT	POS MOMENT 73.23 FT-KIPS AXIAL LOAD -7.10 KIPS
SECTION DEPTH 24.0000 22.5000 OS FLANGE WIDTH 6.0000 8.0000	SHEAR 9.09 KIPS LOAD CONDITION 5
OS FLANGE THICK 0.2500 0.2500 WEB THICKNESS 0.1875 0.1563 IS FLANGE WIDTH 6.0000 8.0000 IS FLANGE THICK 0.3125 0.3750	NEG MOMENT -133.76 FT-KIPS AXIAL LOAD 14.91 KIPS SHEAR -16.71 KIPS LOAD CONDITION 2
	MAX SHEAR -16.71 KIPS AXIAL LOAD 14.91 KIPS MOMENT -133.76 FT-KIPS LOAD CONDITION 2
LENGTH - 27.000" DIAM 0.625" TOP ROWS 3 WIDTH - 8.000" GAUGE - 3.500" BOT ROWS 2 THICK - 0.625" PITCH - 2.750" CON TYPE 1	EDGE DIST TOP 1.500" EDGE DIST BOT 2.063" TOP PROJECTION 2.750"
CORNER WEB - 0.156" THICK WITH 0.125" WELD ON 2 SIDE *** NOTE STANDARD 0.125 S.A.W. IS NOT ADEQUATE (2.6 *** NOTE STANDARD 0.188 1 SIDE G.M.A.W. IS NOT ADEQU	25 K/IN) *** ATE (2.784 K/IN) ***

CHIEF BUILDINGS FRAME DESIGN V09.01 PAGE NO. F - 32 ANCHOR BOLTS AND BASE PLATES JOB NO. B3004915 BUILDING A FRAME B3004915A01 COL LINES 5 CL DATE 06-06-12 SUPPORT JOINT 1 -- EXTERIOR COLUMN CRITICAL REACTIONS LOAD CONDITION HORIZONTAL 9.87 KIPS DOWNWARD.. 22.49 KIPS 3
UPWARD... -17.09 KIPS 8 5.55 KIPS ASSOCIATED SHEAR COLUMN BASE DETAILS ______ COLUMN DEPTH - 10.0 IN OUTSIDE FLANGE - 8.0 X 0.2500 WEB THICKNESS- .156 IN INSIDE FLANGE - 8.0 X 0.3750 LENGTH - 10.000" DIAM. - 0.750" NO. BOLTS 4 OS PROJECTION 0.000" WIDTH - 8.000" GAUGE - 4.000" HOLE PAT. 2 WEB FILLET 0.188" THICK - 0.375" PITCH - 4.000" OS EDGE 3.000" FLANGE FILLET 0.188" SUPPORT JOINT 5 -- EXTERIOR COLUMN CRITICAL REACTIONS LOAD CONDITION

 HORIZONTAL
 9.87 KIPS
 2

 DOWNWARD...
 22.49 KIPS
 2

 UPWARD...
 -17.08 KIPS
 9
 5.55 KIPS ASSOCIATED SHEAR

COLUMN BASE DETAILS

COLUMN DEPTH - 10.0	IN OUTSIDE	FLANGE - 8.0 X 0.2500
WEB THICKNESS156	IN INSIDE	FLANGE - 8.0 X 0.3750
LENGTH ~ 10.000"	DIAM 0.750"	NO. BOLTS 4 OS PROJECTION 0.000"
WIDTH - 8.000"	GAUGE - 4.000"	HOLE PAT. 2 WEB FILLET 0.188"
THICK - 0.375"	PITCH - 4.000"	OS EDGE 3.000" FLANGE FILLET 0.188"

CONFIGURATION (NON-SYMMETRIC FRAME)

51.04 FT. BUILDING WIDTH NUMBER OF SPANS = 1 SPAN WIDTHS = 51.04 DESIGN BAY SIZE = 21.75 FT. RIGHT EAVE HEIGHT = 17.33 FT.

LEFT PARTY = 17.33 FT. LEFT RAFTER SLOPE (R/12) = 3.00RIGHT RAFTER SLOPE (R/12) = -3.00
GIRT OUTSET = 8.00 IN.
PURLIN DEPTH = 10.00 IN.
STEEL VIELD

STEEL YIELD:

55. KSI FLANGES WEBS 55. KSI

LOADINGS ...

DEAD LOAD = 2.627 PSF (Dead Load of Rigid Frame is calculated internally) COLLATERAL= 3.000 PSF LIVE LOAD = 20.000 PSF SNOW LOAD = 30.000 PSF WIND LOAD = 23.523 PSF

LOAD CONDITIONS ...

100. DL 100. LL 100. DL 100. SL 100. DL 100. SL 100. DL 100. LL 1 = DEAD + LIVE LOAD100. COL 2 = DL + SNOW LOAD100. COL 3 = DL + SNOW LOAD100. COL 4 = .6DL+WLL (NASI) 60. DL 5 = .6DL+WLR (NASI) 60. DL 6 = .6DL+WL2 (NASI) 60. DL 7 = .6DL+WR2 (NASI) 60. DL 100. WLL 100. WLR 100. WL2 100. WR2 8 = .6DL+WLE+BR1 (NASI) 60. DL 100. WLE 100. BR1 9 = .6DL+WE2+BR1 (NASI) 60. DL 100. WE2 100. BR1 10 = DL + .75(SL + WE2 + BR2) (NASI)100. COL 75. SL 100. DL 75. WE2 75. BR2 100. COL 100. WE2 100. BR2 11 = DL + WE2 + BR2 (NASI) 100. DL 12 = DL + COL + .75(LL + WLL) (NASI) 100. DL 100. COL 75. LL 75. WLL 13 = DL + COL + .75(LL + WLR) (NASI)100. DL 100. COL 75. LL 75. WLR 14 = DL + COL + .75(SL + WLL) (NASI)100. DL 100. COL 75. SL 75. WLL 15 = DL + COL + .75(SL + WLR) (NASI)100. DL 100. COL 75. SL 75. WLR 100. DL 16 = DL + UNBAL. SL #1 100. DL 100. COL 100. SL4 17 = DL + UNBAL. SL #2 100. DL 100. COL 100. SL3 100. COL 100. SL4 18 = DL+SEISMIC LEFT*0.7 103. DL 103. COL 70. SEI 19 = DL+SEISMIC RIGHT*0.7 103. DL 103. COL -70. SEI 20 = .6 DL+SEISMIC LEFT*0.7

57. DL .70. SEI

PAGE NO. F - 34 JOB NO. B3004915

BUILDING A FRAME B3004915A02 COL LINES 6 CL DATE 06-06-12

LOAD CONDITIONS ... (CONTINUED)

21 = .6 DL+SEISMIC RIGHT*0.7

57. DL -70. SEI

22 = .6 DL + SB1*0.7

57. DL 70. SB1

100. BR1

100. BR2

23 = DL + SB2*0.7

39 = BR1

40 = BR2

103. DL 103. COL 70. SB2

LOAD CONDITIONS FOR REACTIONS & DEFLECTIONS ...

24 = DL100. DL 25 = COL100. COL 26 = LL100. LL 27 = SL100. SL 28 = WLL100. WLL 29 = WLR100. WLR 30 = WL2100. WL2 31 = WR2100. WR2 32 = WLE100. WLE 33 = WE2100 WE2 34 = SL4100. SL4 35 = SL3100. SL3 36 = SEI100. SEI 37 = SB1100. SB1 38 = SB2100. SB2

41 = SECOND ORDER SEED 100. 000

CHIEF BUILDINGS FRAME DESIGN V09.01

LOADING SUMMARY

BUILDING A FRAME B3004915A02 COL LINES 6

CL DATE 06-06-12

J1		GROUP	SYST		TYPE		DIST		LOAD	*E or L	LOAD	
1	2	BR1	GLOB	Z	CONC	_	0.000	,	5.113			
1	2	BR1	GLOB	Y	CONC		0.250		4.606			
2	1	BR2	GLOB	Y	CONC		0.000		-4.606			
5	4	BR1	GLOB	Z	CONC		0.000		5.113			
5	4	BR1	GLOB	Y	CONC		0.250		4.606			
4	5	BR2	GLOB	Y	CONC		0.000		-4.606			
1	2	SB1	GLOB	Z	CONC		0.000		0.820			
1	2 1	SB1	GLOB	Y	CONC		0.250		0.738			
2 5	4	SB2 SB1	GLOB GLOB	$egin{array}{c} Y \ Z \end{array}$	CONC		0.000		-0.738 0.820			
5	4	SB1	GLOB	Y	CONC		0.250		0.738			
4	5	SB2	GLOB	Ÿ	CONC		0.000		-0.738			
2	1	SEI	GLOB	x	CONC		0.000		0.395			
4	5	SEI	GLOB	X	CONC		0.000		0.395			
2	3	WLE	MEMB	Y	UNIF		0.000		0.194	10.208	0.194	
4	3	WE2	MEMB	Ÿ	UNIF		0.000		-0.194	10.208	-0.194	
2	3	SL3	GLOB	Ÿ	UNIF		0.000		-0.487			
3	2	$\mathtt{SL3}$	GLOB	Y	UNIF		0.000		-0.318	8.980	-0.318	
3	4	SL4	GLOB	Y	UNIF		0.000		-0.487			
3	4	SL4	GLOB	Y	UNIF		0.000		-0.318	8.980	-0.318	
2	3	$\mathtt{SL4}$	GLOB	Y	UNIF		0.000		-0.146			
['] 3	4	SL3	GLOB	Y	UNIF		0.000		-0.146			
(AUTO	T ₁ OZ	(2dz										
1	2	DL	GLOB	Y	UNIF		0.000		-0.025			\mathtt{DLWT}
1	2	WLL	GLOB	x	UNIF		0.000		0.172			WLLX
1	2	WLR	GLOB	X	UNIF		0.000		-0.313			WLRX
1	2	WL2	GLOB	X	UNIF		0.000		0.373			WL2X
1	2	WR2	GLOB	X	UNIF		0.000		-0.112			WR2X
1	2	WLE	GLOB	X	UNIF		0.000		-0.353			\mathtt{WLEX}
1	2	WE2	GLOB	X	UNIF		0.000		-0.353			WE2X
2	3	${ m LL}$	GLOB	Y	UNIF		0.000		-0.422			LIVE
2	3	${ m LL}$	GLOB	Y	CONC		0.000		-0.716			LIVE
2	3	$\Gamma\Gamma$	GLOB	Z	MOMT		0.000		0.607			LIVE
2	3	SL	GLOB	Y	UNIF		0.000		-0.633			SNOW
2	3 3	SL3	GLOB GLOB	Y Z	CONC MOMT		0.000		-0.826 0.700			SNOW SNOW
2	3	SL3 SL4	GLOB	Y	CONC		0.000		-0.248			SNOW
2 2 2	3	SL4	GLOB	Ž	TMOM		0.000		0.210			SNOW
2	3	SL	GLOB	Y	CONC		0.000		-1.074			SNOW
2	3	SL	GLOB	Ž	MOMT		0.000		0.910			SNOW
2	3	m DL	GLOB	Ÿ	UNIF		0.000		-0.055			DEAD
2	3	${ m DL}$	GLOB	Y	CONC		0.000		-0.094			DEAD
2	3	\mathtt{DL}	GLOB	\boldsymbol{z}	TMOM		0.000		0.080			DEAD
2	3	\mathtt{DL}	GLOB	Y	UNIF		0.000		-0.020			DLWT
2	3	COL	GLOB	Y	UNIF		0.000		-0.063			COLL
2 2 2 2	3	COL	GLOB	Y	CONC		0.000		-0.107			COLL
2	3	COL	GLOB	Z	MOMT		0.000		0.091			COLL
2	3	WLL	GLOB	X	UNIF		0.000		-0.115			WLLX
2	3 3	WLL	GLOB	Y	UNIF		0.000		0.462			WLLY
2 2	3 3	WLR WLR	GLOB GLOB	X Y	UNIF UNIF		0.000	•	-0.083 0.331			WLRX
2	3	WLR WL2	GLOB	X	UNIF		0.000		-0.068			WLRY WL2X
2)	4177		A	OTATE		5.000		0.000			MTISY

PAGE NO. F - 35 JOB NO. B3004915 CHIEF BUILDINGS FRAME DESIGN V09.01 LOADING SUMMARY

BUILDING A FRAME B3004915A02 COL LINES 6

PAGE NO. F - 36

	JOB NO.	B3004915
CL	DATE	06-06-12
		
	LOAD	

J1	J2	GROUP	SYST	DIR	TYPE	DIST	LOAD	*E or L	LOAD	
2	3	WL2	GLOB	Y	UNIF	0.000	0.271			WL2Y
2	3	WR2	GLOB	Х	UNIF	0.000	-0.035			WR2X
2	3	WR2	GLOB	Y	UNIF	0.000	0.140			WR2Y
2	3	WLE	GLOB	X	UNIF	0.000	-0.115			WLEX
2	3	WLE	GLOB	Y	UNIF	0.000	0.462			WLEY
2	3	WE2	GLOB	Х	UNIF	0.000	-0.115			WE2X
2	3	WE2	GLOB	Y	UNIF	0.000	0.462			WE2Y
3	4	LL	GLOB	Y	UNIF	0.000	-0.422			LIVE
4	3	$\mathbf{L}\mathbf{L}$	GLOB	Y	CONC	0.000	-0.716			LIVE
4	3	$\mathbf{L}\mathbf{L}$	GLOB	\boldsymbol{z}	TMOM	0.000	-0.607			LIVE
3	4	SL	GLOB	Y	UNIF	0.000	-0.633			SNOW
4	3	SL3	GLOB	Y	CONC	0.000	-0.248			SNOW
4	3	SL3	GLOB	\mathbf{z}	TMOM	0.000	-0.210			SNOW
4	3	SL4	GLOB	Y	CONC	0.000	-0.826			SNOW
4	3	SL4	GLOB	\mathbf{z}	TMOM	0.000	-0.700			SNOW
4	3	\mathtt{SL}	GLOB	Y	CONC	0.000	-1.074			SNOW
4	3	\mathtt{SL}	GLOB	Z	MOMT	0.000	-0.910			SNOW
3	4	\mathtt{DL}	GLOB	Y	UNIF	0.000	-0.055			DEAD
4	3	\mathtt{DL}	GLOB	Y	CONC	0.000	-0.094			DEAD
4	3	\mathtt{DL}	GLOB	\mathbf{z}	MOMT	0.000	-0.080			DEAD
3	4	DL	GLOB	Y	UNIF	0.000	-0.020			\mathtt{DLWT}
3	4	COL	GLOB	Y	UNIF	0.000	-0.063			COLL
4	3	COL	GLOB	Y	CONC	0.000	-0.107			COLL
4	3	COP	GLOB	${f z}$	MOMT	0.000	-0.091			COLL
3	4	WLL	GLOB	X	UNIF	0.000	0.083			\mathtt{WLLX}
3	4	WLL	GLOB	Y	UNIF	0.000	0.331			WLLY
3	4	\mathtt{WLR}	GLOB	X	UNIF	0.000	0.115			WLRX
3	4	WLR	GLOB	Y	UNIF	0.000	0.462			\mathtt{WLRY}
3	4	WL2	GLOB	X	UNIF	0.000	0.035			WL2X
3	4	WL2	GLOB	Y	UNIF	0.000	0.140			WL2Y
3	4	WR2	GLOB	X	UNIF	0.000	0.068			WR2X
3	4	WR2	GLOB	Y	UNIF	0.000	0.271			WR2Y
3	4	\mathtt{WLE}	GLOB	X	UNIF	0.000	0.115			\mathtt{WLEX}
3	4	WLE	GLOB	Y	UNIF	0.000	0.462			WLEY
3	4	WE2	GLOB	X	UNIF	0.000	0.115			WE2X
3	4	WE2	GLOB	Y	UNIF	0.000	0.462			WE2Y
5	4	$D\Gamma$	GLOB	Y	UNIF	0.000	-0.025			DL WT
5	4	WLL	GLOB	X	UNIF	0.000	0.315			\mathtt{WLLX}
5	4	WLR	GLOB	X	UNIF	0.000	-0.172			\mathtt{WLRX}
5	4	WL2	GLOB	Х	UNIF	0.000	0.114			MT5X
5	4	WR2	GLOB	X	UNIF	0.000	-0.373			WR2X
5	4	WLE	GLOB	X	UNIF	0.000	0.353			\mathtt{WLEX}
5	4	WE2	GLOB	Х	UNIF	0.000	0.353			WE2X

^{*} E = eccentricity for concentrated loads. L = load length for uniform loads.

PAGE NO. F - 37 JOB NO. B3004915

BUILDING A FRAME B3004915A02 COL LINES 6

CL DATE 06-06-12

COEFFICIENTS FOR WLL (WIND FROM THE LEFT)

LEFT WALL COEFFICIENT = 0.3070

LEFT ROOF COEFFICIENT = -0.8700

RIGHT ROOF COEFFICIENT = -0.6230

RIGHT WALL COEFFICIENT = -0.5630

COEFFICIENTS FOR WLR (WIND FROM THE RIGHT)

LEFT WALL COEFFICIENT = -0.5600

LEFT ROOF COEFFICIENT = -0.6230

RIGHT ROOF COEFFICIENT = -0.8700

RIGHT WALL COEFFICIENT = 0.3070

COEFFICIENTS FOR WL2 (WIND FROM THE LEFT CASE 2)

LEFT WALL COEFFICIENT = 0.6670

LEFT ROOF COEFFICIENT = -0.5100

RIGHT ROOF COEFFICIENT = -0.2630

RIGHT WALL COEFFICIENT = -0.2030

COEFFICIENTS FOR WR2 (WIND FROM THE RIGHT CASE 2)

LEFT WALL COEFFICIENT = -0.2000

LEFT ROOF COEFFICIENT = -0.2630

RIGHT ROOF COEFFICIENT = -0.5100

RIGHT WALL COEFFICIENT = 0.6670

COEFFICIENTS FOR WLE (WIND ON THE ENDWALL)

LEFT WALL COEFFICIENT = -0.6300

LEFT ROOF COEFFICIENT = -0.8700

RIGHT ROOF COEFFICIENT = -0.8700

RIGHT WALL COEFFICIENT = -0.6300

COEFFICIENTS FOR WE2 (WIND ON THE ENDWALL CASE 2)

LEFT WALL COEFFICIENT = -0.6300

LEFT ROOF COEFFICIENT = -0.8700

RIGHT ROOF COEFFICIENT = -0.8700

RIGHT WALL COEFFICIENT = -0.6300

CHIEF BUILDINGS FRAME DESIGN V09.01
DIMENSIONS AND PROPERTIES
BUILDING A FRAME B3004915A02 COL LINES 6

PAGE NO. F - 38 JOB NO. B3004915

CL DATE 06-06-12

MEMBEF SECTIO		1- 2 1 LENG	LENGTH	15.84 06' OF=		NGLE OF 0.2500	MEMBER WEB=0		4 DEG IF= 8	3.00 X	0.3750
ANAL POINT	X (FT)	Y (FT)	DEPTH (IN)	AREA (IN2)	IX (IN4)	SOX (IN3)	SIX (IN3)	RX (IN)	RY (IN)	RTO (IN)	RTI (IN)
1* 100 101 102 103 104 105 106	0.00 0.04 0.11 0.18 0.25 0.32 0.39 0.46	2.00 2.94 4.82 6.70 8.58 10.46 12.35 14.23	10.00 10.78 12.34 13.91 15.47 17.03 18.59 20.16	6.46 6.59 6.83 7.08 7.32 7.56 7.81 8.05	124.5 146.6 196.7 255.1 322.1 397.9 482.8 577.3	21.8 23.9 28.1 32.4 36.9 41.5 46.3 51.2 56.3	29.0 31.6 36.9 42.3 47.8 53.4 59.1 64.9 70.9	4.39 4.72 5.37 6.01 6.63 7.25 7.86 8.47	2.01 1.98 1.94 1.91 1.88 1.85	2.204 2.191 2.165 2.142 2.119 2.098 2.078 2.059	2.266 2.249 2.233 2.218 2.204 2.190 2.177
107	0.53 0.57	16.11 17.05	21.72 22.50	8.30 8.42	681.5 737.4	58.9	73.9	9.06 9.36		2.040	

BUILDING A	FRAME E	33004915	A02 COL	LINES	6		CL	DATE 06-06-12
MEMBER NO. SECTION NO. SECTION NO.	2-3 1 LENC 2 LENC		00' OF=	6.00 X	NGLE OF 0.2500 0.2500	MEMBER WEB=0 WEB=0		2 DEG IF= 6.00 X 0.3125 IF= 6.00 X 0.3125
ANAL X POINT (FT)	Y (FT)	DEPTH (IN)	AREA (IN2)	IX (IN4)	SOX (IN3)	SIX (IN3)	RX (IN)	RY RTO RTI (IN) (IN) (IN)
111* 1.17 112 1.97 113 3.57 114 5.17 115 6.77 116 8.37 117 9.97 118* 10.78 118* 10.78 119 11.63 120 13.33 121 15.03 122 16.73 123 18.43	19.14 19.60 20.07 20.53	24.00 23.25 21.75 20.25 18.75 17.25 15.75 15.00 15.00 15.00 15.00 15.00	7.77 7.63 7.35 7.07 6.79 6.50 6.22 6.08 5.18 5.18 5.18 5.18 5.18	673.4 625.3 535.4 453.8 380.1 314.1 255.3 228.6 212.7 212.7 212.7 212.7 212.7 212.7	53.7 51.4 47.0 42.7 38.5 34.5 30.7 28.8 26.6 26.6 26.6 26.6	58.8 56.4 51.7 47.2 42.8 38.5 34.4 30.4 30.4 30.4 30.4 30.4	9.31 9.05 8.54 8.01 7.48 6.95 6.41 6.41 6.41 6.41 6.41	1.14 1.422 1.493 1.15 1.430 1.500 1.17 1.447 1.514 1.20 1.463 1.529 1.22 1.481 1.544 1.25 1.500 1.560 1.28 1.519 1.577 1.29 1.529 1.585 1.40 1.591 1.636 1.40 1.591 1.636 1.40 1.591 1.636 1.40 1.591 1.636 1.40 1.591 1.636
124 20.13 125 21.83 126 23.53 3* 24.38	23.10 23.53 23.95 24.17	15.00 15.00 15.00 15.00	5.18 5.18 5.18 5.18	212.7 212.7 212.7 212.7	26.6 26.6 26.6 26.6	30.4 30.4 30.4 30.4	6.41 6.41 6.41 6.41	1.40 1.591 1.636 1.40 1.591 1.636 1.40 1.591 1.636 1.40 1.591 1.636

CHIEF BUILDINGS FRAME DESIGN V09.01
DIMENSIONS AND PROPERTIES
BUILDING A FRAME B3004915A02 COL LINES 6

PAGE NO. F - 40 JOB NO. B3004915

CL DATE 06-06-12

MEMBER NO SECTION NO SECTION NO). 1 LEN		02' OF=	6.00 X	NGLE OF 0.2500 0.2500	MEMBER WEB=0 WEB=0	.1250	IF= 6		0.3125 0.3125
ANAL X POINT (FT)	Y (FT)	DEPTH (IN)	AREA	IX (IN4)	SOX (IN3)	SIX (IN3)	RX (IN)	RY (IN)	RTO (IN)	RTI (IN)
3* 24.3 127 25.2 128 26.3 129 28.6 130 30.3 131 32.0 132 33.3 133 35.4 134 37.3 135* 37.3 135* 37.3 136 38.3 137 40.3 138 41.3 139 43.3	23.95 23.53 23.10 3 22.68 3 22.25 3 21.83 21.41 3 20.98 8 20.77 8 20.77 8 20.54 8 20.07 19.60 19.14	15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.75 17.25 18.75 20.25	5.18 5.18 5.18 5.18 5.18 5.18 5.18 5.18	212.7 212.7 212.7 212.7 212.7 212.7 212.7 212.7 212.7 212.7 212.7 212.7 213.7 213.7 213.7	26.6 26.6 26.6 26.6 26.6 26.6 26.6 26.6	30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4	6.41 6.41 6.41 6.41 6.41 6.41 6.41 6.41	1.40 1.40 1.40 1.40 1.40 1.40 1.29 1.28 1.25 1.22	1.591 1.591 1.591 1.591 1.591 1.591 1.591 1.529 1.519 1.500 1.481 1.463	1.636 1.636 1.636 1.636 1.636 1.636 1.636 1.636 1.585 1.577 1.560 1.544 1.529
140 45.1 141 46.1 142* 47.5	8 18.21	21.75 23.25 24.00	7.35 7.63 7.77	535.4 625.3 673.4	47.0 51.4 53.7	51.7 56.4 58.8	8.54 9.05 9.31	1.15	1.447 1.430 1.422	1.500

CHIEF BUILDINGS FRAME DESIGN V09.01
DIMENSIONS AND PROPERTIES

PAGE NO. F - 41 JOB NO. B3004915

BUILI	DING A	FRAME	B3004915	A02 COL	LINES	6		CL	Ι	DATE 06	5-06-12
MEMBER SECTIO		5- 4 1 LEN	LENGTH IGTH 15.			NGLE OF 0.2500	MEMBER WEB=0		6 DEG IF= 8	3.00 X	0.3750
ANAL POINT	X (FT)	Y (FT)	DEPTH (IN)	AREA (IN2)	IX (IN4)	SOX (IN3)	SIX (IN3)	RX (IN)	RY (IN)	RTO (IN)	RTI (IN)
5* 144 145 146	48.76 48.72 48.65 48.58	2.00 2.94 4.82 6.70	10.78 12.34	6.46 6.59 6.83 7.08	124.5 146.6 196.7 255.1	21.8 23.9 28.1 32.4	29.0 31.6 36.9 42.3	4.39 4.72 5.37 6.01	2.01 1.98	2.204 2.191 2.165 2.142	2.266 2.249
147 148 149	48.51 48.44 48.37	8.58 10.46 12.35	3 15.47 5 17.03	7.32 7.56 7.81	322.1 397.9 482.8	36.9 41.5 46.3	47.8 53.4 59.1	6.63 7.25 7.86	1.91 1.88 1.85	2.119 2.098 2.078	2.218 2.204 2.190
150 151 152*	48.30 48.22 48.19	14.23 16.11	21.72	8.05 8.30 8.42	577.3 681.5 737.4	51.2 56.3 58.9	64.9 70.9 73.9	8.47 9.06 9.36	1.79	2.059 2.040 2.031	2.164

PAGE NO. F - 42 JOB NO. B3004915 CL DATE 06-06-12

	REACT		REACT	MOMENT REACTION (KIP-FT)		HORIZ DEFL (IN)
1 2 3 4		6.6	0.0	0.0	0.000 0.002 -1.430 -0.001	0.000 -0.385 -0.043
5	15.1	-6.4	0.0	0.0	0.000	
AD COND	2 - DL + S	ENOW LOAD				
			(KIP)	REACTION	DEFL (IN)	HORIZ DEFL (IN)
1 2 3 4		8.7	0.0	0.0	0.000 -0.002 -1.968 0.004	0.000 -0.380 0.077
5	20.8	-9.1	0.0	0.0		
AD COND	3 - DL + 9	ENOW LOAD				
JOINT NUMBER	VERT REACT (KIP)	X REACT (KIP)		MOMENT REACTION (KIP-FT)	VERT DEFL (IN)	HORIZ DEFL (IN)
1 2 3 4	20.8	9.1	0.0	0.0	0.000 0.004 -1.968	0.000 -0.534 -0.077 0.380
5	20.6	-8.7	0.0	0.0		0.000
AD COND	46DL+	NLL (NASI)				
JOINT NUMBER	VERT REACT (KIP)	X REACT (KIP)	Z REACT (KIP)	MOMENT REACTION (KIP-FT)	VERT DEFL (IN)	HORIZ DEFL (IN)
1 2 3 4	-10.1	-6.7	0.0	0.0	0.000 -0.017 0.556 0.017	0.000 0.625 0.481 0.346
5	-6.6	-0.2	0.0	0.0	0.000	0.000

PAGE NO. F - 43 JOB NO. B3004915 CL DATE 06-06-12

JOINT NUMBER	REACT	X REACT (KIP)	REACT		VERT DEFL (IN)	HORIZ DEFL (IN)
		-				
1 2	-6.6	0.2	0.0	0.0	0.000 0.017	0.000 -0.343
3					0.557	-0.478
4						-0.622
5	-10.1	6.7	0.0	0.0		0.000
D COND	66DL+	WL2 (NASI)				
	VERT	Х	Z	MOMENT	VERT	HORIZ
JOINT	REACT	REACT	REACT	REACTION	\mathtt{DEFL}	\mathtt{DEFL}
NUMBER	(KIP)	(KIP)	(KIÞ)	(KIP-FT)	(IN)	(IN)
1		-6.4	0.0	0.0	0.000	0.000
2					-0.018	0.568
3					0.319	0.481
4					0.016	0.402
5	-1.9	-0.5	0.0	0.0	0.000	0.000
	-1.9 76DL+		0.0	0.0	0.000	0.000
	76DL+	WR2 (NASI) X		0.0 MOMENT		0.000 HORIZ
	76DL+ VERT REACT	WR2 (NASI) X REACT	Z REACT	MOMENT REACTION	VERT DEFL	HORIZ DEFL
D COND JOINT NUMBER	76DL+	WR2 (NASI) X	Z REACT (KIP)	MOMENT	VERT DEFL (IN)	HORIZ DEFL (IN)
D COND JOINT NUMBER 1	76DL+ VERT REACT	WR2 (NASI) X REACT	Z REACT (KIP)	MOMENT REACTION	VERT DEFL	HORIZ DEFL (IN)
D COND JOINT NUMBER 1 2	76DL+' VERT REACT (KIP)	WR2 (NASI) X REACT (KIP)	Z REACT (KIP)	MOMENT REACTION (KIP-FT)	VERT DEFL (IN) 0.000 0.016	HORIZ DEFL (IN) 0.000 -0.400
JOINT NUMBER 1 2 3	76DL+' VERT REACT (KIP)	WR2 (NASI) X REACT (KIP)	Z REACT (KIP)	MOMENT REACTION (KIP-FT)	VERT DEFL (IN) 0.000 0.016 0.319	HORIZ DEFL (IN) 0.000 -0.400 -0.478
D COND JOINT NUMBER 1 2 3 4	76DL+' VERT REACT (KIP)	WR2 (NASI) X REACT (KIP) 0.5	Z REACT (KIP) 	MOMENT REACTION (KIP-FT) 0.0	VERT DEFL (IN) 0.000 0.016 0.319 -0.018	HORIZ DEFL (IN) 0.000 -0.400 -0.478 -0.565
JOINT NUMBER 1 2 3	76DL+' VERT REACT (KIP)	WR2 (NASI) X REACT (KIP)	Z REACT (KIP)	MOMENT REACTION (KIP-FT) 0.0	VERT DEFL (IN) 0.000 0.016 0.319 -0.018	HORIZ DEFL (IN) 0.000 -0.400 -0.478
D COND JOINT NUMBER 1 2 3 4	76DL+1 VERT REACT (KIP)	WR2 (NASI) X REACT (KIP) 0.5	Z REACT (KIP) 0.0	MOMENT REACTION (KIP-FT) 0.0	VERT DEFL (IN) 0.000 0.016 0.319 -0.018	HORIZ DEFL (IN) 0.000 -0.400 -0.478 -0.565
JOINT NUMBER 1 2 3 4 5	76DL+1 VERT REACT (KIP)1.9 -5.4 86DL+1	WR2 (NASI) X REACT (KIP) 0.5 6.4 WLE+BR1 (NA	Z REACT (KIP) 0.0 0.0 ASI)	MOMENT REACTION (KIP-FT) 0.0 0.0	VERT DEFL (IN) 0.000 0.016 0.319 -0.018 0.000	HORIZ DEFL (IN) 0.000 -0.400 -0.478 -0.565 0.000
JOINT NUMBER 1 2 3 4 5 D COND JOINT	76DL+1 VERT REACT (KIP) -1.9 -5.4 86DL+1 VERT REACT	WR2 (NASI) X REACT (KIP) 0.5 6.4 WLE+BR1 (NA X REACT	Z REACT (KIP) 0.0 0.0 ASI) Z REACT	MOMENT REACTION (KIP-FT) 0.0 0.0 MOMENT REACTION	VERT DEFL (IN) 0.000 0.016 0.319 -0.018 0.000 VERT DEFL	HORIZ DEFL (IN) 0.000 -0.400 -0.478 -0.565 0.000
JOINT NUMBER 1 2 3 4 5	76DL+1 VERT REACT (KIP)1.9 -5.4 86DL+1	WR2 (NASI) X REACT (KIP) 0.5 6.4 WLE+BR1 (NA	Z REACT (KIP) 0.0 0.0 ASI)	MOMENT REACTION (KIP-FT) 0.0 0.0	VERT DEFL (IN) 0.000 0.016 0.319 -0.018 0.000	HORI2 DEFL (IN) 0.000 -0.400 -0.478 -0.565 0.000 HORI2 DEFL (IN)
JOINT NUMBER 1 2 3 4 5 D COND JOINT NUMBER 1	76DL+1 VERT REACT (KIP) -1.9 -5.4 86DL+1 VERT REACT	WR2 (NASI) X REACT (KIP) 0.5 6.4 WLE+BR1 (NA X REACT	Z REACT (KIP) 0.0 0.0 ASI) Z REACT	MOMENT REACTION (KIP-FT) 0.0 0.0 MOMENT REACTION	VERT DEFL (IN) 0.000 0.016 0.319 -0.018 0.000 VERT DEFL (IN) 0.000	HORIZ DEFL (IN)
JOINT NUMBER 1 2 3 4 5 D COND JOINT NUMBER 1 2 2 3 4 5	76DL+1 VERT REACT (KIP) -1.9 -5.4 86DL+1 VERT REACT (KIP)	WR2 (NASI) X REACT (KIP) 0.5 6.4 WLE+BR1 (NA X REACT (KIP)	Z REACT (KIP) 0.0 0.0 ASI) Z REACT (KIP)	MOMENT REACTION (KIP-FT) 0.0 0.0 MOMENT REACTION (KIP-FT)	VERT DEFL (IN) 0.000 0.016 0.319 -0.018 0.000 VERT DEFL (IN) 0.000 0.009	HORIZ DEFL (IN) 0.000 -0.478 -0.565 0.000 HORIZ DEFL (IN) 0.000 -0.027
JOINT NUMBER 1 2 3 4 5 D COND JOINT NUMBER 1 2 3 4 5	76DL+1 VERT REACT (KIP) -1.9 -5.4 86DL+1 VERT REACT (KIP)	WR2 (NASI) X REACT (KIP) 0.5 6.4 WLE+BR1 (NA X REACT (KIP)	Z REACT (KIP) 0.0 0.0 ASI) Z REACT (KIP)	MOMENT REACTION (KIP-FT) 0.0 0.0 MOMENT REACTION (KIP-FT)	VERT DEFL (IN) 0.000 0.016 0.319 -0.018 0.000 VERT DEFL (IN) 0.000 0.009 0.539	HORIZ DEFL (IN) -0.000 -0.400 -0.478 -0.565 0.000 HORIZ DEFL (IN) -0.000 -0.027 -0.155
JOINT NUMBER 1 2 3 4 5 D COND JOINT NUMBER 1 2 2 3 4 5	76DL+1 VERT REACT (KIP) -1.9 -5.4 86DL+1 VERT REACT (KIP)	WR2 (NASI) X REACT (KIP) 0.5 6.4 WLE+BR1 (NA X REACT (KIP)	Z REACT (KIP) 0.0 0.0 ASI) Z REACT (KIP)	MOMENT REACTION (KIP-FT) 0.0 0.0 MOMENT REACTION (KIP-FT)	VERT DEFL (IN) 0.000 0.016 0.319 -0.018 0.000 VERT DEFL (IN) 0.000 0.009	HORIZ DEFL (IN) 0.000 -0.400 -0.478 -0.565 0.000 HORIZ DEFL (IN) 0.000 -0.027

PAGE NO. F - 44 JOB NO. B3004915 CL DATE 06-06-12

			REACT	MOMENT REACTION (KIP-FT)	VERT DEFL (IN)	HORIZ DEFL (IN)
1 2 3 4	-14.9	-1.8	5.1	0.0	0.000 -0.004 0.539 0.009	0.000 0.286 0.155
5		1.3 5(SL+WE2+B		0.0	0.000	
JOINT	VERT REACT (KIP)	Х	Z REACT		DEFL (IN)	HORIZ DEFL (IN)
1 2 3 4	11.1	5.3	0.0	0.0		
5 COND 1		-5.9 2+BR2 (NAS)		0.0	0.000	0.000
JOINT	VERT REACT	X REACT	Z REACT	MOMENT REACTION	VERT DEFL	HORIZ
NUMBER	(KIP)	(KIP)	(KIP)	(KIP-FT)	(IN)	DEFL (IN)
NUMBER 1 2 3	(KIP) -3.1				(IN) 0.000 -0.007 0.305	(IN) 0.000 0.227 0.155
NUMBER 1 2 3 4 5	-3.1	(KIP) -0.6	(KIP) 0.0	(KIP-FT)	(IN) 0.000 -0.007 0.305 0.005	(IN) 0.000 0.227
NUMBER 1 2 3 4 5	-3.1	(KIP) -0.6	(KIP) 0.0	(KIP-FT) 0.0	(IN) 0.000 -0.007 0.305 0.005	(IN) 0.000 0.227 0.155 0.086 0.000 HORIZ DEFL (IN)
NUMBER 1 2 3 4 5 COND 1 JOINT NUMBER 1	-3.1 -4.2 2 - DL + 0 VERT REACT	(KIP) -0.6 0.1 COL + .75(I	(KIP) 0.0 0.0 LL + WLL) Z REACT	(KIP-FT) 0.0 0.0 (NASI) MOMENT REACTION	(IN) 0.000 -0.007 0.305 0.005 0.000 VERT DEFL	(IN) 0.000 0.227 0.155 0.086 0.000 HORIZ DEFL

	· - 	· 			- 	
LOAD COND 13	3 - DL + C	COL + .75(I	L + WLR)	(NASI)		
JOINT	VERT REACT (KIP)	X REACT (KIP)	REACT	MOMENT REACTION (KIP-FT)	DEFL	HORIZ DEFL (IN)
1 2 3 4	6.4	5.1	0.0	0.0	0.000 0.014 -0.658 -0.013	0.000 -0.542 -0.371 -0.207
5	3.7	0.2	0.0	0.0	0.000	0.000
LOAD COND 14	1 - DL + 0	COL + .75(S	SL + WLL)	(NASI)		·
JOINT	REACT	REACT	REACT	MOMENT REACTION (KIP-FT)	DEFL (IN)	DEFL
1 2 3 4 5	7.9	1.6	0.0	0.0	0.000 -0.014 -1.063 0.015	0.000 0.126 0.386 0.653
LOAD COND 15	5 - DL + 0	COL + .75(S	SL + WLR)			
	REACT	REACT	REACT		DEFL (IN)	DEFL
1 2 3 4 5	10.6	6.9	0.0	0.0	0.000 0.015 -1.063 -0.014	0.000 -0.651 -0.384 -0.124
LOAD COND 16				0.0	0.000	0.000
JOINT NUMBER	REACT	REACT	REACT	MOMENT REACTION (KIP-FT)	DEFL	
1 2 3 4	11.3	6.4			0.000	
5	16.3	-6.1	0.0	0.0	0.000	0.000

5

0.000 0.000

	REACT	X REACT (KIP)	REACT	MOMENT REACTION (KIP-FT)		HORIZ DEFL (IN)
1 2 3 4	16.3		0.0	0.0	0.000 -0.020 -1.428 0.024	0.000 0.148 0.487
5	11.3	-6.4	0.0	0.0	0.000	
D COND 1	8 - DL+SE	ISMIC LEFT	*0.7			
		X REACT (KIP)			VERT DEFL (IN)	HORIZ DEFL (IN)
1 2 3 4	3.9	1.4	0.0	0.0	0.000 -0.005 -0.364	0.000 0.047 0.137 0.230
5		-2.0		0.0	0.000	0.000
D COND 1	9 - DL+SE: -	ISMIC RIGH	Г *0.7			
JOINT NUMBER	VERT REACT (KIP)	X REACT (KIP)	Z REACT (KIP)	MOMENT REACTION (KIP-FT)	DEFL (IN)	HORIZ DEFL (IN)
1 2 3 4	4.3	2.0	0.0	0.0	0.000 0.005 -0.364 -0.005	
5	3.9	-1.4	0.0	0.0	0.000	0.000
D COND 2	06 DL	+SEISMIC L	EFT*0.7			
JOINT NUMBER	VERT REACT (KIP)	X REACT (KIP)	Z REACT (KIP)	MOMENT REACTION (KIP-FT)	VERT DEFL (IN)	HORIZ DEFL (IN)
1 2 3 4	1.2	0.2	0.0	0.0	0.000 -0.005 -0.110 0.005	0.000 0.103 0.130 0.159
-					0.000	0.100

1.5 -0.8 0.0 0.0

PAGE NO. F - 47 JOB NO. B3004915 CL DATE 06-06-12

			REACT	MOMENT REACTION (KIP-FT)	VERT DEFL (IN)	HORIZ DEFL (IN)
1 2 3 4	1.5	0.8	0.0	0.0	0.000 0.005 -0.110 -0.005	0.000 -0.159 -0.130 -0.103
5	1.2	-0.2	0.0	0.0		0.000
AD COND 22	26 DL	+ SB1*0.7				
	VERT REACT (KIP)	REACT	REACT	MOMENT REACTION (KIP-FT)	DEFL	HORIZ DEFL (IN)
1 2 3 4	0.8	0.5	0.6	0.0	0.000 0.000	
5	0.8	-0.5	0.6	0.0	0.000	0.000
D COND 23	3 - DL + 5	SB2*0.7				
JOINT NUMBER	VERT REACT (KIP)	X REACT (KIP)	Z REACT (KIP)	MOMENT REACTION (KIP-FT)	VERT DEFL (IN)	HORIZ DEFL (IN)
1 2 3 4	4.7	1.7	0.0	0.0	0.000 0.000 -0.363	0.000 -0.105 -0.014 0.077
5	4.6	-1.6	0.0	0.0		0.000
AD COND 24	- DL - 1	DEAD LOAD				
JOINT NUMBER	VERT REACT (KIP)	X REACT (KIP)	Z REACT (KIP)	MOMENT REACTION (KIP-FT)	VERT DEFL (IN)	HORIZ DEFL (IN)
1 2 3	2.4	0.9	0.0	0.0	0.000 0.000 -0.193 0.000	0.000 -0.049 0.000 0.049
4						

PAGE NO. F - 48 JOB NO. B3004915 CL DATE 06-06-12

	REACT	REACT	REACT	MOMENT REACTION (KIP-FT)	DEFL	HORIZ DEFL (IN)
1	1.7		0.0	0.0	0.000	0.000
2					0.000	
3					-0.161	0.000
4 5	1.7	-0.7	0.0	0.0	0.000 0.000	
	6 - LL - 1		0.0	0.0	0.000	0.000
	ייים <i>א</i> ד	X	Z	MOMENT	VERT	HORI2
JOINT					DEFL	DEFL
	(KIP)			(KIP-FT)		
1	11.1	4.9	0.0	0.0	0.000	0.000
2	<u> </u>		• • •	•	0.000	
3					-1.076	
4					0.000	
5	11.1	-4.9	0.0	0.0	0.000	0.000
D COND 2	7 - SL - S	SNOW LOAD				
	VERT	Х	7.	MOMENT	VERT	HORIZ
			_	LICITIE	A 1717 T	1101(12
JOINT		REACT	REACT	REACTION	DEFL	DEFL
JOINT NUMBER	REACT (KIP)	REACT (KIP)	REACT		DEFL (IN)	DEFL (IN)
	REACT (KIP)		REACT	REACTION	DEFL	DEFL
NUMBER 1 2	REACT (KIP)	(KIP)	REACT (KIP)	REACTION (KIP-FT)	DEFL (IN) 0.000	DEFL (IN)
NUMBER 1 2 3	REACT (KIP)	(KIP)	REACT (KIP)	REACTION (KIP-FT)	DEFL (IN) 0.000	DEFL (IN) 0.000 -0.414
NUMBER 1 2 3 4	REACT (KIP) 16.7	(KIP) 7.3	REACT (KIP) 0.0	REACTION (KIP-FT) 0.0	DEFL (IN) 0.000 0.001 -1.614 0.001	DEFL (IN) 0.000 -0.414 0.000
NUMBER 1 2 3	REACT (KIP)	(KIP) 7.3	REACT (KIP) 0.0	REACTION (KIP-FT)	DEFL (IN) 0.000 0.001 -1.614 0.001	DEFL (IN) 0.000 -0.414 0.000
NUMBER 1 2 3 4 5	REACT (KIP) 16.7	(KIP) 7.3	REACT (KIP) 0.0	REACTION (KIP-FT) 0.0	DEFL (IN) 0.000 0.001 -1.614 0.001	DEFL (IN) 0.000 -0.414 0.000 0.414
NUMBER 1 2 3 4 5 COND 2	REACT (KIP) 16.7 16.7 8 - WLL- V	(KIP) 7.3 -7.3 VIND FROM 1	REACT (KIP) 0.0 0.0 LEFT	REACTION (KIP-FT) 0.0 0.0	DEFL (IN) 0.000 0.001 -1.614 0.001 0.000	DEFL (IN) 0.000 -0.414 0.000 0.414 0.000
NUMBER 1 2 3 4 5	REACT (KIP) 16.7 16.7 8 - WLL- V	(KIP) 7.3 -7.3 VIND FROM 1	REACT (KIP) 0.0 0.0	REACTION (KIP-FT) 0.0	DEFL (IN) 0.000 0.001 -1.614 0.001 0.000	DEFL (IN) 0.000 -0.414 0.000 0.414 0.000
NUMBER 1 2 3 4 5 COND 2	REACT (KIP) 16.7 16.7 8 - WLL- V	(KIP) 7.3 -7.3 VIND FROM 1	REACT (KIP) 0.0 0.0 LEFT	REACTION (KIP-FT) 0.0 0.0	DEFL (IN) 0.000 0.001 -1.614 0.001 0.000	DEFL (IN) 0.000 -0.414 0.000 0.414 0.000 HORIZ DEFL (IN)
NUMBER 1 2 3 4 5 D COND 2 JOINT NUMBER 1	REACT (KIP) 16.7 16.7 8 - WLL- V VERT REACT	(KIP) 7.3 -7.3 VIND FROM 1 X REACT	REACT (KIP) 0.0 0.0 LEFT Z REACT	REACTION (KIP-FT) 0.0 0.0 MOMENT REACTION	DEFL (IN) 0.000 0.001 -1.614 0.001 0.000 VERT DEFL (IN)	DEFL (IN) 0.000 -0.414 0.000 0.414 0.000 HORIZ
NUMBER 1 2 3 4 5 COND 2 JOINT NUMBER 1 2	REACT (KIP) 16.7 16.7 8 - WLL- V - VERT REACT (KIP)	(KIP) 7.3 VIND FROM 1 X REACT (KIP)	REACT (KIP) 0.0 0.0 LEFT Z REACT (KIP)	REACTION (KIP-FT) 0.0 0.0 MOMENT REACTION (KIP-FT)	DEFL (IN) 0.000 0.001 -1.614 0.001 0.000 VERT DEFL (IN) 0.000 -0.017	DEFL (IN) -0.000 -0.414 0.000 0.414 0.000 HORIZ DEFL (IN) 0.000
NUMBER 1 2 3 4 5 D COND 2 JOINT NUMBER 1 2 3	REACT (KIP) 16.7 16.7 8 - WLL- V - VERT REACT (KIP)	(KIP) 7.3 VIND FROM 1 X REACT (KIP)	REACT (KIP) 0.0 0.0 LEFT Z REACT (KIP)	REACTION (KIP-FT) 0.0 0.0 MOMENT REACTION (KIP-FT)	DEFL (IN) 0.000 0.001 -1.614 0.001 0.000 VERT DEFL (IN) 0.000 -0.017 0.672	DEFL (IN) 0.000 -0.414 0.000 0.414 0.000 HORIZ DEFL (IN) 0.000 0.654 0.481
NUMBER 1 2 3 4 5 D COND 2 JOINT NUMBER 1 2 3 4	REACT (KIP) 16.7 8 - WLL- V VERT REACT (KIP)11.5	(KIP) 7.3 VIND FROM 1 X REACT (KIP)7.2	REACT (KIP) 0.0 0.0 LEFT Z REACT (KIP) 0.0	REACTION (KIP-FT) 0.0 MOMENT REACTION (KIP-FT) 0.0	DEFL (IN) 0.000 0.001 -1.614 0.001 0.000 VERT DEFL (IN) 0.000 -0.017 0.672 0.017	DEFL (IN) 0.000 -0.414 0.000 0.414 0.000 HORIZ DEFL (IN) 0.000 0.654 0.481 0.316
NUMBER 1 2 3 4 5 COND 2 JOINT NUMBER 1 2 3	REACT (KIP) 16.7 16.7 8 - WLL- V - VERT REACT (KIP)	(KIP) 7.3 VIND FROM 1 X REACT (KIP)	REACT (KIP) 0.0 0.0 LEFT Z REACT (KIP)	REACTION (KIP-FT) 0.0 0.0 MOMENT REACTION (KIP-FT)	DEFL (IN) 0.000 0.001 -1.614 0.001 0.000 VERT DEFL (IN) 0.000 -0.017 0.672	DEFL (IN) -0.000 -0.414 0.000 0.414 0.000 HORIZ DEFL (IN) 0.000

PAGE NO. F - 49 JOB NO. B3004915 CL DATE 06-06-12

T∩TNTT	VERT	X REACT	Z Deach	MOMENT REACTION	VERT DEFL	HORIZ DEFL
	(KIP)	(KIP)		(KIP-FT)	(IN)	(IN)
1 2		-0.3	0.0	0.0	0.000	0.000
∠ 3 4					0.672 ~0.017	-0.478
5	-11.5	7.2	0.0	0.0	0.000	
D COND 3	0 - WL2- V	VIND LT CAS	SE 2			
JOINT		X REACT		MOMENT REACTION		HORIZ DEFL
				(KIP-FT)		(IN)
1 2	-6.8	-6.9	0.0	0.0	0.000	0.000
3					0.435	0.481
4 5	-3.3	0.0	0.0	0.0	0.016 0.000	0.373 0.000
D COND 3	1 - WR2- V	VIND RT CAS	3E 2			
		X		MOMENT		HORIZ
	(KIP)	(KIP)	(KIP)	(KIP-FT)	DEFL (IN)	DEFL (IN)
1	-3.3	0.0	0.0	0.0		0.000
2 3					0.016 0.435	-0.370 -0.478
4 5	-6.8	6.9	0.0	0.0		-0.595 0.000
D COND 3	2 - WLE- W	VIND ON EN	OWALL			
	- VERT	Х	Z	MOMENT	VERT	HORIZ
D COND 3	_			MOMENT REACTION (KIP-FT)	VERT DEFL (IN)	HORIZ DEFL (IN)
JOINT NUMBER	- VERT REACT	X REACT	Z REACT	REACTION	DEFL (IN) 0.000	DEFL (IN)
JOINT NUMBER	VERT REACT (KIP)	X REACT (KIP)	Z REACT (KIP)	REACTION (KIP-FT)	DEFL (IN)	DEFL (IN)

PAGE NO. F - 50 JOB NO. B3004915 CL DATE 06-06-12

	REACT	X REACT (KIP)	REACT			HORIZ DEFL (IN)
1 2 3 4		-2.4		0.0	0.000 -0.004 0.655 0.009	0.000 0.316 0.155
5 OAD COND 3		1.9 SNOW LOAD	0.0	0.0	0.000	
JOINT NUMBER	(KIP)	X REACT (KIP)	(KIP)	REACTION (KIP-FT)	DEFL (IN)	DEFL (IN)
1 2 3 4	7.2	4.6	0.0	0.0	0.000 0.021 -1.072 -0.018	-0.738 -0.457
5 OAD COND 3		-4.6 SNOW LOAD	0.0	0.0		
JOINT NUMBER	VERT REACT (KIP)	X REACT (KIP)		MOMENT REACTION (KIP-FT)	VERT DEFL (IN)	HORIZ DEFL (IN)
1 2 3 4	12.3	4.6	0.0	0.0		0.000 0.186 0.457 0.738
5		-4.6 SEISMIC LO	0.0	0.0		0.000
JOINT NUMBER	VERT REACT (KIP)	X REACT (KIP)	Z REACT (KIP)	MOMENT REACTION (KIP-FT)	VERT DEFL (IN)	HORIZ DEFL (IN)
1 2 3 4	-0.3	-0.4	0.0	0.0	0.000 -0.007 0.000 0.007	0.000 0.183 0.181
5	0.3	-0.4	0.0	0.0	0.007	0.183

PAGE NO. F - 51 JOB NO. B3004915 CL DATE 06-06-12

	REACT	\mathtt{REACT}	REACT		VERT DEFL (IN)	HORIZ DEFL (IN)
1 2 3 4				0.0		0.000 0.000 0.000
5	-0.7	0.0	0.8	0.0	0.000	
OAD COND 3	8 - SB2- :	SEISMIC BRA	ACING			
	(KIP)	X REACT (KIP)	REACT	MOMENT REACTION (KIP-FT)	VERT DEFL (IN)	HORIZ DEFL (IN)
1 2 3 4	0.7	0.0	0.0	0.0	0.000 -0.001 0.001	0.000
5				0.0		
OAD COND 3	_					
JOINT NUMBER		REACT (KIP)	REACT	MOMENT REACTION (KIP-FT)	VERT DEFL (IN)	HORIZ DEFL (IN)
1 2 3 4	-4.6	0.0	5.1	0.0	0.000 0.000 0.000 0.000	0.000 0.000 0.000
5	-4.6	0.0	5.1	0.0	0.000	0.000
OAD COND 4	0 - BR2- 1	WIND BRACII	NG 2			
JOINT NUMBER	VERT REACT (KIP)	X REACT (KIP)	Z REACT (KIP)	MOMENT REACTION (KIP-FT)	VERT DEFL (IN)	HORIZ DEFL (IN)
1 2 3 4	4.6	0.1	0.0	0.0	0.000 -0.003 0.004 -0.003	0.000 0.002 0.000 -0.002
5	4.6	-0.1	0.0	0.0	0.000	0.000

CHIEF BUILDINGS FRAM DESIGN SUMMARY REPORT BUILDING A FRAME B3004	ME DESIGN V09.01	5 	PAGE NO. F - 52 JOB NO. B3004915 CL DATE 06-06-12
MEMBER NO. 1-2 LENGT			
SECT LENGTH START EN NO (FT) DEPTH DEP 1 15.06 10.00 22.	ND OUTSIDE WE PTH FLANGE THE 50 8.0 X 1/4 5/	EB INSIDE ICK FLAN GE /32 8.0 X 3/8	COMB. AT LOAD RATIO DIST COND 0.932 15.1 3
(CONTROLLING ACTIONS) AXIAL -A SECT FORCE MOMENT NO (KIP) (KIP-FT) (1 20.74 -125.26 2	FA FBO FBI A (KSI) (KSI) (KSI) 9 20.8 29.4 23.4	AXIAL FBO FB (KSI) (KSI) (KS 2.46 -25.53 20.	UNITY CHECK- I - COMPONENTS - I) FA FBO FBI 34 0.06 0.87 0.87
MEMBER NO. 2-3 LENGT	CH 24.61 FT MEMBER	R ANGLE 14.92 DE	G WEIGHT 498. LB
SECT LENGTH START EN NO (FT) DEPTH DEP 1 10.00 24.00 15. 2 14.02 15.00 15.	TH FLANGE THE	ICK FLANGE	RATIO DIST COND
(CONTROLLING ACTIONS) AXIAL -A SECT FORCE MOMENT NO (KIP) (KIP-FT) (1 13.60 -110.76 1 2 9.11 42.79 2	FA FBO FBI A (KSI) (KSI) (KSI) (18.7 29.8 27.1	AXIAL FBO FB (KSI) (KSI) (KS 1.78 -25.86 23.	UNITY CHECK- I - COMPONENTS - I) FA FBO FBI 56 0.05 0.87 0.88 87 0.04 0.69 0.67
MEMBER NO. 3-4 LENGT	TH 24.61 FT MEMBER	R ANGLE -14.92 DE	G WEIGHT 498. LB
NO (FT) DEPTH DEP 1 14.02 15.00 15. 2 10.00 15.00 24.	TH FLANGE THI	EB INSIDE ICK FLANGE /8 6.0 X 5/16 /16 6.0 X 5/16	RATIO DIST COND
(CONTROLLING ACTIONS)			

NO (KIP) (KIP-FT) (KSI) (KSI) (KSI) (KSI) (KSI) (KSI) FA FBO FBI 1 9.11 42.79 20.0 28.8 25.1 1.76 19.34 -16.87 0.04 0.69 0.67 2 13.78 -123.37 19.0 34.5 31.5 1.77 -27.59 25.18 0.05 0.80 0.81

-ALLOW STRESSES- -- MAXIMUM STRESSES-- - UNITY CHECK-

FA FBO FBI AXIAL FBO FBI - COMPONENTS -

AXIAL

SECT FORCE MOMENT

CHIEF BUILDINGS FRAME DESIGN V09.01 PAGE NO. F - 53 JOB NO. B3004915 DESIGN SUMMARY REPORT BUILDING A FRAME B3004915A02 COL LINES 6 DATE 06-06-12 _____ MEMBER NO. 5-4 LENGTH 15.84 FT MEMBER ANGLE 92.16 DEG WEIGHT 404. LB SECT LENGTH START OUTSIDE WEB INSIDE END COMB. LOAD THICK FLANGE NO (FT) DEPTH DEPTH FLANGE RATIO DIST COND 1 15.06 10.00 22.50 8.0 X 1/4 5/32 8.0 X 3/8 0.932 15.1 (CONTROLLING ACTIONS) AXIAL -ALLOW STRESSES- -- MAXIMUM STRESSES---UNITY CHECK-SECT FORCE MOMENT FA FBO FBI AXIAL FBO FBI - COMPONENTS -

NO (KIP) (KIP-FT) (KSI) (KSI) (KSI) (KSI) (KSI) FA FBO FBI 20.74 -125.26 20.8 29.4 23.4 2.46 -25.53 20.34 0.06 0.87 0.87

TOTAL FRAME WEIGHT IS 1804. LBS.

1

HOLE LOC FLG AREA DEPTH

COLUMN 1 GIRT AT SIZE SIDES CONN. HOLE LOC FLG AREA DEPTH	- 2 3.50	8.00	12.00				
RAFTER 2 PURLIN AT SIZE SIDES CONN. HOLE LOC FLG AREA DEPTH	- 3 0.72 A2 1 1-1 2 1.88 23.88	4.74	8.76 A2 1 1-1 2 1.88 16.65	12.77	16.79 A2 1 1-1 2 1.88 15.00	20.80	23.82 A2 1 1-1 2 1.88 15.00
RAFTER 3 PURLIN AT SIZE SIDES CONN. HOLE LOC FLG AREA DEPTH	- 4 0.79 A2 1 1-1 2 1.88 15.00	3.81	7.82 A2 1 1-1 2 1.88 15.00	11.84	15.85 A2 1 1-1 2 1.88 16.65	18.36	22.38 A2 1 1-1 2 1.88 22.52
COLUMN 5 GIRT AT SIZE SIDES CONN.	- 4 3.50	8.00	12.00	-			

CHIEF BUILDINGS FRAME DESIGN V09.01 PAGE NO. F - 55
FLANGE BRACE REPORT JOB NO. B3004915
BUILDING A FRAME B3004915A02 COL LINES 6 CL DATE 06-06-12

HAUNCH CORNER FLANGE BRACE

LEFT COLUMN NO

RIGHT COLUMN NO

STANDARD ANGLE FLANGE BRACE SIZES:
A1 - 1.0 X 1.0 X 1/8"
A2 - 1.5 X 1.5 X 1/8"
A3 - 2.0 X 2.0 X 1/8"
A4 - 2.5 X 2.5 X 3/16"
A5 - 3.0 X 3.0 X 1/4"

CHIEF BUILDINGS FRAME DESIGN V09.01 PAGE NO. F - WELD SUMMARY REPORT JOB NO. B30 BUILDING A FRAME B3004915A02 COL LINES 6 CL DATE 06-	004915
Q = V X A X Y / I	
COLUMN 1- 2 SECTION 1 Q MAX = 8311. X 3.00 X 4.10 / 124.52	· •
= 821.3 LBS/IN AT ANALYSIS POINT 1	
WELD SIZE FOR THE SECTION =0.1875 INCH, WELD ONE SIDE ONLY	
RAFTER 2-3 SECTION 1 Q MAX = 14814. X 1.88 X 10.93 / 625.26	·
= 485.5 LBS/IN AT ANALYSIS POINT 112	
WELD SIZE FOR THE SECTION =0.1875 INCH, WELD ONE SIDE ONLY	
RAFTER 2-3 SECTION 2 Q MAX = 8458. X 1.88 X 6.83 / 212.72	
= 509.4 LBS/IN AT ANALYSIS POINT 118	
WELD SIZE FOR THE SECTION =0.1250 INCH, WELD ONE SIDE ONLY	
RAFTER 3-4 SECTION 1 Q MAX = 8458. X 1.88 X 6.83 / 212.72	
= 509.4 LBS/IN AT ANALYSIS POINT 135	
WELD SIZE FOR THE SECTION =0.1250 INCH, WELD ONE SIDE ONLY	
RAFTER 3-4 SECTION 2 Q MAX = 14814. X 1.88 X 10.93 / 625.26	·
= 485.5 LBS/IN AT ANALYSIS POINT 141	
WELD SIZE FOR THE SECTION =0.1875 INCH, WELD ONE SIDE ONLY	
COLUMN 5-4 SECTION 1 Q MAX = 8311. X 3.00 X 4.10 / 124.52	
= 821.3 LBS/IN AT ANALYSIS POINT 5	

WELD SIZE FOR THE SECTION =0.1875 INCH, WELD ONE SIDE ONLY

BUILDING A FRAME B3004915A02 COL LINES 6 CL DATE 06-06-12

<u></u>	
CONNECTION DESIGN DATA FOR MEMBER 2- 3 AT DEPTH 1:	RF KNEE SPLICE (1)
SPLICE DEPTH: 24.0000 INCHES WEB DEPTH: 23.4375 INCHES	CONTROLLING ACTIONS
SPLICE DATA LEFT RIGHT SECTION DEPTH 22.5000 24.0000	POS MOMENT 72.92 FT-KIPS
OS FLANCE WIDTH & OCCO 6 OCCO	NEG MOMENT -123.37 FT-KIPS AXIAL LOAD 13.78 KIPS SHEAR 15.43 KIPS
	MAX SHEAR 15.43 KIPS AXIAL LOAD 13.78 KIPS MOMENT -123.37 FT-KIPS LOAD CONDITION 3
LENGTH - 27.000" DIAM 0.625" TOP ROWS 3 WIDTH - 8.000" GAUGE - 3.500" BOT ROWS 2 THICK - 0.625" PITCH - 2.750" CON TYPE 1	EDGE DIST TOP 1.500" EDGE DIST BOT 2.063" TOP PROJECTION 2.750"
CORNER WEB - 0.156" THICK WITH 0.125" WELD ON 2 SIDE *** NOTE STANDARD 0.125 S.A.W. IS NOT ADEQUATE (2.6 *** NOTE STANDARD 0.188 1 SIDE G.M.A.W. IS NOT ADEQUATE	25 K/IN) *** ATE (2.784 K/IN) ***
CONNECTION DESIGN DATA FOR MEMBER 2- 3 AT DEPTH 9:	RIDGE SPLICE (3)
SPLICE DEPTH: 15.0000 INCHES WEB DEPTH: 14.4375 INCHES	CONTROLLING ACTIONS
SPLICE DATA LEFT RIGHT SECTION DEPTH 15.0000 15.0000	POS MOMENT 39.40 FT-KIPS AXIAL LOAD 8.92 KIPS SHEAR -0.12 KIPS LOAD CONDITION 2
OS FLANGE WIDTH 6.0000 6.0000 OS FLANGE THICK 0.2500 0.2500 WEB THICKNESS 0.1250 0.1250 IS FLANGE WIDTH 6.0000 6.0000 IS FLANGE THICK 0.3125 0.3125	NEG MOMENT -12.17 FT-KIPS AXIAL LOAD -6.80 KIPS SHEAR -0.11 KIPS LOAD CONDITION 4
	MAX SHEAR -3.41 KIPS AXIAL LOAD 6.21 KIPS MOMENT 30.47 FT-KIPS LOAD CONDITION 17
WIDTH - 6.000" GAUGE - 3.500" BOT ROWS 2	EDGE DIST TOP 1.500" EDGE DIST BOT 1.500" TOP PROJECTION 2.750"

BUILDING A FRAME B3004915A02 COL LINES 6	CL DATE 06-06-12
CONNECTION DESIGN DATA FOR MEMBER 3-4 AT DEPTH 1:	
SPLICE DEPTH: 15.0000 INCHES WEB DEPTH: 14.4375 INCHES	CONTROLLING ACTIONS
SPLICE DATA LEFT RIGHT	POS MOMENT 39.40 FT-KIPS AXIAL LOAD 8.92 KIPS
SECTION DEPTH 15.0000 15.0000 OS FLANGE WIDTH 6.0000 6.0000	SHEAR -0.12 KIPS LOAD CONDITION 2
OS FLANGE THICK 0.2500 0.2500	NEG MOMENT -12.17 FT-KIPS AXIAL LOAD -6.80 KIPS
WEB THICKNESS 0.1250 0.1250 IS FLANGE WIDTH 6.0000 6.0000 IS FLANGE THICK 0.3125 0.3125	SHEAR -0.11 KIPS LOAD CONDITION 4
	MAX SHEAR -3.41 KIPS AXIAL LOAD 6.21 KIPS MOMENT 30.47 FT-KIPS LOAD CONDITION 17
LENGTH - 21.188" DIAM 0.625" TOP ROWS 2 WIDTH - 6.000" GAUGE - 3.500" BOT ROWS 2 THICK - 0.375" PITCH - 3.000" CON TYPE 3	EDGE DIST BOT 1.500" TOP PROJECTION 2.750"
CONNECTION DESIGN DATA FOR MEMBER 3-4 AT DEPTH 9:	RF KNEE SPLICE (1)
SPLICE DEPTH: 24.0000 INCHES WEB DEPTH: 23.4375 INCHES	CONTROLLING ACTIONS
SPLICE DATA LEFT RIGHT	POS MOMENT 72.83 FT-KIPS AXIAL LOAD -6.69 KIPS SHEAR 8.58 KIPS
SECTION DEPTH 24.0000 22.5000 OS FLANGE WIDTH 6.0000 8.0000	LOAD CONDITION 5
OS FLANGE THICK 0.2500 0.2500 WEB THICKNESS 0.1875 0.1563 IS FLANGE WIDTH 6.0000 8.0000 IS FLANGE THICK 0.3125 0.3750	NEG MOMENT -123.37 FT-KIPS AXIAL LOAD 13.78 KIPS SHEAR -15.43 KIPS LOAD CONDITION 2
	MAX SHEAR -15.43 KIPS AXIAL LOAD 13.78 KIPS MOMENT -123.37 FT-KIPS LOAD CONDITION 2
LENGTH - 27.000" DIAM 0.625" TOP ROWS 3 WIDTH - 8.000" GAUGE - 3.500" BOT ROWS 2 THICK - 0.625" PITCH - 2.750" CON TYPE 1	EDGE DIST BOT 2.063"
CORNER WEB - 0.156" THICK WITH 0.125" WELD ON 2 SIDE *** NOTE STANDARD 0.125 S.A.W. IS NOT ADEQUATE (2.6 *** NOTE STANDARD 0.188 1 SIDE G.M.A.W. IS NOT ADEQU	25 K/IN) ***

PAGE NO. F - 59 CHIEF BUILDINGS FRAME DESIGN V09.01 ANCHOR BOLTS AND BASE PLATES JOB NO. B3004915 BUILDING A FRAME B3004915A02 COL LINES 6 CL DATE 06-06-12 _____ SUPPORT JOINT 1 -- EXTERIOR COLUMN CRITICAL REACTIONS LOAD CONDITION

 HORIZONTAL
 9.10 KIPS
 3

 DOWNWARD...
 20.80 KIPS
 3

 UPWARD...
 -16.07 KIPS
 8
 5.28 KIPS ASSOCIATED SHEAR

 COLUMN BASE DETAILS ______ COLUMN DEPTH - 10.0 IN OUTSIDE FLANGE - 8.0 X 0.2500 WEB THICKNESS- .156 IN INSIDE FLANGE - 8.0 X 0.3750 LENGTH - 10.000" DIAM. - 0.750" NO. BOLTS 4 OS PROJECTION 0.000" WIDTH - 8.000" GAUGE - 4.000" HOLE PAT. 2 WEB FILLET 0.188" THICK - 0.375" PITCH - 4.000" OS EDGE 3.000" FLANGE FILLET 0.188" SUPPORT JOINT 5 -- EXTERIOR COLUMN CRITICAL REACTIONS LOAD CONDITION HORIZONTAL 9.10 KIPS 2
DOWNWARD.. 20.80 KIPS 2
UPWARD... -16.07 KIPS 9 5.28 KIPS ASSOCIATED SHEAR

COLUMN BASE DETAILS

COLUMN DEPTH - 10.0	IN OUTSIDE	FLANGE - 8.0 X	0.2500	
WEB THICKNESS156	IN INSIDE	FLANGE - 8.0 X	0.3750	
LENGTH - 10.000"	DIAM 0.750"	NO. BOLTS 4	OS PROJECTION 0.00	0"
WIDTH - 8.000"	GAUGE - 4.000"	HOLE PAT. 2	WEB FILLET 0.18	8"
THICK - 0.375"	PITCH - 4.000"	OS EDGE 3.000"	FLANGE FILLET 0.18	8"

PAGE NO. E - 60 JOB NO. B3004915 CL DATE 6-JUN-12

ENDWALL DESIGN INPUT ECHO

..... 2.63 PSF

DESIGN DATA	

DESIGN BASE	ON
DEAD LOAD.	
COLLATERAL	LOA
T 77777 T 03 P	

THE NASPEC 2007 AISI STANDARD AND 13TH EDITION OF AISC-ASD

COLLATERAL LOAD:	3.00 PSF	
LIVE LOAD:	20.00 PSF	
SNOW LOAD:	30.00 PSF	
WIND LOAD:	23.52 PSF	
COLUMN WIND COEFFICIENT:	0.9800	
MAXIMUM UNITY CHECK RATIO:	1.0300	
MAXIMUM RAFTER DEFLECTION RATIO:	L/240.	
MAXIMUM COLUMN DEFLECTION RATIO:	L/120.	(FOR 10 YEAR WIND MAP)
MAXIMUM COLUMN DEFLECTION:	3.00 IN.	(FOR 10 YEAR WIND MAP)
MAXIMUM COLUMN DEPTH:	18.00 IN.	
MINIMUM COLUMN DEPTH:	8.00 IN.	
MINIMUM RAFTER DEPTH:	8.00 IN.	
UNSUPPORTED COLUMN LENGTH:	25.00 FT.	
UNSUPPORTED COLUMN LENGTH BENDING:	3.21 FT.	
CONSTANT PURLIN SPACING:	4.00 FT.	
YEILD OF B.U.P. MEMBERS:	55.00 KSI	
OPTIMIZATION:	N	

RUN ASCE 7-05 PARTIAL LOADING LOAD COMBINATIONS: D + (Lr or S)

0.6D + W

D + 0.75(Lr or S) + 0.75W

NO ALLOWABLE STRESS INCREASE FOR WIND

CORNER	POST	DESIGN	DATA
*****	****	*****	***

SIDEWALL GIRT DEPTH. : ENDWALL GIRT DEPTH. : SIDEWALL GIRT TYPE. : LEFT AND RIGHT CORNER COLUMNS THE SAME : SUM OF ALL ENDWALL OPENING WIDTHS :	8" 8" OUTSET N 0.00 FT.
NUMBER OF OPENING IN FIRST ENDWALL SPACE:	1
HEIGHT OF OPENING IN FIRST ENDWALL SPACE:	19.33 FT.
DISTANCE FROM SIDEWALL BL TO ENDWALL OPENING.:	0.00 FT.
NUMBER OF OPENING IN SIDEWALL END BAY:	0
HEIGHT OF OPENING IN SIDEWALL END BAY:	0.00 FT.
DISTANCE FROM ENDWALL BL TO SIDEWALL OPENING .:	0.00 FT.
	0.00 11.
NUMBER OF OPENING IN LAST ENDWALL SPACE:	1
HEIGHT OF OPENING IN LAST ENDWALL SPACE:	19.33 FT.
DISTANCE FROM SIDEWALL BL TO ENDWALL OPENING.:	0.00 FT.
	0.00 11.
NUMBER OF OPENING IN SIDEWALL END BAY:	0
HEIGHT OF OPENING IN SIDEWALL END BAY	0.00 FT.
	3.00 2.1.

DISTANCE FROM ENDWALL BL TO SIDEWALL OPENING.: 0.00 FT.

CHIEF INDUSTRIES INC. WEST OLD HWY 30 GRAND ISLAND, NE PAGE NO. E - 61
BUILDING A ENDWALL (D) JOB NO. B3004915
ENDWALL DESIGN V09.01 CL DATE 6-JUN-12

ENDWALL DESIGN DATA

LOADS:

DEAD LOAD = 2.63 PSF COLL LOAD = 3.00 PSF LIVE LOAD = 20.00 PSF SNOW LOAD = 30.00 PSF WIND LOAD = 23.52 PSF

ENDWALL GEOMETRY:

ENDWALL TYPE : FULL FRAME
LEFT EAVE HEIGHT : 17.33 FEET
RIGHT EAVE HEIGHT : 17.33 FEET
BUILDING WIDTH : 51.04 FEET
DISTANCE TO RIDGE : 25.52 FEET
LEFT ROOF SLOPE : 3.00/12.
RIGHT ROOF SLOPE : 3.00/12.
SIDEWALL BAY SPACE : 19.24 FEET
PURLIN EXTENSION : 1.26 FEET

2 ENDWALL SPACES (FT): 25.52 25.52

CHIEF INDUSTRIES INC. WEST OLD HWY 30 GRAND ISLAND, NE PAGE NO. E - 62 BUILDING A ENDWALL (D) JOB NO. B3004915

ENDWALL DESIGN V09.01 CL DATE 6-JUN-12

SINGLE CEE SECTION COLUMNS

SIZE	DEPTH	FLANGE WIDTH	Thk	CORNEI RAD	R AREA	Ix	Sxe	rx	Iy	ry
816 814 812 1014 1012	8.00 8.00 8.00 10.00 10.00	3.00 3.00 3.00 3.50 3.50	.060 .075 .099 .075	.250 .250 .250 .250 .250	0.896 1.122 1.483 1.347 1.780	8.83 10.99 14.41 20.43 26.85	1.82 2.40 3.47 3.32 4.77	3.13	2.11	

BACK-BACK CEE SECTION COLUMNS

SIZE	DEPTH	FLANGE WIDTH	Thk	CORNER RAD	AREA	Ix	Sxe	rx	Iy	ry	
816 814 812 1014 1012	8.00 8.00 8.00 10.00 10.00	6.00 6.00 6.00 7.00	.060 .075 .099 .075	.250 .250 .250 .250 .250	1.792 2.244 2.966 2.694 3.560	17.66 21.98 28.82 40.86 53.70	3.64 4.80 6.93 6.64 9.53	3.14 3.13 3.12 3.89 3.88		1.41 1.42 1.58	

LIP-LIP CEE SECTION COLUMNS

SIZE	DEPTH	FLANGE WIDTH	Thk	CORNER RAD	R AREA	Ix	Sxe	rx	Iy	ry	_
816 814 812 1014 1012	8.00 8.00 8.00 10.00	6.00 6.00 6.00 7.00	.060 .075 .099 .075	.250 .250 .250 .250 .250	1.792 2.244 2.966 2.694 3.560	17.66 21.98 28.82 40.86 53.70	4.80 6.93 6.64	3.13 3.12 3.89	21.55	2.38 2.36 2.83	

CHIEF INDUSTRIES INC	C. WEST	OLD HWY	30	GRAND	ISLAND,	NE	P^{p}	AGE NO.	E -	- 63
BUILDING A ENDWALL	(D)						JOE	NO.	B300	4915
ENDWALL DESIGN	V09.01					(CL	DATE	6-JI	ЛV-12

ENDWALL POST	$\mathcal{O} \perp \mathcal{O} \mathcal{D} \mathcal{O}$
--------------	---

			 -			 -					
	*		*		*	POST	*	LΥ	*	LY	*
POST	*	POST	* PO	ST DESCRIPT	TION *	LENGTH	*	OS FLG	*	IS FLG	*
NUMBER	*	SIZE	*DEPTH	FLANGE	WEB THK*	(FT)	*	(FT)	*	(FT)	*
2	W	13/80F	13	8 x 3/8	5/32	23.13		23.13		3.21	

LOAD CONDITION : .6D + W

* * HORZ * AXIAL * DESIGN * ACTUAL * ALLOW * ACTUAL * ALLOW * COMB POST * POST * REACT * LOAD * MOMENT * FA * FA * FBX * FBX * STRESS NUM * SIZE * (KIP) * (KIP) * (K-FT) * (KSI) * (KSI) * (KSI) * (KSI) * RATIO 2 W 13/80F 6.80 0.00 39.34 0.00 7.89 11.66 32.82 0.355

CORNER POST DESIGN SUMMARY

LEFT CORNER POST : C 816

RIGHT CORNER POST : C 816

CHIEF INDUSTRIES INC. WEST OLD HWY 30 GRAND ISLAND, NE PAGE NO. G - 64 JOB NO. B3004915 BUILDING A SIDEWALL (A) GIRTS CL DATE 5-JUN-12 GIRT DESIGN

******* INPUT ECHO ******

CALCULATIONS BASED ON THE NASPEC 2007 AISI STANDARD SECTION TYPE IS C

BRIEF REPORT

DO NOT INCREASE DEPTHS

WIND LOAD = 23.52256 PSF

SUCTION = 1.084620 PRESSURE = 0.9846194

UNITY = 1.030000

ALLOW = 1.000000

DEFLC = L/ 120.0000 (10 YEAR MAP DEFLECTION)
BEARING= 4.000000 5.000000 5.000000

END ZONE= 5.104167 SUCT= 1.193239 PRES= 0.9846194

PANEL TYPE=TFP

INSET/OUTSET/BYPASS GIRTS=O

BAY NO. 1 2

BAY LENGTH 18.50 19.24

SPACING 6.50 4.38

SIZES 812 814

T SAG ANG 0 0 B SAG ANG 1 1 NUM GIRTS 3 3

SIMPLE SPAN LAPS

EXTENSIONS

LEFT EXTENSION (FT) = 0.0000000E+00 RIGHT EXTENSION (FT) = 1.260417 EXTENSION SUCTION COEF. = 1.193239 EXTENSION PRESSURE COEF. = 0.9846194

FY = 55.00000 KSI

Welded clips N

CHIEF INDUSTRIES INC. WEST OLD HWY 30 GRAND ISLAND, NE PAGE NO. G - 65
JOB NO. B3004915

GIRT DESIGN

CL DATE 5-JUN-12

SIZE	AREA	WEIGHT	DEPTH	FLANC WIDT		KNESS	LIP LENGTH	LIP ANGLE	CORNEI RADIUS	
C1012 C1014 C 812 C 814 C 816 C 516	1.780 1.347 1.483 1.122 0.896 0.641	6.05 4.58 5.04 3.81 3.05 2.18	10.00 10.00 8.00 8.00 8.00 5.00	3.50 3.50 3.00 3.00 2.25	0.0 0.0 0.0 0.0	75 99 75 60	0.94 0.87 0.94 0.87 0.83 0.95	90. 90. 90. 90. 90.	0.250 0.250 0.250 0.250 0.250	9.35 7.30 7.35 7.38
SIZE	Ix	Ix (def)	Sf	Sxe	Sxe (holes)	Iy	Iyc	rx	ry	Va
C1012 C1014 C 812 C 814 C 816 C 516	26.85 20.43 14.41 10.99 8.83 2.48	26.51 19.24 14.41 10.86 8.35 2.42	5.37 4.09 3.60 2.75 2.21 0.99	4.77 3.32 3.47 2.40 1.82 0.95	3.93 2.67 2.96 2.04 1.50 0.95	2.80 2.11 1.79 1.35 1.08 0.49	1.40 1.05 0.89 0.68 0.54 0.25	3.88 3.89 3.12 3.13 3.14 1.97	1.25 1.25 1.10 1.10 1.10 0.88	9.28 4.02 10.82 5.11 2.61 3.97

SECTIONS ARE CHECKED FOR THE FOLLOWING CONDITIONS:

- A. SHEAR + BENDING
 - 1. S+B 1 SHEAR + BENDING AT THE LEFT SUPPORT
 - 2. S+B 2 SHEAR + BENDING AT THE LEFT LAP CUT-OFF
 - 3. S+B 3 SHEAR + BENDING AT THE RIGHT LAP CUT-OFF
 - 4. S+B 4 SHEAR + BENDING AT THE RIGHT SUPPORT
- BENDING
 - 1. BND 1 BENDING AT THE LEFT SUPPORT
 - 2. BND 2 BENDING AT THE LEFT LAP CUT-OFF
 - 3. BND 3 BENDING AT THE MAXIMUM INTERIOR MOMENT
 - 4. BND 4 BENDING AT THE RIGHT LAP CUT-OFF
 - 5. BND 5 BENDING AT THE RIGHT SUPPORT
- C. SHEAR
 - 1. SHR 1 SHEAR AT THE LEFT SUPPORT
 - 2. SHR 2 SHEAR AT THE LEFT LAP CUT-OFF
 - 3. SHR 3 SHEAR AT THE RIGHT LAP CUT-OFF
 - 4. SHR 4 SHEAR AT THE RIGHT SUPPORT
- D. BEARING
 - 1. BRG L BEARING AT THE LEFT SUPPORT
 - 2. BRG R BEARING AT THE RIGHT SUPPORT
- E. DEFLECTION DEF MAXIMUM DEFLECTION IN THE SPAN.

CHIEF INDUSTRIES INC. WEST OLD HWY 30 GRAND ISLAND, NE PAGE NO. G - 66 BUILDING A SIDEWALL (A) GIRTS JOB NO. B3004915 GIRT DESIGN CL DATE 5-JUN-12										
	WIND LOAD (SUCTION) WIND LOAD = 23.52 PSF X 1.08 (SUCTION) / AT 5.1' END ZONES THE COEF = 1.19									
	LENGTH	UNIFORM LOAD	SIZE	DEFLECT	MOMENT		LEFT END REACTION (KIPS)			
2	19.24		814	-0.804		9.18 9.61				
THE I	MUMIXAN	UNITY CHE	CK IS 0.	972 IN BA	Y 2					
WIND LOAD (PRESSURE) WIND LOAD = 23.52 PSF X 0.98 (PRESSURE) / AT 5.1' END ZONES THE COEF = 0.98										
BAY NO.	LENGTH	UNIFORM LOAD (KLF)	SIZE	DEFLECT	MOMENT (KFT)	FROM LT.	LEFT END REACTION (KIPS)			

6.44

4.65

9.25

9.58

1.39

1.11

0.677 BND 2

2.36 0.707 BND 2

THE MAXIMUM UNITY CHECK IS 0.707 IN BAY 2

812

814

814

0.700

0.000

0.724

0.15055

0.10137

0.10137

18.50

19.24

1.26

2

EXT

CHIEF INDUSTRIES INC. WEST OLD HWY 30 GRAND ISLAND, NE BUILDING A SIDEWALL (A) GIRTS

PAGE NO. G - 67 JOB NO. B3004915

CL DATE 5-JUN-12

GIRT DESIGN SUMMARY

LOAD CONDITIONS ------

GIRT DESIGN

WIND LOAD (SUCTION)

WIND LOAD (PRESSURE)

LOADS

WIND LOAD = 23.52 PSF

BAY NO. 1 2 BAY SPACES 18.5 19.2 GIRT SIZE 812 814 GIRT SPACE 6.50 4.38

SAG ANGLES 1 1

SIMPLE SPAN LAPS

THE MAXIMUM UNITY CHECK IS 0.972 IN BAY 2

TOTAL WEIGHT = 171.48 LBS

CHIEF INDUSTRIES INC. WEST OLD HWY 30 GRAND ISLAND, NE PAGE NO. G - 68

JOB NO. B3004915 GIRT DESIGN CL DATE 5-JUN-12

******* INPUT ECHO ******

CALCULATIONS BASED ON THE NASPEC 2007 AISI STANDARD SECTION TYPE IS C

BRIEF REPORT

DO NOT INCREASE DEPTHS

WIND LOAD = 23.52256 PSF

SUCTION = 1.084620

PRESSURE = 0.9846194

UNITY = 1.030000

ALLOW = 1.000000

DEFLC = L/ 120.0000 (10 YEAR MAP DEFLECTION)
BEARING= 4.000000 5.000000 5.000000

END ZONE= 5.104167 SUCT= 1.193239 PRES= 0.9846194

PANEL TYPE=TFP

INSET/OUTSET/BYPASS GIRTS=O

BAY NO. 1 2

BAY LENGTH 18.50 19.24 SPACING 6.50 6.00

 SIZES
 812
 812

 T SAG ANG
 0
 0

 B SAG ANG
 1
 1

 NUM GIRTS
 3
 3

SIMPLE SPAN LAPS

EXTENSIONS

LEFT EXTENSION (FT) = 0.0000000E+00 RIGHT EXTENSION (FT) = 1.260417 EXTENSION SUCTION COEF. = 1.193239 EXTENSION PRESSURE COEF. = 0.9846194

FY = 55.00000 KSI

Welded clips N

CHIEF INDUSTRIES INC. WEST OLD HWY 30 GRAND ISLAND, NE BUILDING A SIDEWALL (C) GIRTS

JOB NO. B3004915

PAGE NO. G - 69

GIRT DESIGN CL DATE 5-JUN-12

SIZE	AREA	WEIGHT	DEPTH	FLANC WIDT		KNESS	LIP LENGTH	LIP ANGLE	CORNE!	
C1012 C1014 C 812 C 814 C 816 C 516	1.780 1.347 1.483 1.122 0.896 0.641	6.05 4.58 5.04 3.81 3.05 2.18	10.00 10.00 8.00 8.00 8.00 5.00	3.50 3.50 3.00 3.00 2.29	0.0 0.0 0.0 0.0	75 99 75 60	0.94 0.87 0.94 0.87 0.83 0.95	90. 90. 90. 90. 90.	0.250 0.250 0.250 0.250 0.250 0.250	9.35 7.30 7.35 7.38
SIZE	Ix	Ix (def)	Sf	Sxe	Sxe (holes)	Iy	Iyc	rx	ry	Va
C1012 C1014 C 812 C 814 C 816 C 516	26.85 20.43 14.41 10.99 8.83 2.48	26.51 19.24 14.41 10.86 8.35 2.42	5.37 4.09 3.60 2.75 2.21 0.99	4.77 3.32 3.47 2.40 1.82 0.95	3.93 2.67 2.96 2.04 1.50 0.95	2.80 2.11 1.79 1.35 1.08 0.49	1.40 1.05 0.89 0.68 0.54 0.25	3.88 3.89 3.12 3.13 3.14 1.97	1.25 1.25 1.10 1.10 1.10 0.88	9.28 4.02 10.82 5.11 2.61 3.97

SECTIONS ARE CHECKED FOR THE FOLLOWING CONDITIONS:

- A. SHEAR + BENDING
 - 1. S+B 1 SHEAR + BENDING AT THE LEFT SUPPORT
 - 2. S+B 2 SHEAR + BENDING AT THE LEFT LAP CUT-OFF
 - 3. S+B 3 SHEAR + BENDING AT THE RIGHT LAP CUT-OFF
 - 4. S+B 4 SHEAR + BENDING AT THE RIGHT SUPPORT
- B. BENDING
 - 1. BND 1 BENDING AT THE LEFT SUPPORT
 - 2. BND 2 BENDING AT THE LEFT LAP CUT-OFF
 - 3. BND 3 BENDING AT THE MAXIMUM INTERIOR MOMENT
 - 4. BND 4 BENDING AT THE RIGHT LAP CUT-OFF
 - 5. BND 5 BENDING AT THE RIGHT SUPPORT
- C. SHEAR
 - 1. SHR 1 SHEAR AT THE LEFT SUPPORT
 - 2. SHR 2 SHEAR AT THE LEFT LAP CUT-OFF
 - 3. SHR 3 SHEAR AT THE RIGHT LAP CUT-OFF
 - 4. SHR 4 SHEAR AT THE RIGHT SUPPORT
- D. BEARING
 - 1. BRG L BEARING AT THE LEFT SUPPORT
 - 2. BRG R BEARING AT THE RIGHT SUPPORT
- E. DEFLECTION DEF MAXIMUM DEFLECTION IN THE SPAN.

CHIEF INDUSTRIES INC. WEST OLD HWY 30 GRAND ISLAND, NE PAGE NO. G - 70 BUILDING A SIDEWALL (C) GIRTS JOB NO. B3004915 GIRT DESIGN CL DATE 5-JUN-12										
WIND LOAD (SUCTION) WIND LOAD = 23.52 PSF X 1.08 (SUCTION) / AT 5.1' END ZONES THE COEF = 1.19										
	LENGTH	UNIFORM LOAD (KLF)	SIZE		MOMENT		LEFT END REACTION (KIPS)			
2			812	-0.831		9.18 9.61				
THE N	MUMIXAN	UNITY CHE	CK IS 0.9	912 IN BA	Y 1		• • • • • • • • • • • • • • • • • • •			
WIND LOAD (PRESSURE) WIND LOAD = 23.52 PSF X 0.98 (PRESSURE) / AT 5.1' END ZONES THE COEF = 0.98										
BAY NO.	BAY LENGTH (FT)	UNIFORM LOAD (KLF)		DEFLECT	MOMENT (KFT)	FROM LT.	LEFT END REACTION (KIPS)			

6.44

6.37

9.25

9.58

1.39

2.72

1.52

0.677 BND 2

0.670 BND 2

THE MAXIMUM UNITY CHECK IS 0.677 IN BAY 1

0.15055

0.13896

0.13896

18.50

19.24

1.26

2

EXT

812

812

812

0.700

0.748

0.000

CHIEF INDUSTRIES INC. WEST OLD HWY 30 GRAND ISLAND, NE PAGE NO. G - 71
JOB NO. B3004915

CL DATE 5-JUN-12

GIRT DESIGN SUMMARY

LOAD CONDITIONS

GIRT DESIGN

WIND LOAD (SUCTION)

WIND LOAD (PRESSURE)

LOADS

WIND LOAD = 23.52 PSF

BAY NO. 1 2 BAY SPACES 18.5 19.2 GIRT SIZE 812 812 GIRT SPACE 6.50 6.00

SAG ANGLES 1 1

SIMPLE SPAN LAPS

THE MAXIMUM UNITY CHECK IS 0.912 IN BAY 1

TOTAL WEIGHT = 196.65 LBS

CHIEF INDUSTRIES INC. WEST OLD HWY 30 GRAND ISLAND, NE PAGE NO. G - 72 JOB NO. B3004915 BUILDING A ENDWALL (D) GIRTS CL DATE 5-JUN-12 GIRT DESIGN

****** INPUT ECHO ******

CALCULATIONS BASED ON THE NASPEC 2007 AISI STANDARD SECTION TYPE IS C

BRIEF REPORT

DO NOT INCREASE DEPTHS

WIND LOAD = 23.52256 PSF

SUCTION = 1.043344

PRESSURE = 0.9433444

UNITY = 1.030000

ALLOW = 1.000000

DEFLC = L/ 120.0000 (10 YEAR MAP DEFLECTION)
BEARING= 4.000000 5.000000 5.000000

END ZONE= 5.104167 SUCT= 1.110689 PRES= 0.9433444

PANEL TYPE=TFP

INSET/OUTSET/BYPASS GIRTS=O

BAY NO. 1

BAY LENGTH 25.52 25.52

SPACING 4.25 4.25

SIZES 812 812

0 3 T SAG ANG 0

B SAG ANG 3 3 NUM GIRTS 5 5

SIMPLE SPAN LAPS

FY = 55.00000 KSI

Welded clips N

CHIEF INDUSTRIES INC. WEST OLD HWY 30 GRAND ISLAND, NE BUILDING A ENDWALL (D) GIRTS

PAGE NO. G - 73 JOB NO. B3004915

	DESIGN	CL	5-JUN-12
		- 	

SIZE	AREA	WEIGHT	DEPTH	FLANGE WIDTH	THICK	(NESS	LIP LENGTH	LIP ANGLE	CORNEI RADIUS	
C1012 C1014 C 812 C 814 C 816 C 516	1.780 1.347 1.483 1.122 0.896 0.641	6.05 4.58 5.04 3.81 3.05 2.18	10.00 10.00 8.00 8.00 8.00 5.00	3.50 3.50 3.00 3.00 3.00 2.25	0.09 0.09 0.09 0.09 0.06	75 99 75 50	0.94 0.87 0.94 0.87 0.83 0.95	90. 90. 90. 90. 90.	0.250 0.250 0.250 0.250 0.250 0.250	9.35 7.30 7.35 7.38
SIZE	Ix	Ix (def)	Sf	Sxe (Sxe holes)	Iy	Iyc	rx	ry	Va
C1012 C1014 C 812 C 814 C 816 C 516	26.85 20.43 14.41 10.99 8.83 2.48	26.51 19.24 14.41 10.86 8.35 2.42	5.37 4.09 3.60 2.75 2.21 0.99	3.32 3.47 2.40 1.82	3.93 2.67 2.96 2.04 1.50 0.95	2.80 2.11 1.79 1.35 1.08 0.49	1.40 1.05 0.89 0.68 0.54 0.25	3.88 3.89 3.12 3.13 3.14 1.97	1.25 1.25 1.10 1.10 1.10 0.88	9.28 4.02 10.82 5.11 2.61 3.97

SECTIONS ARE CHECKED FOR THE FOLLOWING CONDITIONS:

- A. SHEAR + BENDING
 - 1. S+B 1 SHEAR + BENDING AT THE LEFT SUPPORT
 - 2. S+B 2 SHEAR + BENDING AT THE LEFT LAP CUT-OFF
 - 3. S+B 3 SHEAR + BENDING AT THE RIGHT LAP CUT-OFF
 - 4. S+B 4 SHEAR + BENDING AT THE RIGHT SUPPORT
- BENDING
 - 1. BND 1 BENDING AT THE LEFT SUPPORT
 - 2. BND 2 BENDING AT THE LEFT LAP CUT-OFF
 - 3. BND 3 BENDING AT THE MAXIMUM INTERIOR MOMENT
 - 4. BND 4 BENDING AT THE RIGHT LAP CUT-OFF
 - 5. BND 5 BENDING AT THE RIGHT SUPPORT
- SHEAR
 - 1. SHR 1 SHEAR AT THE LEFT SUPPORT
 - 2. SHR 2 SHEAR AT THE LEFT LAP CUT-OFF
 - 3. SHR 3 SHEAR AT THE RIGHT LAP CUT-OFF
 - 4. SHR 4 SHEAR AT THE RIGHT SUPPORT
- D. BEARING
 - 1. BRG L BEARING AT THE LEFT SUPPORT
 - 2. BRG R BEARING AT THE RIGHT SUPPORT
- E. DEFLECTION DEF MAXIMUM DEFLECTION IN THE SPAN.

CHIEF INDUSTRIES INC. WEST OLD HWY 30 GRAND ISLAND, NE PAGE NO. G - 74 BUILDING A ENDWALL (D) GIRTS GIRT DESIGN CL DATE 5-JUN-12									
WIND LOAD (SUCTION) WIND LOAD = 23.52 PSF X 1.04 (SUCTION) / AT 5.1' END ZONES THE COEF = 1.11									
	LENGTH	LOAD	SIZE	DEFLECT		MOMT LOC FROM LT. (FT)	REACTION	MAXIMUM UNITY	
					-8.54		-2.67	0.945 BND 3 0.945 BND 3	
THE	MAXIMUM	UNITY CHE	CK IS 0.9	945 IN BA	Y 2		-		
	LOAD (P.	•	F X 0.94	(PRESSU	RE) / AT 5	5.1' END ZO	NES THE C	OEF = 0.94	
	LENGTH		SIZE	DEFLECT		MOMT LOC FROM LT. (FT)	REACTION	MAXIMUM UNITY	
1 2		0.09431 0.09431			7.68	12.76 12.76 ACTION =	2.41	0.807 BND 3 0.807 BND 3	

THE MAXIMUM UNITY CHECK IS 0.807 IN BAY 2

CHIEF INDUSTRIES INC. WEST OLD HWY 30 GRAND ISLAND, NE BUILDING A ENDWALL (D) GIRTS

PAGE NO. G - 75 JOB NO. B3004915

CL DATE 5-JUN-12

GIRT DESIGN SUMMARY

LOAD CONDITIONS ______

GIRT DESIGN

WIND LOAD (SUCTION)

WIND LOAD (PRESSURE)

LOADS

WIND LOAD = 23.52 PSF

BAY NO. 1

BAY SPACES 25.5 25.5 GIRT SIZE 812 812 GIRT SPACE 4.25 4.25

SAG ANGLES 3 3

SIMPLE SPAN LAPS

THE MAXIMUM UNITY CHECK IS 0.945 IN BAY 2

TOTAL WEIGHT = 257.36 LBS

CHIEF INDUSTRIES INC. WEST OLD HWY 30 GRAND ISLAND, NE PAGE NO. P - 76 JOB NO. B3004915 BUILDING A PURLINS PURLIN DESIGN CL DATE 5-JUN-12 ****** INPUT ECHO ****** CALCULATIONS BASED ON THE NASPEC 2007 AISI STANDARD SECTION TYPE IS Z BRIEF REPORT DO NOT INCREASE DEPTHS DEAD LOAD = 1.500000PSF COLLATERAL= 3.000000 PSF

LIVE LOAD = 20.00000 PSF

SNOW LOAD = 23.10000 PSF

MIN. SNOW = 30.00000 PSF

UNB. SNOW = 38.17020 PSF

WIND LOAD = 23.52256 PSF X 1.380000 UNITY = 1.030000 ALLOW = 1.000000 DEFLC = L/ 240.0000 (LIVE OR SNOW LOAD DEFLECTION)
DEFLC = L/ 240.0000 (10 YEAR MAP DEFLECTION)
BEARING= 4.000000 5.000000 END ZONE= 5.104167 SUCT= 2.180000 PANEL TYPE=SSR ASCE 7-05 PARTIAL SNOW LOADING (ISKIP=6) BAY NO. 1 2 BAY LENGTH 18.50 19.24

 SPACING
 4.00
 4.00

 SIZES
 1014
 1014

 T SAG ANG 1 1
B SAG ANG 1 1
NUM PURLIN 14 14 NUM PURLIN 14 LAP LEFT 0.00 1.00

EXTENSIONS

LAP RIGHT 1.00 0.00

LEFT EXTENSION (FT) = 0.0000000E+00 RIGHT EXTENSION (FT) = 1.260417 LEFT EXT. DL (PSF) = 1.500000 RIGHT EXT. DL (PSF) = 1.500000 EXTENSION SUCTION COEF. = 1.380000 FY = 55.00000 KSI Welded clips Y

CHIEF INDUSTRIES INC. WEST OLD HWY 30 GRAND ISLAND, NE PAGE NO. P - 77

BUILDING A PURLINS
PURLIN DESIGN

JOB NO. B3004915 CI, DATE 5-JUN-12

COLUMNIA DESCRIPTION	C11	DHIE	2-0004-17
			-

SIZE	AREA	WEIGHT	DEPTH	FLANGI WIDTH		KNESS	LIP LENGTH	LIP ANGLE	CORNE	
Z1012 Z1014 Z 812 Z 814 Z 816 Z 516	1.662 1.261 1.419 1.073 0.858 0.640	5.65 4.29 4.82 3.65 2.92 2.18	10.00 10.00 8.00 8.00 8.00 5.00	2.75 2.75 2.50 2.50 2.50 2.25	0.0 0.0 0.0 0.0 0.0	75 99 75 60	0.96 0.91 0.96 0.91 0.87 0.81	50. 50. 50. 50. 50. 50.	0.250 0.250 0.250 0.250 0.250 0.250	9.35 7.30 7.35 7.38
SIZE	Ιx	Ix (def)	Sf	Sxe	Sxe (holes)	Iy	Iyc	rx	ry	Va
Z1012 Z1014 Z 812 Z 814 Z 816 Z 516	24.18 18.39 13.50 10.28 8.25 2.56	24.18 18.39 13.50 10.28 8.25 2.40	4.84 3.68 3.38 2.57 2.06 1.03	4.74 3.27 3.38 2.42 1.83 0.92	3.74 2.68 3.03 2.09 1.54 0.92	2.89 2.15 2.30 1.71 1.35 1.00	1.44 1.07 1.15 0.86 0.68 0.50	3.81 3.82 3.08 3.10 3.10 2.00	1.32 1.30 1.27 1.26 1.26	9.28 4.02 10.82 5.11 2.61 3.97

SECTIONS ARE CHECKED FOR THE FOLLOWING CONDITIONS:

- A. SHEAR + BENDING
 - 1. S+B 1 SHEAR + BENDING AT THE LEFT SUPPORT
 - 2. S+B 2 SHEAR + BENDING AT THE LEFT LAP CUT-OFF
 - 3. S+B 3 SHEAR + BENDING AT THE RIGHT LAP CUT-OFF
 - 4. S+B 4 SHEAR + BENDING AT THE RIGHT SUPPORT
- B. BENDING
 - 1. BND 1 BENDING AT THE LEFT SUPPORT
 - 2. BND 2 BENDING AT THE LEFT LAP CUT-OFF
 - 3. BND 3 BENDING AT THE MAXIMUM INTERIOR MOMENT
 - 4. BND 4 BENDING AT THE RIGHT LAP CUT-OFF
 - 5. BND 5 BENDING AT THE RIGHT SUPPORT
- C. SHEAR
 - 1. SHR 1 SHEAR AT THE LEFT SUPPORT
 - 2. SHR 2 SHEAR AT THE LEFT LAP CUT-OFF
 - 3. SHR 3 SHEAR AT THE RIGHT LAP CUT-OFF
 - 4. SHR 4 SHEAR AT THE RIGHT SUPPORT
- D. BEARING
 - 1. BRG L BEARING AT THE LEFT SUPPORT
 - 2. BRG R BEARING AT THE RIGHT SUPPORT
- E. DEFLECTION DEF MAXIMUM DEFLECTION IN THE SPAN.

CHIEF INDUSTRIES INC. WEST OLD HWY 30 GRAND ISLAND, NE

BUILDING A PURLINS

PAGE NO. P - 78 JOB NO. B3004915

PURLIN DESIGN

CL DATE 5-JUN-12

DEAD LOAD + UNBALANCED SNOW LOAD

UNB. SNOW = 38.17 PSF

DEAD LOAD = 4.50 PSF (INCLUDING COLLATERAL LOAD)

BAY NO.	BAY LENGTH (FT)	UNIFORM LOAD (KLF)	SECT. SIZE	UNIT DEFLECT (IN)	MOMENT (KFT)	MOMT LOC FROM LT. (FT)	LEFT ENL REACTION (KIPS)	
1 2 EXT	18.50 19.24 1.26	0.17497 0.17497 0.16297	1014 1014 1014	0.265 0.340 0.000	3.90 4.38	6.68 12.06	1.17 4.18 1.46	0.904 BND 4 0.898 BND 2

THE MAXIMUM UNITY CHECK IS 0.904 IN BAY 1

0.6 DEAD LOAD + WIND LOAD (SUCTION)

WIND LOAD = 23.52 PSF X 1.38 (SUCTION) / AT 5.1' END ZONES THE COEF = 2.18

DEAD LOAD = 1.50 PSF

BAY NO.	BAY LENGTH (FT)	UNIFORM LOAD (KLF)	SECT. SIZE	10 YR DEFLECT (IN)	MOMENT (KFT)	MOMT LOC FROM LT. (FT)	LEFT END REACTION (KIPS)	 -
_	19.24	-0.12367 -0.12367 -0.19894	1014 1014 1014	-0.199 -0.225 0.000	-3.27 -3.27	6.08 12.42		0.637 BND 4 0.637 BND 2

THE MAXIMUM UNITY CHECK IS 0.637 IN BAY 1

DEAD LOAD + PARTIAL SNOW LOAD

DEAD LOAD = 4.50 PSF (INCLUDING COLLATERAL LOAD)

ASCE 7 PARTIAL LOADING - SL = 23.10 PSF OR 11.55 PSF ON EACH SPAN AS REQUIRED

BAY NO.	BAY LENGTH (FT)	UNIFORM LOAD (KLF)	SECT. SIZE	UNIT DEFLECT (IN)	MOMENT (KFT)	MOMT LOC FROM LT. (FT)	LEFT END REACTION (KIPS)	· —
1 2 EXT	18.50 19.24 1.26	0.06849 0.11469 0.10269	1014 1014 1014	-0.044 0.280 0.000	1.14 3.28	5.76 11.59	• • • •	0.510 BND 4 0.549 BND 3

THE MAXIMUM UNITY CHECK IS 0.549 IN BAY 2

CHIEF INDUSTRIES INC. WEST OLD HWY 30 GRAND ISLAND, NE PAGE NO. P - 79

JOB NO. B3004915

PURLIN DESIGN

CL DATE 5-JUN-12

DEAD	LOAD	+	PARTIAL	SNOW	LOAD
			F 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		

DEAD LOAD = 4.50 PSF (INCLUDING COLLATERAL LOAD)

ASCE 7 PARTIAL LOADING - SL = 23.10 PSF OR 11.55 PSF ON EACH SPAN AS REQUIRED

BAY NO.	BAY LENGTH (FT)	UNIFORM LOAD (KLF)	SECT. SIZE	UNIT DEFLECT (IN)	MOMENT (KFT)	MOMT LOC FROM LT. (FT)	LEFT END REACTION (KIPS)	MAXIMUM UNITY
1 2 EXT	18.50 19.24 1.26	0.11469 0.11469 0.05649	1014 1014 1014	0.159 0.208 0.000	2.55 2.90	6.67 12.08		0.594 BND 4 0.590 BND 2

THE MAXIMUM UNITY CHECK IS 0.594 IN BAY 1

DEAD LOAD + PARTIAL SNOW LOAD

DEAD LOAD = 4.50 PSF (INCLUDING COLLATERAL LOAD)

ASCE 7 PARTIAL LOADING - SL = 23.10 PSF OR 11.55 PSF ON EACH SPAN AS REQUIRED

BAY NO.	BAY LENGTH (FT)	UNIFORM LOAD (KLF)	SECT. SIZE	UNIT DEFLECT (IN)	MOMENT (KFT)	MOMT LOC FROM LT. (FT)	LEFT ENI REACTION (KIPS)	
1 2 EXT	18.50 19.24 1.26	0.11469 0.06849 0.05649	1014 1014 1014	0.235 0.044 0.000	2.99 1.35	7.22 12.85	0.83 2.17 0.51	0.480 BND 3 0.492 BND 2

THE MAXIMUM UNITY CHECK IS 0.492 IN BAY 2

DEAD LOAD + PARTIAL SNOW LOAD

DEAD LOAD = 4.50 PSF (INCLUDING COLLATERAL LOAD)

ASCE 7 PARTIAL LOADING - SL = 23.10 PSF OR 11.55 PSF ON EACH SPAN AS REQUIRED

BAY NO.	BAY LENGTH (FT)	UNIFORM LOAD (KLF)	SECT. SIZE	UNIT DEFLECT (IN)	MOMENT (KFT)	MOMT LOC FROM LT. (FT)	LEFT END REACTION (KIPS)	MAXIMUM UNITY
1 2 EXT	18.50 19.24 1.26	0.06849 0.06849 0.10269	1014 1014 1014	0.081 0.101 0.000	1.53 1.70	6.68 12.03		0.353 BND 4 0.350 BND 2

THE MAXIMUM UNITY CHECK IS 0.353 IN BAY 1

CHIEF INDUSTRIES INC. WEST OLD HWY 30 GRAND ISLAND, NE PAGE NO. P - 80

BUILDING A PURLINS

JOB NO. B3004915

PURLIN DESIGN

CL DATE 5-JUN-12

DEAD LOAD + PARTIAL SNOW LOAD

DEAD LOAD = 4.50 PSF (INCLUDING COLLATERAL LOAD)

ASCE 7 PARTIAL LOADING - SL = 23.10 PSF OR 11.55 PSF ON EACH SPAN AS REQUIRED

BAY NO.	BAY LENGTH (FT)	UNIFORM LOAD (KLF)	SECT. SIZE	UNIT DEFLECT (IN)	MOMENT (KFT)	MOMT LOC FROM LT. (FT)	LEFT END REACTION (KIPS)	MAXIMUM UNITY
1 2 EXT	18.50 19.24 1.26	0.11469 0.06849 0.05649	1014 1014 1014	0.235 0.044 0.000	2.99 1.35	7.22 12.85		.480 BND 3 .492 BND 2

THE MAXIMUM UNITY CHECK IS 0.492 IN BAY 2

DEAD LOAD + PARTIAL SNOW LOAD

DEAD LOAD = 4.50 PSF (INCLUDING COLLATERAL LOAD)

ASCE 7 PARTIAL LOADING - SL = 23.10 PSF OR 11.55 PSF ON EACH SPAN AS REQUIRED

BAY NO.	BAY LENGTH (FT)	UNIFORM LOAD (KLF)	SECT. SIZE	UNIT DEFLECT (IN)	MOMENT (KFT)	MOMT LOC FROM LT. (FT)	LEFT END REACTION (KIPS)	
1 2 EXT	18.50 19.24 1.26	0.11469 0.11469 0.05649	1014 1014 1014	0.159 0.208 0.000	2.55 2.90	6.67 12.08		0.594 BND 4 0.590 BND 2

THE MAXIMUM UNITY CHECK IS 0.594 IN BAY 1

DEAD LOAD + PARTIAL SNOW LOAD

DEAD LOAD = 4.50 PSF (INCLUDING COLLATERAL LOAD)

ASCE 7 PARTIAL LOADING - SL = 23.10 PSF OR 11.55 PSF ON EACH SPAN AS REQUIRED

BAY NO.	BAY LENGTH (FT)	UNIFORM LOAD (KLF)	SECT. SIZE	UNIT DEFLECT (IN)	MOMENT (KFT)	MOMT LOC FROM LT. (FT)	LEFT END REACTION (KIPS)	, , , , , , , , , , , , , , , , , , , ,
1 2 EXT	18.50 19.24 1.26	0.06849 0.11469 0.10269	1014 1014 1014	-0.044 0.280 0.000	1.14 3.28	5.76 11.59		0.510 BND 4 0.549 BND 3

THE MAXIMUM UNITY CHECK IS 0.549 IN BAY 2

PAGE NO. P - 81 JOB NO. B3004915

CL DATE 5-JUN-12

> PURLIN DESIGN SUMMARY

LOAD CONDITIONS ______

PURLIN DESIGN

DEAD LOAD + UNBALANCED SNOW LOAD 0.6 DEAD LOAD + WIND LOAD (SUCTION) DEAD LOAD + PARTIAL SNOW LOAD

LOADS _ _ _ _

DEAD LOAD = 1.50 PSF

COLLATERAL LOAD = 3.00 PSF

LIVE LOAD = 20.00 PSF

MINIMUM ROOF SNOW = 30.00 PSF

UNBALANCED SNOW = 38.17 PSF

ROOF SNOW (Pf) = 23.10 PSF

WIND LOAD = 23.52 PSF

BAY NO. 1 2 BAY SPACES 18.5 19.2 PURLIN SIZE 1014 1014 PUR SPACE 4.00 4.00

TOP ANGLES 1 1 1 BOT ANGLES 1 1

LAP LENGTHS 1.00

THE MAXIMUM UNITY CHECK IS 0.904 IN BAY 1

TOTAL WEIGHT = 175.78 LBS

CHIEF INDUSTRIES INC. WEST OLD HWY 30 GRAND ISLAND, NE PAGE NO. P - 82 BUILDING A PURLINS JOB NO. B3004915

PURLIN DESIGN CL DATE 5-JUN-12

PURLIN RESTRAINT FORCES

Np = 7 ROOF SLOPE = 3.0/12 DIST TO PEAK= 25.5' AVG LOAD= 38.2 PSF

BAY NO. 1 2 BAY SPACES 18.5 19.2

PURLIN SIZE 1014 1014

TOP ANGLES 1 1

SAG FORCES -1.7 -1.7

POSITIVE FORCES ARE TO RESIST UPHILL ROLL

CHIEF INDUSTRIES INC. WEST OLD HWY 30 GRAND ISLAND, NE PAGE NO. W - 83 BUILDING A WIND DESIGN SIDEWALL (A) JOB NO. B3004915

WIND BRACING DESIGN CL DATE 5-JUN-12

INPUT ECHO:

DESIGN BASED ON THE NASPEC 2007 AISI STANDARD

USE CABLE BRACING IF POSSIBLE

ROOF PANEL TYPE = SSR

LOAD COMBINATIONS: D + (Lr or S)

.6D + W

 $D + .75(Lr \ or \ S) + .75W$

NO ALLOWABLE STRESS INCREASE FOR WIND.

NUMBER ROOF TRUSS PANEL POINTS = 3 BUILDING WIDTH = 51.04NUMBER WALL TRUSS PANEL POINTS = 2 EAVE HEIGHT = 17.33NUMBER OF BAYS IN THE BUILDING = 2 ROOF SLOPE = 3.00

LOADS:

DEAD LOAD = 1.50 PSF EAVE PURLIN SPACE = 1.31 FT COLL LOAD = 3.00 PSF PANEL OVER HANG AT EAVE = 0.50 FT

LIVE LOAD = 20.00 PSF SNOW LOAD = 23.10 PSF

WIND LOAD = 23.52 PSF

BRACING PRESSURE COEFFICIENT = 0.6640

BRACING SUCTION COEFFICIENT = 0.1660 PURLIN UPLIFT COEFFICIENT = 1.3800

UPLIFT COEFFICIENT ON PURLIN STRUTS = 0.8700

END ZONE WIDTH = 5.10 FEET

END ZONE PURLIN UPLIFT COEFFICIENT = 2.1800

UPLIFT COEFFICIENT ON PURLIN EXTENSIONS = 1.3800

LEFT EXTENSION LENGTH = 0.00 FEET

RIGHT EXTENSION LENGTH = 1.26 FEET

LEFT EXTENSION DEAD LOAD = 1.50 PSF

RIGHT EXTENSION DEAD LOAD = 1.50 PSF

NOMINAL PURLIN LOAD WIDTH = 4.00 FEET

RIDGE PURLIN LOAD WIDTH = 3.00 FEET

PURLIN YIELD =55.00 KSI

STRUT SPACES: 13.94 12.37

BAY SPACES: 18.50 19.24 PUR SIZES : Z1014 Z1014

LAPS: 1.00

1.00

SAG ANGLES: 11 11

BRACED BAY NUMBER(S): 2

CHIEF INDUSTRIES INC BUILDING A WIND DESI WIND BRACING DESIGN	GN SIDEWALL (A	.)	·	PAGE NO. W - 84 JOB NO. B3004915 CL DATE 5-JUN-12
BRACE 1 BAYS	,			
STRUT NUMBERS -	1 2	3		
PRES. LOADS (KIP) - SUCT. LOADS (KIP) - TRUSS LOADS (KIP) - STRUT LOADS (KIP) - STRUT SPACE (FT) -	0.24 0. 5.11 3. 4.87 3.	51 0.26 89 1.32 38 1.06		
BAY NO. 2 DIAMETER (IN) - MIN WEB THICKNESS- MIN WITH WEB WASHER	0.500 0.375 .1250 .1563	.1250		

NOTE: THE MIN WEB THICKNESS IS THE MINIMUM FRAME WEB THICKNESS WHICH DOES NOT NEED TO HAVE A WEB REINFORCING PLATE SUPPLIED.

STRUT NUMBER 1 IS THE EAVE STRUT. STRUT NUMBERS 2- 3 ARE PURLIN STRUTS. CHIEF INDUSTRIES INC. WEST OLD HWY 30 GRAND ISLAND, NE PAGE NO. W - 85 BUILDING A WIND DESIGN SIDEWALL (A) JOB NO. B3004915 WIND BRACING DESIGN CL DATE 5-JUN-12

PURLIN STRUT LOAD CONDITIONS:

- 1) DEAD + UNIFORM SNOW
- 2) .6 DEAD + WIND
- 3) DL + SKIP LOAD
- 4) DL + .75SL + .75WL + .75AXIAL
- 5) .6DL + WL + AXIAL

FOR STRUT ROW NUMBER 2

STRUT SIZES: Z1014 Z1014

NBOLTS :2 2 2

AXIAL LOAD : 2.74 4.51

UNITY CHECK: 0.583 0.722

FOR LC NUM : 2 5

TOP ANGLES : 1 1

BOT ANGLES : 1 1

FOR STRUT ROW NUMBER 3

STRUT SIZES: Z1014 Z1014

NBOLTS :2 2 2

AXIAL LOAD : 1.41 1.41

UNITY CHECK: 0.434 0.440

FOR LC NUM : 2 2

TOP ANGLES : 1 1

BOT ANGLES : 1 1

NUMBER OF BOLTS:

FOR	PURLIN	STRUTS	\mathbf{AT}	ENDWALLS	=	2
FOR	PURLIN	STRUTS	AT	FRAMES	=	2
	FOR	PURLINS	\mathtt{AT}	ENDWALLS	=	2
	FOR	PURLINS	AT	FRAMES	=	2

CHIEF INDUSTRIES INC. WEST OLD HWY 30 GRAND ISLAND, NE PAGE NO. W - 86
BUILDING A WIND DESIGN SIDEWALL (A) JOB NO. B3004915
WIND BRACING DESIGN CL DATE 5-JUN-12

EAVE STRUT DESIGN

LENGTH	BAY	STRUT	GOVERNING	AXIAL LOAD	BENDING	COMBINED						
(FT)	NO.	SIZE	LOAD COND	(KIPS)	(K-FT)	STRESS RATIO						
		- 										
18.50	· 1	ES1012	$\mathrm{DL}\!+\!\mathrm{L}\!\mathrm{L}$	0.00	1.55	0.104						
18.50	1	ES1012	.6DL+WL	4.87	0.00	0.101						
19.24	2	ES1012	DL+LL	0.00	1.68	0.112						
19.24	2	ES1012	.6DL+WL	4.87	0.00	0.101						

DL = DEAD LOAD LL = LIVE LOAD WL = WIND LOAD USE (2) 5/8" BOLTS WITH WASHERS AT BOTH ENDS OF EACH EAVE STRUT

CHIEF INDUSTRIES INC. WEST OLD HWY 30 GRAND ISLAND, NE PAGE NO. W - 87 BUILDING A WIND DESIGN SIDEWALL (C) JOB NO. B3004915 WIND BRACING DESIGN CL DATE 5-JUN-12

INPUT ECHO:

DESIGN BASED ON THE NASPEC 2007 AISI STANDARD USE CABLE BRACING IF POSSIBLE

ROOF PANEL TYPE = SSR

LOAD COMBINATIONS: D + (Lr or S)

.6D + W

 $D + .75(Lr \ or \ S) + .75W$

NO ALLOWABLE STRESS INCREASE FOR WIND.

NUMBER ROOF TRUSS PANEL POINTS = 3 BUILDING WIDTH = 51.04

EAVE HEIGHT = 17.33 ROOF SLOPE = 3.00 NUMBER WALL TRUSS PANEL POINTS = 2

NUMBER OF BAYS IN THE BUILDING = 2 ROOF SLOPE

LOADS:

DEAD LOAD = 1.50 PSF EAVE PURLIN SPACE = 1.31 FT COLL LOAD = 3.00 PSF PANEL OVER HANG AT EAVE = 0.50 FT LIVE LOAD = 20.00 PSF

SNOW LOAD = 23.10 PSF

WIND LOAD = 23.52 PSF

BRACING PRESSURE COEFFICIENT = 0.6640

BRACING SUCTION COEFFICIENT = 0.1660

PURLIN UPLIFT COEFFICIENT = 1.3800

UPLIFT COEFFICIENT ON PURLIN STRUTS = 0.8700

END ZONE WIDTH = 5.10 FEET

END ZONE PURLIN UPLIFT COEFFICIENT = 2.1800

UPLIFT COEFFICIENT ON PURLIN EXTENSIONS = 1.3800

LEFT EXTENSION LENGTH = 0.00 FEET

RIGHT EXTENSION LENGTH = 1.26 FEET

LEFT EXTENSION DEAD LOAD = 1.50 PSF

RIGHT EXTENSION DEAD LOAD = 1.50 PSF

NOMINAL PURLIN LOAD WIDTH = 4.00 FEET

RIDGE PURLIN LOAD WIDTH = 3.00 FEET

PURLIN YIELD =55.00 KSI

STRUT SPACES: 13.94 12.37

BAY SPACES: 18.50 19.24

PUR SIZES : Z1014 Z1014

LAPS: 1.00

1.00

SAG ANGLES : 11 11

BRACED BAY NUMBER(S): 2

CHIEF INDUSTRIES INC. WEST OLD HWY 30 GRAND ISLAND, NE PAGE NO. W - 88
BUILDING A WIND DESIGN SIDEWALL (C) JOB NO. B3004915
WIND BRACING DESIGN CL DATE 5-JUN-12

BRACE 1 BAYS	HORIZONTAL REACTION IN BRACED BAYS= 5.11 KIPS
STRUT NUMBERS -	1 2 3
· · · · · · · · · · · · · · · · · ·	0.97 2.06 1.06 0.24 0.51 0.26 5.11 3.89 1.32 4.87 3.38 1.06 17.33 13.94 11.62
BAY NO. 2 DIAMETER (IN) - MIN WEB THICKNESS- MIN WITH WEB WASHER	

NOTE: THE MIN WEB THICKNESS IS THE MINIMUM FRAME WEB THICKNESS WHICH DOES NOT NEED TO HAVE A WEB REINFORCING PLATE SUPPLIED.

STRUT NUMBER 1 IS THE EAVE STRUT. STRUT NUMBERS 2-3 ARE PURLIN STRUTS. CHIEF INDUSTRIES INC. WEST OLD HWY 30 GRAND ISLAND, NE PAGE NO. W - 89 BUILDING A WIND DESIGN SIDEWALL (C) JOB NO. B3004915 WIND BRACING DESIGN CL DATE 5-JUN-12

PURLIN STRUT LOAD CONDITIONS:

- 1) DEAD + UNIFORM SNOW
- 2) .6 DEAD + WIND
- 3) DL + SKIP LOAD
- 4) DL + .75SL + .75WL + .75AXIAL
- 5) .6DL + WL + AXIAL

FOR STRUT ROW NUMBER 2

STRUT SIZES: Z1014 Z1014 NBOLTS : 2 2 2 2 AXIAL LOAD : 2.74 4.51 UNITY CHECK: 0.583 0.722 FOR LC NUM : 2 5 TOP ANGLES : 1 1 BOT ANGLES : 1 1

FOR STRUT ROW NUMBER 3

STRUT SIZES: Z1014 Z1014

NBOLTS :2 2 2

AXIAL LOAD : 1.41 1.41

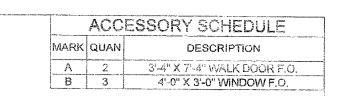
UNITY CHECK: 0.434 0.440

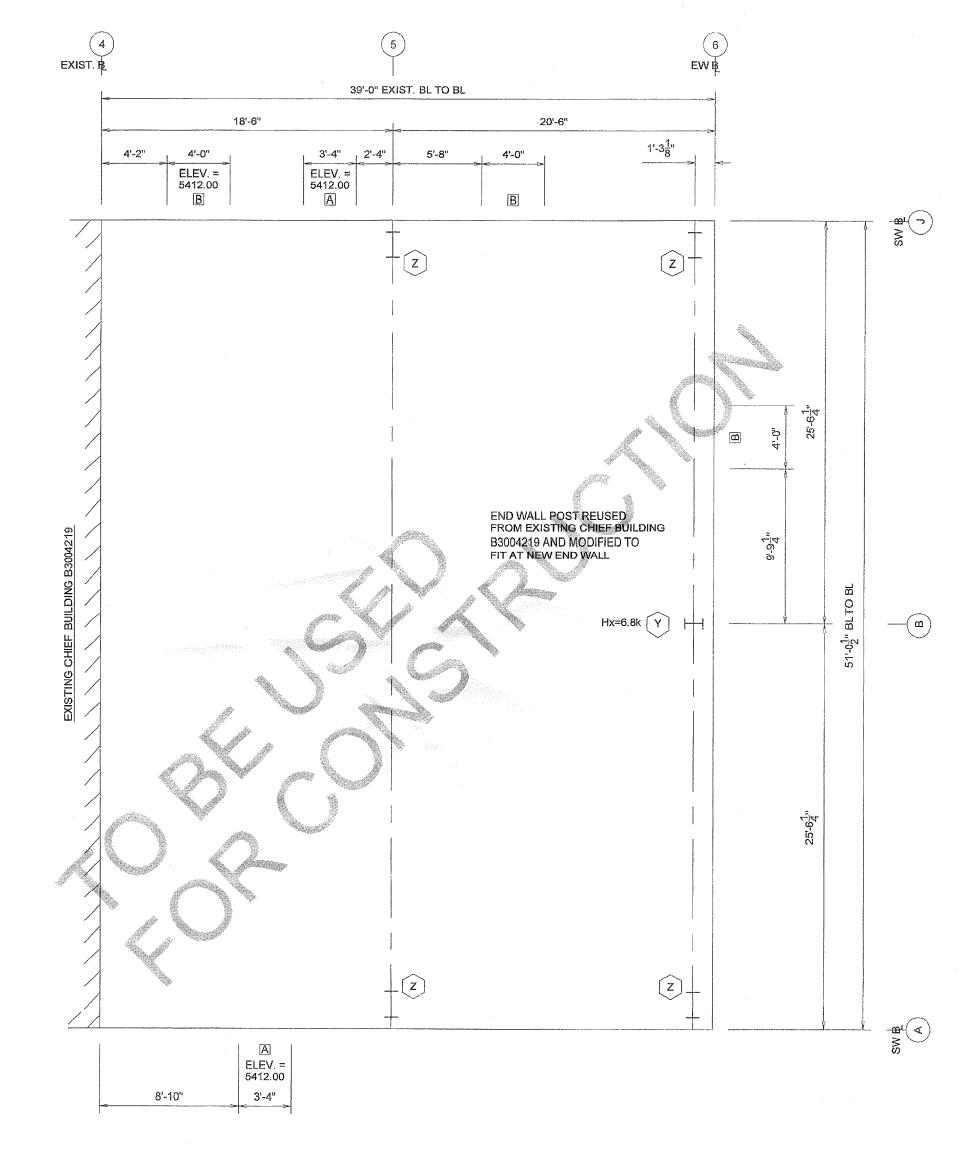
FOR LC NUM : 2 2

TOP ANGLES : 1 1

BOT ANGLES : 1 1

NUMBER OF BOLTS:


FOR	PURLIN	STRUTS	\mathbf{AT}	ENDWALLS	==	2
FOR	PURLIN	STRUTS	AT	FRAMES	=	2
	FOR	PURLINS	AT	ENDWALLS	=	2
	FOR	PURLINS	TA	FRAMES	==	2


CHIEF INDUSTRIES INC. WEST OLD HWY 30 GRAND ISLAND, NE PAGE NO. W - 90 BUILDING A WIND DESIGN SIDEWALL (C) JOB NO. B3004915 WIND BRACING DESIGN CL DATE 5-JUN-12

EAVE STRUT DESIGN

LENGTH (FT)	BAY	STRUT	GOVERNING	AXIAL LOAD	BENDING	COMBINED
	NO.	SIZE	LOAD COND	(KIPS)	(K-FT)	STRESS RATIO
18.50	1	ES1012	DL+LL	0.00	1.55	0.104
18.50	1	ES1012	.6DL+WL	4.87	0.00	0.101
19.24	2	ES1012	DL+LL	0.00	1.68	0.112
19.24	2	ES1012	.6DL+WL	4.87	0.00	0.101

DL = DEAD LOAD LL = LIVE LOAD WL = WIND LOAD USE (2) 5/8" BOLTS WITH WASHERS AT BOTH ENDS OF EACH EAVE STRUT

ANCHOR ROD PLAN FINISHED FLOOR ELEVATION = 5411.00 BASE OF ALL COLUMNS AT ELEVATION = 5413.00 BASE OF FRAME OPENING JAMBS AT ELEVATION = 5413.00 UNLESS NOTED

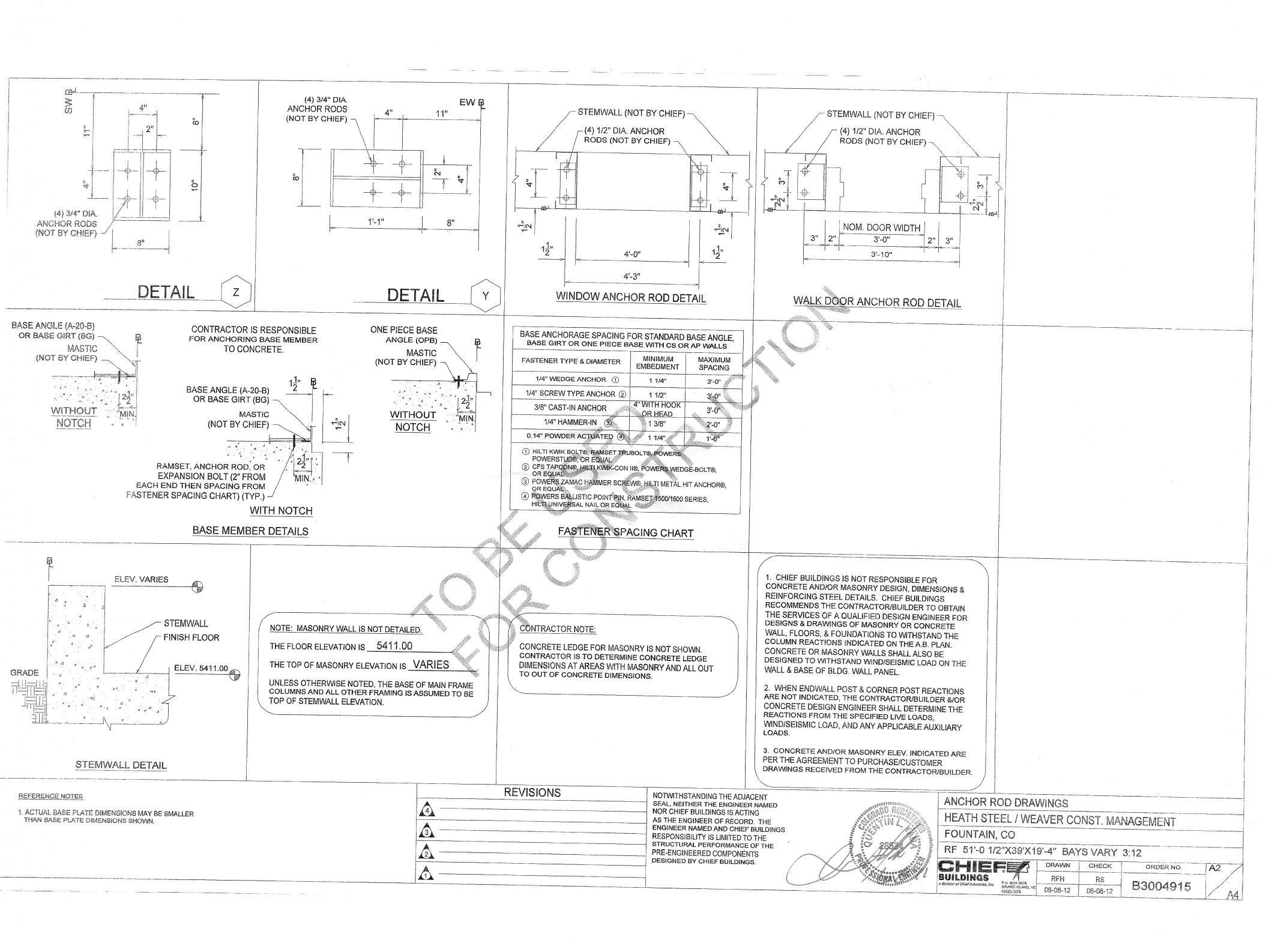
REFERENCE NOTES:

- 1. ALL ANCHOR RODS INCLUDING NUTS AND WASHERS FOR SAME ARE NOT FURNISHED BY CHIEF BUILDINGS.
- 2. ANCHOR ROD MATERIAL SHALL CONFORM TO ASTM F1554 HAVING A YIELD OF 36 KSI OR GREATER.
- 3. ROD PROJECTIONS ARE RECOMMENDED MINIMUMS BASED ON THE BASE PLATE BEARING DIRECTLY ON THE CONCRETE PIER. IF THE BASE PLATE IS TO BEAR ON GROUT, THE ROD PROJECTION MUST BE INCREASED ACCORDINGLY.
- 4. CONCRETE SHALL HAVE A MINIMUM STRENGTH OF 3000 PSI.
- 5. ALL DRAWINGS ARE NOT TO SCALE.

ANCHOR RODS (BY OTHERS)			REVI	SIONS
)	A	
QUAN	SIZE	PROJ	(4)	
20	0-½"Ø	1½"	A	
20	0-¾"Ø	2"	43)	
			2	A
			A	

DTWITHSTANDING THE ADJACENT EAL, NEITHER THE ENGINEER NAMED OR CHIEF BUILDINGS IS ACTING THE ENGINEER OF RECORD. THE NGINEER NAMED AND CHIEF BUILDINGS ESPONSIBILITY IS LIMITED TO THE TRUCTURAL PERFORMANCE OF THE RE-ENGINEERED COMPONENTS ESIGNED BY CHIEF BUILDINGS.

VCHOR	ROD	DRAWINGS

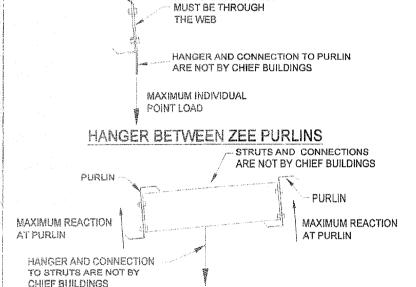

HEATH STEEL / WEAVER CONST. MANAGEMENT

FOUNTAIN, CO

RF 51'-0 1/2"X39'X19'-4" BAYS VARY 3:12

		DRAWN	CHECK	ORDER NO.	1
Buildings	P.O. BOX 2078	RFH	RS	Bannyare	
division of Chief Industries, Inc.	GRAND ISLAND, NE	06-08-12	06-08-12	B3004915	

A1


This structure has been designed for a collateral load of 3 psf. The total applied loads due to ceiling panels, ducts, sprinkler distribution lines, electrical equipment, conduit, fireproofing, other piping and mechanical loads, etc., cannot exceed this collateral load. In no case shall the total uniform collateral load on an individual roof member exceed the product of 3 psf times the spacing of the supporting member. Nor shall any individual point load or summation of point loads on any one roof member exceed the product of 3 psf times the member spacing times half the member length. In addition, no individual point load on a purlin can exceed 87 lbs. All loads suspended from purlins shall have the load introduced through the web and not the flange of the purlin. Hangers cannot be supported from the edge of flanges or through holes in the flanges of the purlins. Design of hangers and their attachments are not by Chief Buildings. Chief Buildings is NOT responsible for lateral or longitudinal bracing of suspended members subjected to horizontal service, seismic, or wind loading.

Chief Buildings neither assumes nor accepts any responsibility for the design of hangers, bracing of suspended members, transverse support members, nor connections to roof purlins. It is the responsibility of the Buyer/Contractor and/or End Owner to have this design performed by a registered design professional.

HANGER CONNECTION

HANGER AT INDIVIDUAL ZEE PURLIN

PURLIN

Building Design Criteria B3004915

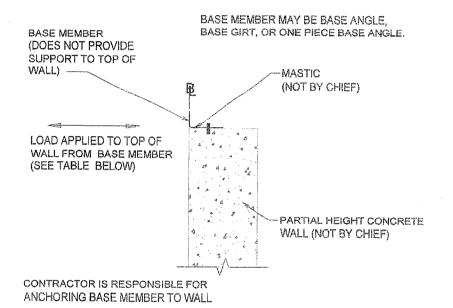
```
Pikes Peak Regional Building Code 2011
Building Code
2006 MBMA Occupancy Category
                                                            Substantial Hazard
Roof Live Load
                                                            20 psf
                                                            (Tributary Area Reduction Not Allowed)
Collateral Load
                                                            3 psf
Ground Snow Load (Pg)
                                                            30 psf
      Exposure Factor (Ce)
                                                            1.0
      Thermal Factor (Ct)
                                                           1.0
      Importance Factor (I)
                                                           1.1
     Flat Roof Snow Load (Pf)
                                                            23.10 psf
      Minimum Roof Snow Load
                                                           30.00 psf
Building Enclosure
                                                           Enclosed
Wind Speed
                                                           100 mph (GCpi ± 0.18)
      Exposure Category
     Importance Factor (I)
                                                           1.15
      Wind Pressure (q)
                                                           23.52 psf
Seismic
      Spectral Response Short Periods (Ss)
                                                            18.5%
      Spectral Response 1 s Period (S1)
                                                           5.9%
      Seismic Importance Factor
                                                           1.25
     Design Category
                                                           В
      Site Class
     Seismic Resisting System
           Longitudinal Direction
                                                           Steel System (R=3.0)
            Lateral Direction
                                                           Steel System (R=3.0)
     Seismic Response Coefficient (Cs)
                                                           0.082
     Spectral Response Parameter Short Period (SDS)
                                                           0.197
     Spectral Response Parameter 1 s Period (SD1)
                                                           0.094
     Analysis Procedure
                                                           ELF
     Base Shear
                                                           2112 lbs
Other Loads:
```

Mezzanine loading information:

The building provided by Chief Buildings does not include structural support for the mezzanine, which is furnished by others.

Chief Buildings neither assumes nor accepts any responsibility for the design of the mezzanine. The mezzanine must be designed to resist all vertical and lateral loads without relying on the building provided by Chief Buildings for any support. It is the responsibility of the Buyer/Contractor and/or End Owner to have the mezzanine design performed by a registered design professional.

The frame at line 6 is an expandable full load frame. The frame has been designed for a future expansion of 23'-0" centerline-to-centerline of the future frame.


Where the frame cross section requires flange braces both sides of the column or rafter, these flange braces must be installed upon future expansion.

The structure provided by Chief Buildings has been designed to have a partial height wall constructed of concrete, which is not by Chief Buildings. The base member at the top of the wall has <u>NOT</u> been designed to provide lateral support to the top of the wall. Chief Buildings neither assumes nor accepts <u>any responsibility</u> for design of this partial height concrete wall nor attachment or interface of this wall with the structure provided by Chief Buildings.

It is the responsibility of the Buyer/Contractor and/or End Owner to retain the services of a registered design professional who is responsible for the design of:

- The concrete wall and required reinforcing for code prescribed vertical and lateral loads (including the load imposed through the base member from the wall panel above) and sufficient ductility to allow for differential movement of the concrete wall and the structure provided by Chief Buildings.
- 2.) Attachment of the base member provided by Chief Buildings to the concrete wall.
- Detailing at base of the wall and at isolation joints at perpendicular walls to allow for differential movement of the concrete wall and the structure provided by Chief Buildings.

Lateral deflection and drift limits for the structure provided by Chief Buildings have been held to the limits ordered in the Agreement to Purchase. It is the responsibility of the registered design professional to insure design of the partial height concrete wall is compatible with these serviceability limits.

PARTIAL HEIGHT CONCRETE WALL DETAIL BASE MEMBER ON TOP

Load Source	Load Applied to Top of Wall (in or out)
Wind Load (50-year recurrence)	100 plf

Attachments must be designed to safely transfer the forces shown from the base member into the top of the wall. The wall must be designed to resist loads applied to the wall area and the loads from the base member to the wall using load combinations and overstrength detailing requirements as required by the applicable building code.

REFERENCE NOTES

1. ACTUAL BASE PLATE DIMENSIONS MAY BE SMALLER THAN BASE PLATE DIMENSIONS SHOWN,

REVISIONS	NOTWITHSTANDING THE ADJ SEAL, NEITHER THE ENGINER NOR CHIEF BUILDINGS IS AC AS THE ENGINEER OF RECOI ENGINEER NAMED AND CHIE RESPONSIBILITY IS LIMITED T STRUCTURAL PERFORMANC PRE-ENGINEERED COMPONE DESIGNED BY CHIEF BUILDIN	ER NAMED TING RD. THE F BUILDINGS TO THE E OF THE ENTS

ANCHOR ROD DRAWINGS HEATH STEEL / WEAVER CONST. MANAGEMENT FOUNTAIN, CO

RF 51'-0 1/2"X39'X1	9'-4" BAY	S VARY	3:12
CHEFE	DRAWN	CHECK	OF
BUILDINGS	RFH	RS	W-1

P.O. EOX 2078
RFH RS
GRAND, ISLAND, NE 06-08-12 06-08-12 B3004915

The 16" wide 20 ga Stucco Wall Panels with sealant, not provided by Chief Buildings, must provide structural support to all secondary framing. These panels must have a positive attachment to Chief Buildings' secondary framing capable of resisting roll forces, sag loads, lateral buckling, etc. in accordance with AISI specifications.

The wall panels not provided by Chief Buildings and their anchorage to the secondary framing must be capable of resisting all loads required by the specified building code and listed below.

Wall Panel Pressure (Interior Zone) = 27.8 psf Wall Panel Suction (Interior Zone) = 30.1 psf Wall Panel Suction (Corner Zone) = 37.2 psf (Corner Zone Width =5.1 ft.)

The wall panels must meet the minimum properties and connections given below, which will be considered adequate to provide support to the secondary framing.

Minimum Wall Panel Properties: 1xx = 0.0368 in4/ft Sxx = 0.0447 in 3/ft

Minimum Connection Requirements:

(1) #12 structural fastener to secondary at 1'-4" o.c.

Chief Buildings neither assumes nor accepts any responsibility for the design of the wall panels and their anchorage nor coordination of compatibility between products provided by Chief Buildings and the wall panels not provided by Chief Buildings. It is the responsibility of the Buyer/Contractor and/or End Owner to have this design performed by a registered design professional.

The 24 ga Metal Sales Seam-Loc roof panels are not provided by Chief Buildings. Chief Buildings will supply secondary framing in the roof capable of resisting roll forces, sag loads and lateral buckling.

The roof panels not provided by Chief Buildings and their anchorage to the secondary framing must be capable of resisting all loads required by the specified building code and listed below.

Roof Live Load = 20 psf Roof Snow Load = 38.17 psf Roof Panel Suction (Interior Zone) = 25.40 psf Roof Panel Suction (Edge Zone) = 44.22 psf Roof Panel Suction (Corner Zone) = 65.39 psf (Edge/Corner Zone Width = 5.1 ft.)

Chief Buildings neither assumes nor accepts any responsibility for the design of the roof panels and their anchorage nor coordination of compatibility between products provided by Chief Buildings and the roof panels not provided by Chief Buildings. It is the responsibility of the Buyer/Contractor and/or End Owner to have this design performed by a registered design professional.

					\bigcirc	
			the same of the sa			
				<u>X</u>	71	
				Z	Y2	
X1	Y1	Z1	X2	Y2	Z2	
0.9	2.5	-	-0.9	2.5	- €	
0.8	1.8	-	-0.8	1.8	- Was -	1
5.3	12.0	-	-5.3	12.0	. ""	
7.9	18.1	-	-7.9	18.1	A CONTRACTOR	là
-7.1	-12.2	-	1.3	-9.0		l reg
-1.3	-9.0		7.1	-12.2		
-6.4	-7.1		0.6	-3.9	-	
-0.6	-3.9	- A-	6.4	-7.1	~	
-2.7	-14.0		3,3	12.8		
-3.3	-12.8	-	2.7	-14.0	-	
5.0	7.8	-	-5.0	13.4	-	
5.0	13.4	The same of	-5.0	7.8	-	
-0.4	-0.3		-0.4	0.3	in	
4	-0.7	±0.8	-	-0.7	±0.8	
	0.9 0.8 5.3 7.9 -7.1 -1.3 -6.4 -0.6 -2.7 -3.3 5.0	0.9 2.5 0.8 1.8 5.3 12.0 7.9 18.1 -7.1 -12.2 -1.3 -9.0 -6.4 -7.1 -0.6 -3.9 -2.7 -14.0 -3.3 -12.8 5.0 7.8 5.0 13.4 -0.4 +0.3	0.9 2.5 - 0.8 1.8 - 5.3 12.0 - 7.9 18.17.1 -12.21.3 -9.06.4 -7.10.6 -3.92.7 -14.03.3 -12.8 - 5.0 7.80.4 -0.4 -0.3	0.9 2.5 - 0.9 0.8 1.8 - 0.8 5.3 12.0 - 5.3 7.9 18.1 - 7.9 -7.1 -12.2 - 1.3 -1.3 -9.0 - 7.1 -6.4 -7.1 - 0.6 -0.6 -3.9 - 6.4 -2.7 -14.0 3.3 -3.3 -12.8 - 2.7 5.0 7.8 - 5.0 5.0 13.4 5.0 -0.4 -0.3 - 0.4	X1 Y1 Z1 X2 Y2 0.9 2.50.9 2.5 0.8 1.80.8 1.8 5.3 12.05.3 12.0 7.9 18.17.9 18.1 -7.1 -12.2 - 1.3 -9.0 -1.3 -9.0 - 7.1 -12.2 -6.4 -7.1 - 0.6 -3.9 -0.6 -3.9 - 6.4 -7.1 -2.7 -14.0 3.3 12.8 -3.3 -12.8 - 2.7 -14.0 5.0 7.8 - 5.0 13.4 -0.4 +0.3 - 0.4 0.3	0.9 2.5 - -0.9 2.5 - 0.8 1.8 - -0.8 1.8 - 5.3 12.0 - -5.3 12.0 - 7.9 18.1 - -7.9 18.1 - -7.9 18.1 - -7.9 18.1 - -7.9 18.1 - -7.9 18.1 - -9.0 - - -1.1 -9.0 - - -1.1 -9.0 - - -1.1 -1.2 - - -0.6 -3.9 - - -7.1

9.9 22.5 ±5.1 6.6 22.5

4.8

33004915A01 REACTIONS USED AT LINE(S): 5

SB2- SEISMIC BRACING BR1- WIND BRACING 1

BR2- WIND BRACING 2

MAXIMUM POSITIVE

A		<u>(</u>)
	And the second s	
_X1		<u> X2</u>
Y1 X1		Y2

				£.56	•
X1	Y1	Z1	X2	Y2	Z2
0.9	2.4	-	-0.9	2.4	
0.7	1.7	_	-0.7	1.7	
4.9	11.1	1 .	-4.9	11.1	
7.3	16.7	-	-7.3	16.7	-
-7.2	-11,5	-	0.3	-8.0	_
-0.3	-8.0		7.2	-11.5	
-6.9	-6.8			-3,3	-
-	-3.3	-	6.9	~6.8	
-1.9	-12.9		2.4	-11.8	
-2.4	-11.8	-	1.9	-12.8	-
4.6	7.2	-	-4.5	12.3	
4.6	12.3		-4.6	7.2	*
-0.4	-0.3	-	-0.4	0.3	
A Commission of the Commission	-0.7	±0.8	-	independent and a make and a many	#0.8
-	0.7	-	**	0.7	~
-	-4.6	±5.1		-4.6	±5.1
0.1	4.6	*	-0.1	4.6	-
9.1	20.8	±5.1	6.7	20.8	±5.1
-8.7	-16.1	±5.1	-9.1	-16.1	±8,1
	0.9 0.7 4.8 7.3 -7.2 -0.3 -6.9 -1.9 -2.4 4.6 -0.4 -0.1 9.1	0.9 2.4 0.7 1.7 4.8 11.1 7.3 16.7 -7.2 -11.5 -0.3 -8.0 -6.9 -6.83.3 -1.9 -12.9 -2.4 -11.8 4.6 7.2 4.6 12.3 -0.4 -0.3 -0.70.74.6 0.1 4.6 9.1 20.8	0.9 2.4 - 0.7 1.7 - 4.8 11.1 - 7.3 16.77.2 -11.50.3 -8.06.9 -6.83.31.9 -12.92.4 -11.8 - 4.6 7.2 - 4.6 12.30.4 -0.30.7 ±0.8 - 0.74.6 ±5.1 0.1 4.6 - 9.1 20.8 ±5.1	0.9 2.4 - -0.9 6.7 1.7 - -0.7 4.8 11.1 - -4.9 7.3 16.7 - -7.3 -7.2 -11.5 - 0.3 -0.3 -8.0 - 7.2 -6.9 -6.8 - - -1.9 -12.9 - 2.4 -2.4 -11.8 - 1.9 4.6 7.2 - -4.6 4.6 12.3 - -0.4 -0.4 -0.3 - -0.4 - -0.7 ±0.8 - - -0.7 ±0.8 - - -0.7 ±0.8 - - -0.7 ±0.8 - - -0.6 ±5.1 - - -0.1 4.6 - -0.4 - - -0.4 - - - - -	X1 Y1 Z1 X2 Y2 0.9 2.4 - -0.9 2.4 0.7 1.7 - -0.7 1.7 4.8 11.1 - -4.9 11.1 7.3 16.7 - -7.3 16.7 -7.2 -11.5 - 0.3 -8.0 -0.3 -8.0 - 7.2 -11.5 -6.9 -6.8 - - -3.3 -1.9 -12.9 - 2.4 -11.8 -1.9 -12.9 - 2.4 -11.8 -2.4 -11.8 - 1.9 -12.8 4.6 7.2 - -4.6 12.3 4.6 7.2 - -4.6 7.2 -0.4 -0.3 - -0.4 0.3 -0.0 +0.3 - -0.4 0.3 -0.0 +0.3 - -0.4 0.3 -0.7 -

B3004915A02 REACTIONS USED AT LINE(S): 6

ORIENTATION OF HORIZONTAL REACTIONS:

Hx IS PARALLEL TO THE COLUMN WEB AND

Hy IS PERPENDICULAR TO THE COLUMN WEB,

FOR ALL ENDWALL COLUMNS & SOLDIER COLUMNS

BY CHIEF BUILDINGS.

1. COLUMN FOOTINGS AND PIERS MUST BE DESIGNED TO WITHSTAND HORIZONTAL AND VERTICAL REACTIONS AS SHOWN ON THE ANCHOR ROD PLAN. CHIEF BUILDINGS IS NOT RESPONSIBLE FOR DESIGN OF CONCRETE FOUNDATION. CHIEF BUILDINGS RECOMMENDS THAT THE SERVICES OF A QUALIFIED ENGINEER IS OBTAINED BY THE CONTRACTOR / BUILDER TO DESIGN THE FOUNDATIONS FOR THE INDICATED REACTIONS.

2. REACTIONS ARE GIVEN IN KIPS. (1 KIP = 1000 LBS.) MOMENTS, IF ANY, ARE GIVEN IN KIP-FT.

3. ANCHOR ROD DESIGN IS BASED ON SHEAR, TENSION, AND COMBINED TENSION AND SHEAR, CHIEF BUILDINGS IS NOT RESPONSIBLE FOR ANCHOR ROD SIZE RECOMMENDATIONS WHEN ANCHOR ROD CONFIGURATION PLACES THE RODS IN A BENDING MODE. WHEN THE COLUMN BASE PLATE BEARS ON GROUT, THE CONTRACTOR / BUILDER OR FOUNDATION ENGINEER SHALL INVESTIGATE BENDING IN THE ANCHOR RODS AND PROVIDE A SHEAR KEY FOR THE COLUMN BASE TO THE PIER WHEN THE ANCHOR RODS ARE NOT ADEQUATE IN BENDING ABOUT THE PIER.

3

2

STEEL MATERIAL PROPERTIES AND SPECIFICATIONS:

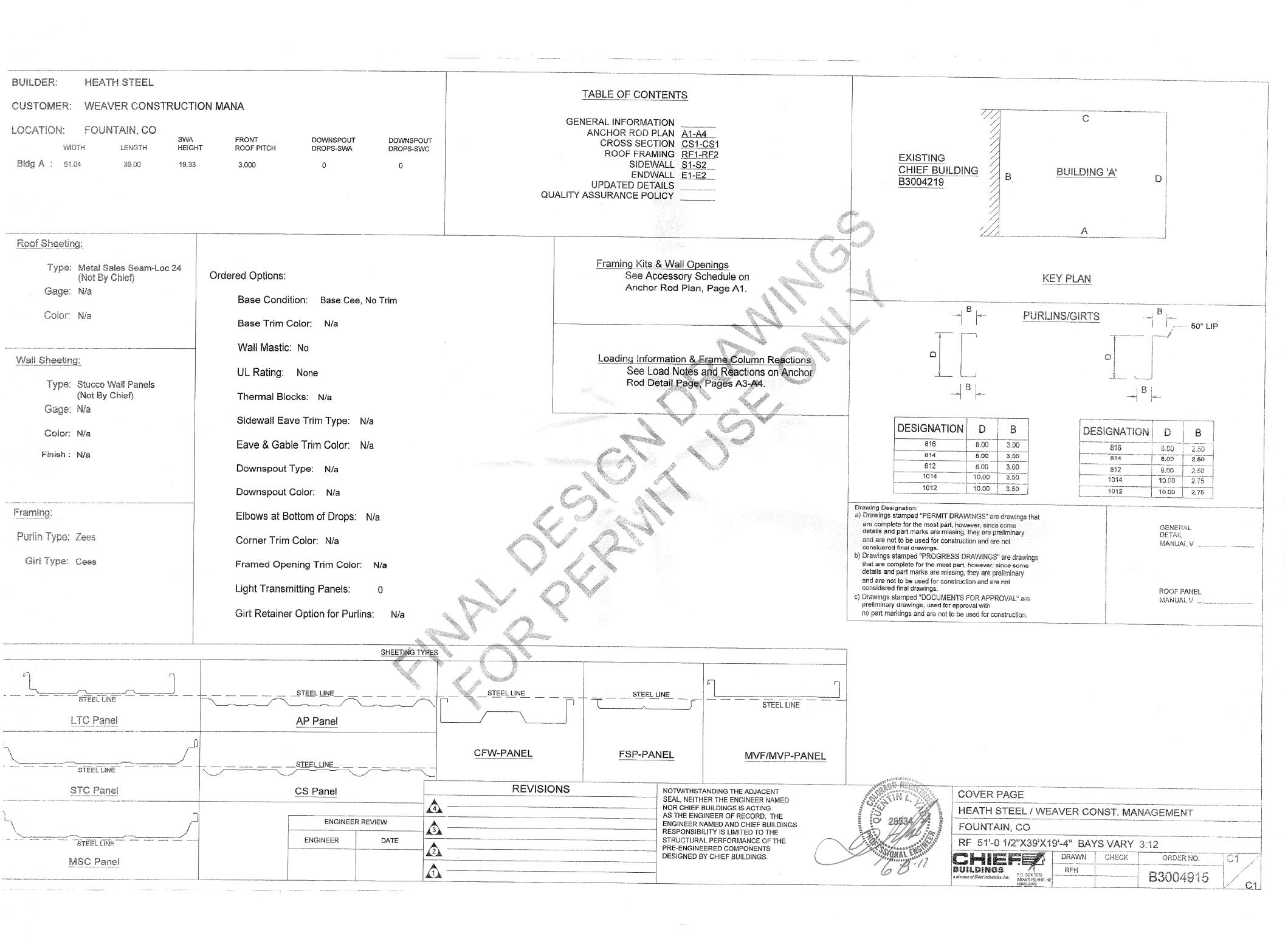
WELDED WF BEAMS/PLATE 1/4" THICK: (ASTM A529, A572) (GR. 55) WELDED WF BEAMS/PLATE > 1/8" & < 1/4" THICK: ASTM (A1011-SS, A1011-HSLAS, A572) (GR 55) LIGHT GAGE (16, 14, 12 GA. BLACK): ASTM (A1011-SS, A1011-HLAS) (GR. 55) ROUND ROD: (ASTM A36) ROUND PIPE (BLACK): FY = 35 KSI (ASTM A53 GR. B, A500 GR. B) SQUARE/RECTANGULAR TUBING: ASTM A500 (GR. B) HOT ROLLED WF BEAMS: ASTM A36; ASTM (A572, A992) (Gr. 50) HOT ROLLED CHANNEL: ASTM A36; ASTM A572 (GR. 50) BRACING CABLE: EXTRA HIGH STRENGTH (ASTM A475) CS & LTC ROOF PANEL (26 & 24 GA. GALVALUME): ASTM A792 (GR. 80) MSC & STC ROOF PANEL (24 & 22 GA. GALVALUME): ASTM A 792 (GR. 50) CS & AP WALL PANEL (26 & 24 GA. GALVALUME): ASTM 792 (GR. 80) MVP/MVP ROOF PANEL (24 & 22 GA. GALVALUME): ASTM A 792 (GR. 50) CFW WALL PANEL (24 GA. GALVALUME): ASTM A 792 (GR. 50)

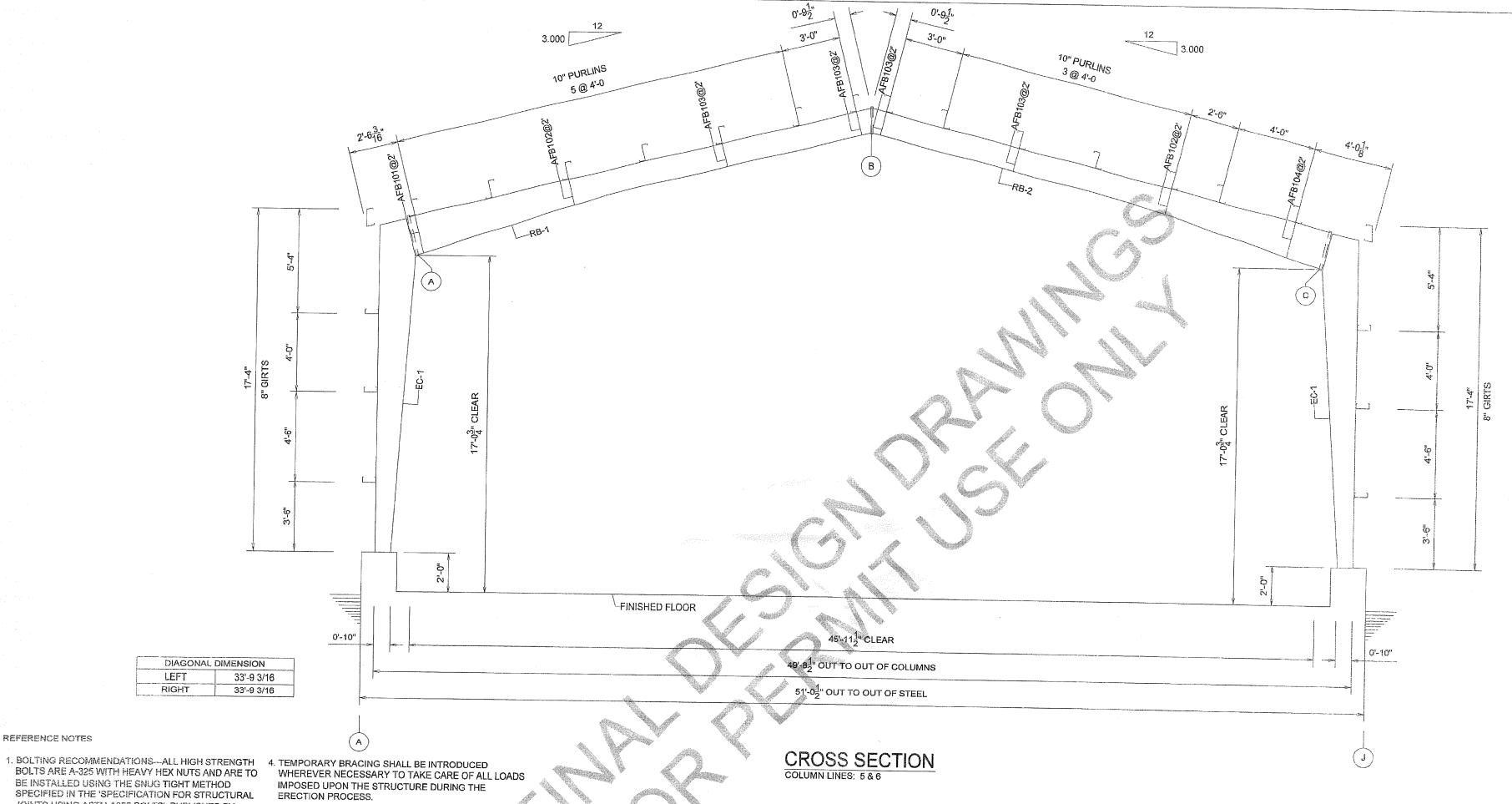
REFERENCE NOTES

1. ACTUAL BASE PLATE DIMENSIONS MAY BE SMALLER THAN BASE PLATE DIMENSIONS SHOWN.

REVISIONS

NOTWITHSTANDING THE ADJACENT SEAL, NEITHER THE ENGINEER NAMED NOR CHIEF BUILDINGS IS ACTING AS THE ENGINEER OF RECORD. THE **ENGINEER NAMED AND CHIEF BUILDINGS** RESPONSIBILITY IS LIMITED TO THE STRUCTURAL PERFORMANCE OF THE PRE-ENGINEERED COMPONENTS DESIGNED BY CHIEF BUILDINGS.


ANCHOR ROD DRAWINGS


HEATH STEEL / WEAVER CONST. MANAGEMENT

FOUNTAIN, CO

RF 51'-0 1/2"X39'X19'-4" BAYS VARY 3:12

CHEFE DRAWN CHECK ORDER NO. A4 BUILDINGS B3004915 06-08-12 06-08-12

REFERENCE NOTES

- BE INSTALLED USING THE SNUG TIGHT METHOD SPECIFIED IN THE 'SPECIFICATION FOR STRUCTURAL JOINTS USING ASTM A325 BOLTS', PUBLISHED BY RCSC, DATED JUNE 30,2004. SNUG TIGHT CONDITION IS ATTAINED WITH A FEW IMPACTS OF AN IMPACT WRENCH OR THE FULL EFFORT OF AN IRON WORKER USING AN ORDINARY SPUD WRENCH TO BRING THE 6. ALL DRAWINGS ARE NOT TO SCALE. PLIES INTO FIRM CONTACT.
- 2. BOLT SPECIFICATIONS -- ALL BOLTS SPECIFIED THROUGHOUT THESE DRAWINGS WILL BE HIGH STRENGTH BOLTS CONFORMING TO ASTM A325 BOLT SPECIFICATIONS SUBSTITUTION OF MILD STEEL BOLTS 8. FLANGE BRACES ARE REQUIRED ONLY ON ONE SIDE WILL NOT BE ALLOWED AND ANY FIELD SUBSTITUTION WILL VOID THE DESIGN WARRANTY.

NUT SPECIFICATIONS -- NUTS SPECIFIED THROUGHOUT THESE DRAWINGS WILL BE HIGH STRENGTH NUTS CONFORMING TO ASTM A194 GRADE 2 OR 2H, OR ASTM A563 GRADE C, D, OR DH NUT SPECIFICATIONS. SUBSTITUTION OF MILD STEEL NUTS WILL NOT BE ALLOWED, AND ANY FIELD SUBSTITUTION WILL VOID THE DESIGN WARRANTY.

3. ALL ELEVATION DIMENSIONS ARE TAKEN FROM BOTTOM OF FRAME COLUMN BASE PLATE. REFER TO ANCHOR ROD DRAWING FOR BASE OF COLUMN ELEVATION.

- 5. ALL DIMENSIONS ARE IN INCHES UNLESS OTHERWISE MARKED.
- 7. NOTE: * REFER TO GENERAL DETAILS AND SECTIONS FOR ROOF SHEET OVERHANG AND SPLICE LAP DIMENSIONS.
- OF FRAME, EXCEPT THOSE FLANGE BRACES THAT ARE PRECEDED WITH A (2)FB OR (2)FF ARE REQUIRED ON BOTH SIDES OF THE FRAME.
- 9. EAVE HEIGHT DIMENSION IS NOT ALWAYS TO THE TOP OF THE EAVE STRUT. DUE TO THERMAL BLOCK SITUATIONS, EAVE HEIGHT DIMENSION AND TOP GIRT SPACE DIMENSION MAY BE TO THE INTERSECTION OF THE TOP OF THE PURLINS. REFER TO THE EAVE DETAILS FOR MORE INFORMATION.
- 10. ALL WELDS HAVE A MINIMUM CHARPY V-NOTCH TOUGHNESS OF 20 FT-LBF AT MINUS 20 DEGREES F.

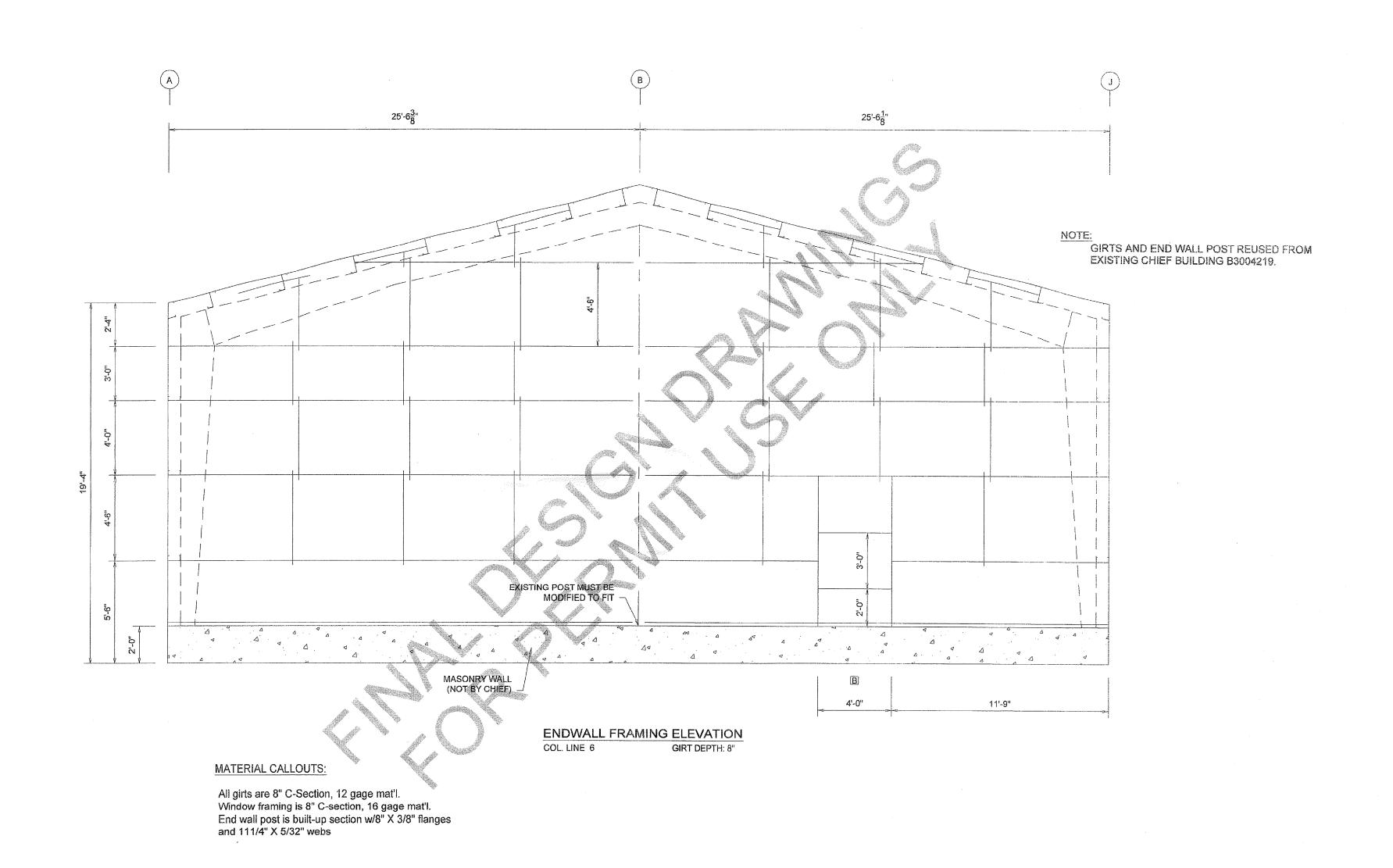
	SPLICE E	BOLT TABLE	
SPLICE	NO	SIZE	DEPTH
A	10	5/8 X 2	2'-0
В	8	5/8 X 1 1/2	1'-3
С	10	5/8 X 2	2'-0

FRAME:B3004915A01 6-JUN-2012 09:00:59.34

13 4712.2000.4010/101 0-0014-2012 05.00,05.04	
REVISIONS	NOTWITHSTANDING THE ADJACENT SEAL, NEITHER THE ENGINEER NAMED NOR CHIEF BUILDINGS IS ACTING AS THE ENGINEER OF RECORD. THE ENGINEER NAMED AND CHIEF BUILDINGS RESPONSIBILITY IS LIMITED TO THE STRUCTURAL PERFORMANCE OF THE
(2)	PRE-ENGINEERED COMPONENTS DESIGNED BY CHIEF BUILDINGS.

			-
CROSS	SECTION	DRAWIN	IGS

HEATH STEEL / WEAVER CONST. MANAGEMENT


FOUNTAIN, CO

RF 51'-0 1/2"X39'X19'-4" BAYS VARY 3:12

	[
3UILDINGS /	
division of Chief Industries, Inc. P.O. SOX 2078 -	
GRAND ISLAND, NE	
66802-2078	

DRAWN	CHECK	ORDER NO.
RFH		B3004915

CS1

REVISIONS	NOTWITHSTANDING THE ADJACENT SEAL, NEITHER THE ENGINEER NAMED		ENDWALL DRAWINGS				
4	NOR CHIEF BUILDINGS IS ACTING AS THE ENGINEER OF RECORD. THE	IGS IS ACTING OF RECORD. THE AND CHIEF BUILDINGS LIMITED TO THE FORMANCE OF THE	HEATH STEEL / WEAVER CONST. MANAGEMENT				
3	ENGINEER NAMED AND CHIEF BUILDINGS RESPONSIBILITY IS LIMITED TO THE		FOUNTAIN, CO				
A	STRUCTURAL PERFORMANCE OF THE PRE-ENGINEERED COMPONENTS		RF 51'-0 1/2"X39'X19'-4" BAYS VARY 3:12				
42	DESIGNED BY CHIEF BUILDINGS.		CHEFF	DRAWN	CHECK	ORDER NO.	
<u></u>		Signal Will 11	BUILDINGS o division of Chlot Industries, Inc. Sp. 9.00 2078 GRANCI GLAND, NE S8502-2078	RFH		B3004915	

E1

WELDING RECOMMENDATIONS

In Accordance with the provisions of the AISC'S "Specifications for the Design, Fabrication, and Erection of Structural Steel for Buildings", the following welding procedures are recommended:

- (a) The electrodes used shall be:
 - 1) SMAW: Class E70XX Low Hydrogen electrodes in accordance with AWS A5.1-91 or A5.5-96. The recommended SMAW electrode is E7018 or E7018-A1 Low Hydrogen with direct current, electrode positive.
 - 2) GMAW: Class ER70S-2,4,6 or ER80S-D2 electrodes in accordance with AWS A5.18-93 or A5.28-96. The recommended GMAW electrode is ER70S-6 or ER80S-D2 with direct current, electrode positive. Recommended shielding gas shall be a minimum of 50% Argon and 50% CO2 up to a maximum of 75% Argon and 25% CO2. Under windy conditions (greater than 5 MPH), GMAW welding shall be done inside a wind cover.
 - 3) FCAW: Class E71T-8 or11 or E71T8-A1 or K6 electrodes in accordance with AWS A5.20-95 or A5.29-80R. The recommended direct current, electrode negative FCAW electrode is E71T-11 @ ≤ ½" thick steel and E71T-8 @ > ½" thick steel. These FCAW electrodes do not use a shielding gas.
- (b) Preheat temperature shall be as shown in the following table:

Minimum Preheat and Interpass Temp *(1)

Thickness of thickest part @ point of welding

To \$\%" incl.

None *(2)

\$\%" thru 1-1/2"

50 degrees F.

over 1-1/2" thru 2-1/2"

150 degrees F.

over 2-1/2"

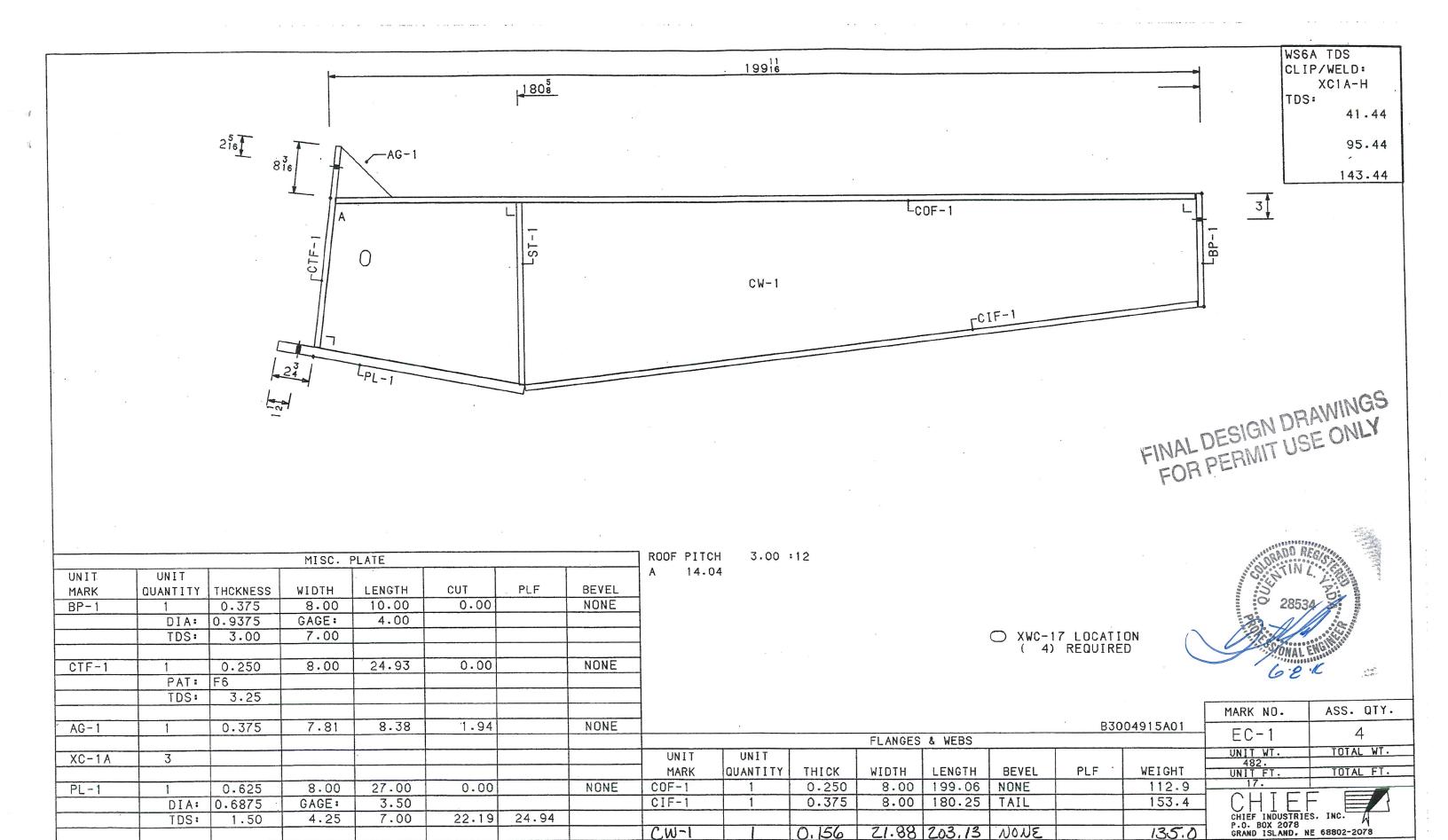
225 degrees F.

*(1) Welding shall not be done when the base metal temperature or the ambient temperature in the immediate vicinity of the weld joint is lower than 0 degrees F.

*(2) When the base metal temperature is below 32 degrees F., preheat all base metal within 3" of the weld joint to at least 70 degrees F. and maintain this minimum temperature during the welding.

(c) All welding to be done by a certified welder in accordance with AISC & AWS specifications.

NOTWITHSTANDING THE ADJACENT
SEAL, NEITHER THE ENGINEER NAMED
NOR CHIEF BUILDINGS IS ACTING
AS THE ENGINEER OF RECORD. THE
ENGINEER NAMED AND CHIEF BUILDINGS
RESPONSIBILITY IS LIMITED TO THE
STRUCTURAL PERFORMANCE OF THE
PRE-ENGINEERED COMPONENTS
DESIGNED BY CHIEF BUILDINGS.



ENDWALL DRAWINGS

HEATH STEEL / WEAVER CONST. MANAGEMENT
FOUNTAIN, CO

RF 51'-0 1/2"X39'X19'-4" BAYS VARY 3:12

				THE C X DAIL	
		DRAWN	CHECK	ORDER NO.	E2
LDINGS sion of Chief Industries, Inc.	P.O. BOX 2078 GRAND ISLAND, NE 68802-2076	RFH		B3004915	

HEATH STEEL

FI/

B3004915

FAB

8-JUN-12

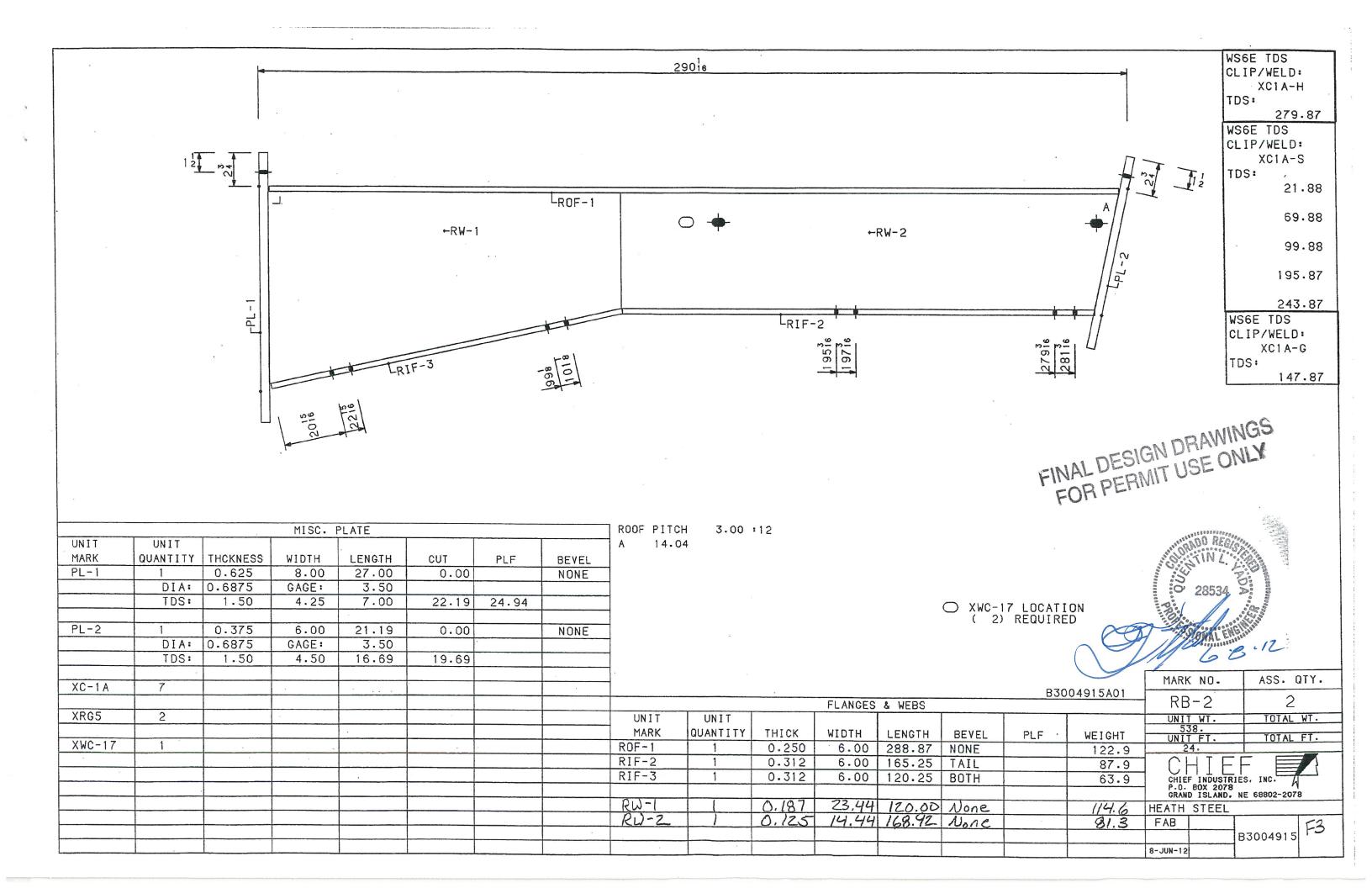
NONE

3.75

21.69

0.00

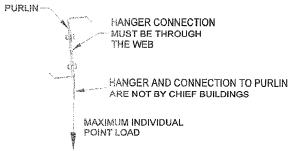
0.250

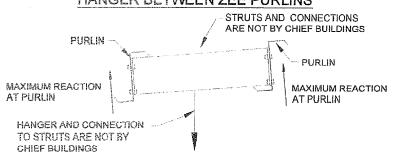

2

1

ST-1

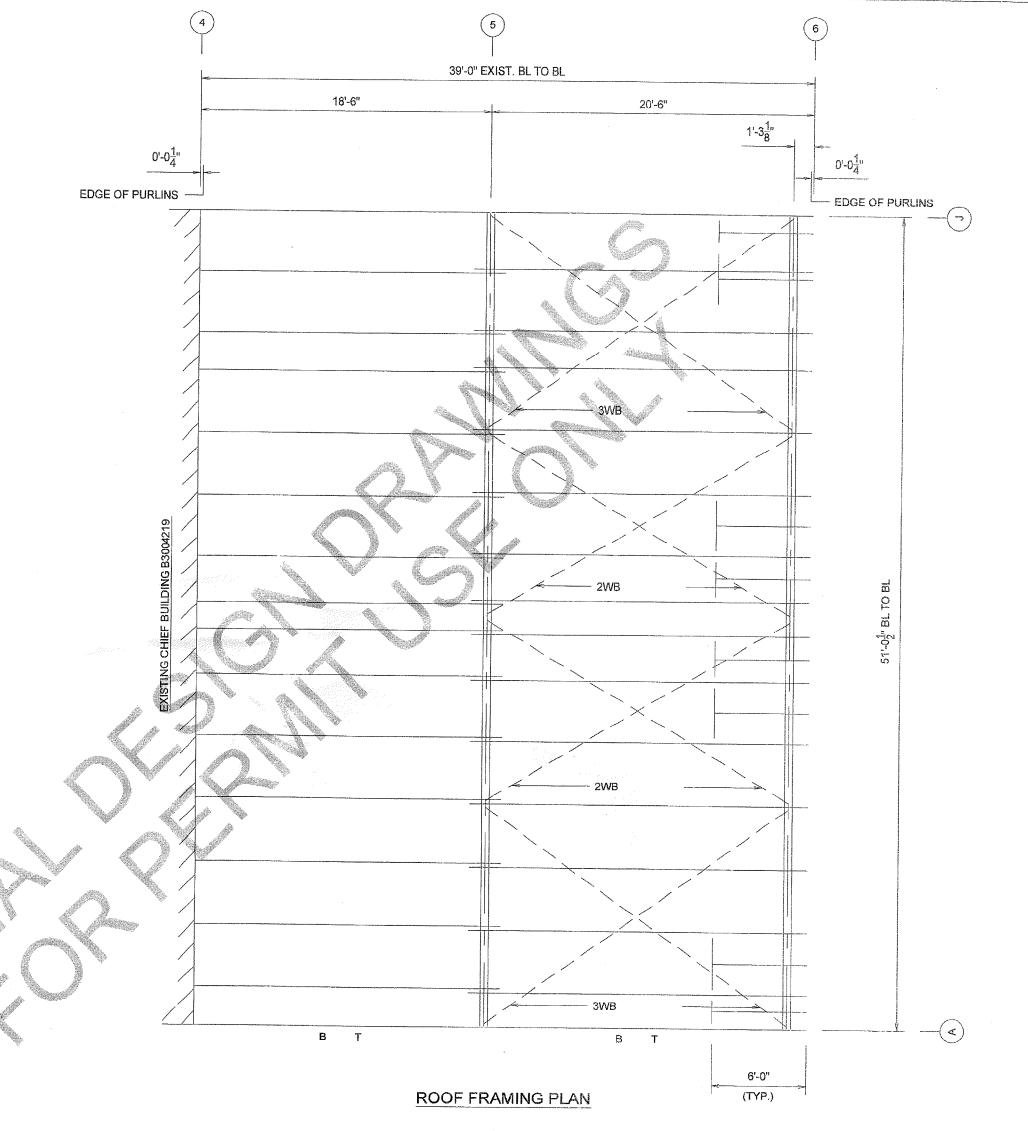
XWC-17




This structure has been designed for a collateral load of 3 psf. The total applied loads due to ceiling panels, ducts, sprinkler distribution lines, electrical equipment, conduit, fireproofing, other piping and mechanical loads, etc., cannot exceed this collateral load. In no case shall the total uniform collateral load on an individual roof member exceed the product of 3 psf times the spacing of the supporting member. Nor shall any individual point load or summation of point loads on any one roof member exceed the product of 3 psf times the member spacing times half the member length. In addition, no individual point load on a purlin can exceed 87 lbs. All loads suspended from purlins shall have the load introduced through the web and not the flange of the purlin. Hangers cannot be supported from the edge of flanges or through holes in the flanges of the purlins. Design of hangers and their attachments are not by Chief Buildings. Chief Buildings is NOT responsible for lateral or longitudinal bracing of suspended members subjected to horizontal service, seismic, or wind loading.

Chief Buildings neither assumes nor accepts any responsibility for the design of hangers, bracing of suspended members, transverse support members, nor connections to roof purlins. It is the responsibility of the Buyer/Contractor and/or End Owner to have this design performed by a registered design professional.

HANGER AT INDIVIDUAL ZEE PURLIN



HANGER BETWEEN ZEE PURLINS

MATERIAL CALLOUTS:

2WB denotes 1/4" cable bracing 3WB denotes 3/8" cable bracing All eave struts are 10" C-section, 12 gage mat'l. All purlins are 10" Z-section, 14 gage mat'l. Blocking is 10" C-section, 14 gage mat'l.

REFERENCE NOTES

- 1. ALL PURLINS ATTACH TO FRAMING USING "STD" ATTACHMENT UNLESS NOTED. REFER TO GD MANUAL SECTION 4 FOR BOLT LOCATIONS.
- 2. "T" = TOP SAG ANGLE. "B" = BOTTOM SAG ANGLE.

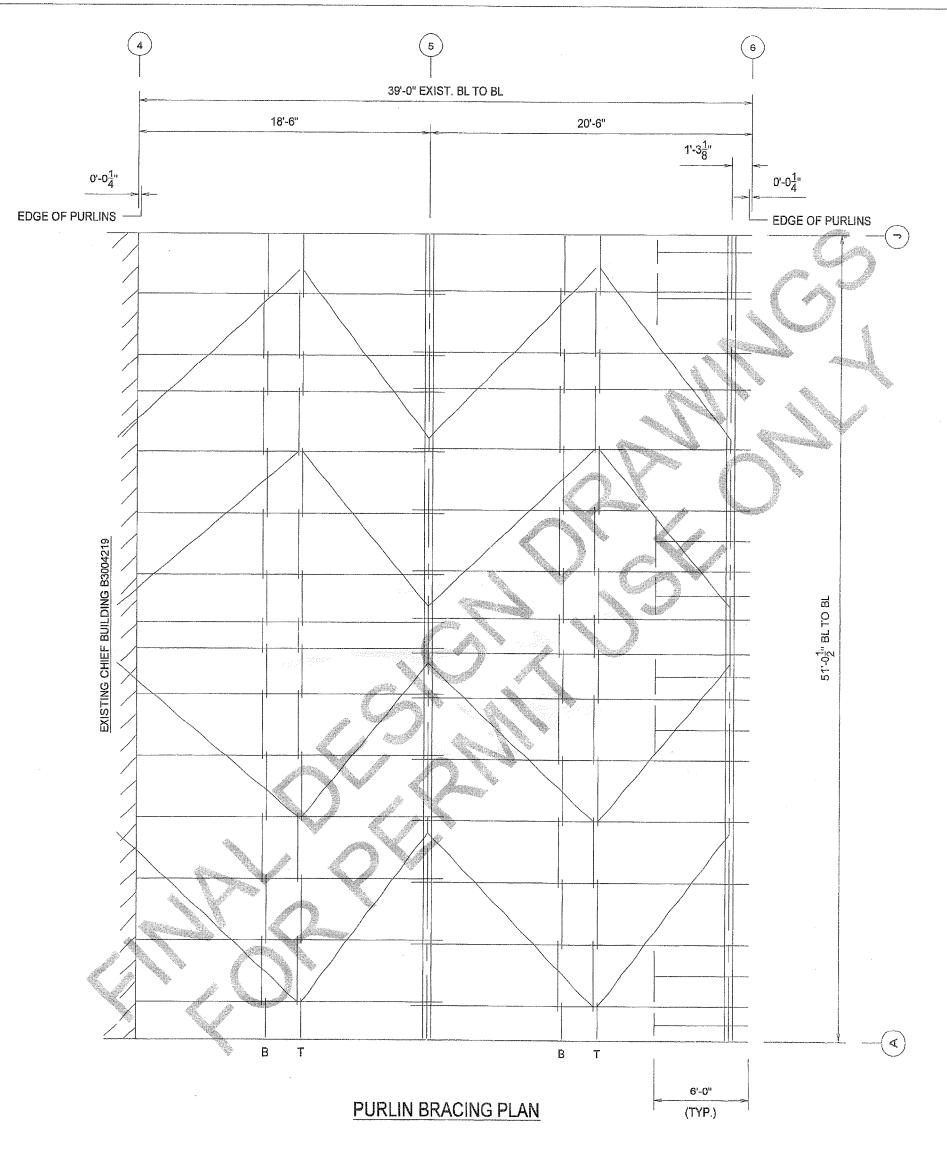
REVISIONS 2

NOTWITHSTANDING THE ADJACENT SEAL, NEITHER THE ENGINEER NAMED NOR CHIEF BUILDINGS IS ACTING AS THE ENGINEER OF RECORD. THE ENGINEER NAMED AND CHIEF BUILDINGS RESPONSIBILITY IS LIMITED TO THE STRUCTURAL PERFORMANCE OF THE PRE-ENGINEERED COMPONENTS DESIGNED BY CHIEF BUILDINGS.

ROOF FRAMING DRAWINGS

HEATH STEEL / WEAVER CONST. MANAGEMENT

FOUNTAIN, CO


RF 51'-0 1/2"X39'X19'-4" BAYS VARY 3:12

BUILDINGS

DRAWN RFH

ORDER NO.

B3004915

MATERIAL CALLOUTS:

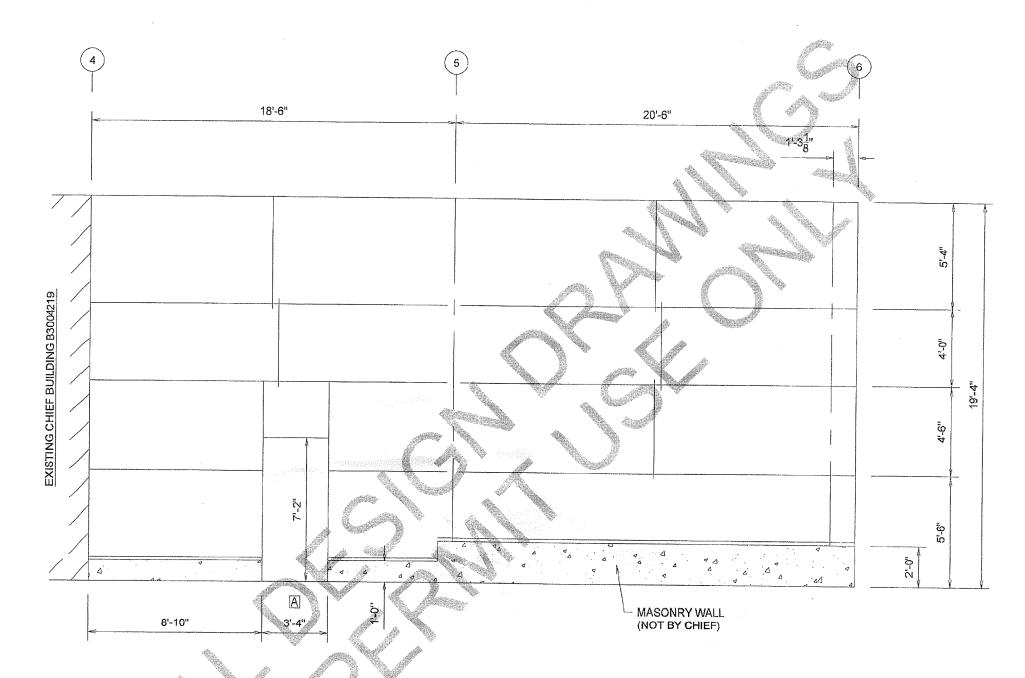
Sag angles are 1.50" X .50" X .125" angle

REFERENCE NOTES

ALL PURLINS ATTACH TO FRAMING USING "STD"
 ATTACHMENT UNLESS NOTED. REFER TO GD MANUAL
 SECTION 4 FOR BOLT LOCATIONS.

2. "T" = TOP SAG ANGLE.
"B" = BOTTOM SAG ANGLE.

REVISIONS	NOTWITHSTANDING THE ADJACENT
A	SEAL, NEITHER THE ENGINEER NAMED NOR CHIEF BUILDINGS IS ACTING AS THE ENGINEER OF RECORD. THE
<u> </u>	ENGINEER NAMED AND CHIEF BUILDINGS RESPONSIBILITY IS LIMITED TO THE STRUCTURAL PERFORMANCE OF THE
2	PRE-ENGINEERED COMPONENTS DESIGNED BY CHIEF BUILDINGS.
<u> </u>	


ROOF	FRAMING	DRAWINGS

HEATH STEEL / WEAVER CONST. MANAGEMENT

FOUNTAIN, CO

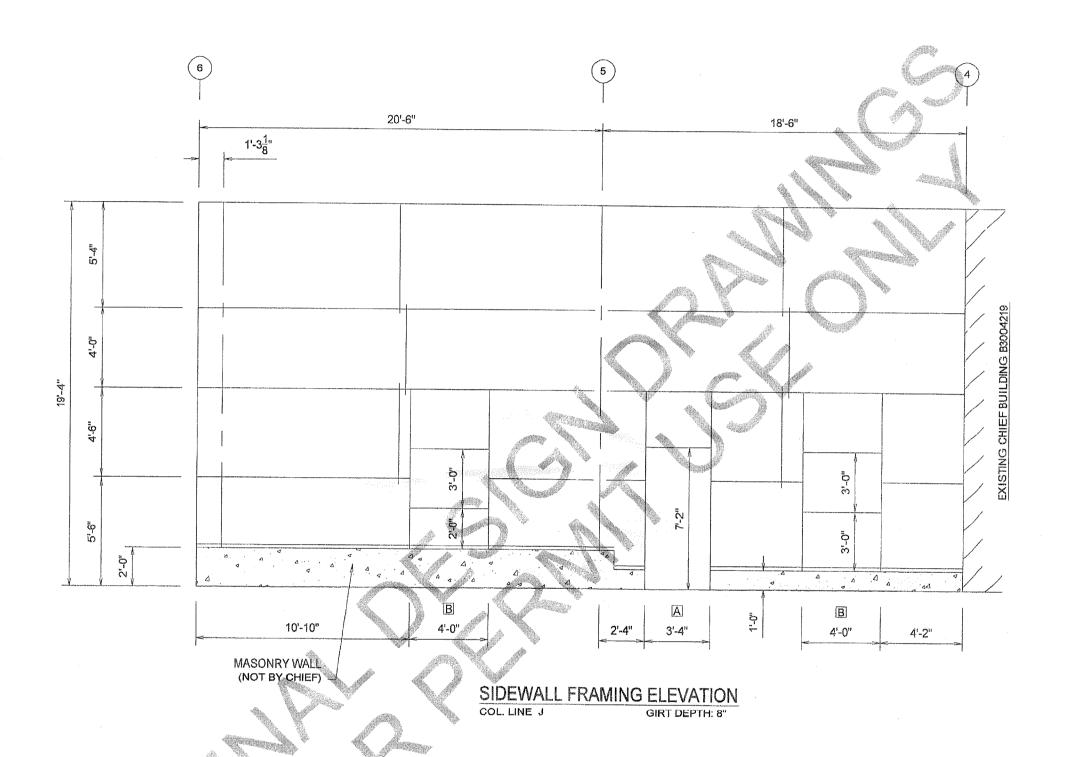
RF 51'-0 1/2"X39'X19'-4" BAYS VARY 3:12

		ment to dear out of a si	s south a filterar	
	DRAV	MN CHECK	ORDER NO.	RF2
UILDINGS division of Chief Industries, Inc. GRAF	RFI BOX 2076 ND (SLAND, NE 2-2076		B3004915	RF2

SIDEWALL FRAMING ELEVATION COL. LINE A GIRT DEPTH: 8"

MATERIAL CALLOUTS:

Girts in bay 1 are 8" C-Section, 12 gage mat'l. Girts in bay 2 are 8" C-Section, 14 gage mat'l. Walk door framing is 8" C-section, 16 gage mat'l.


REVISIONS	NOTWITHSTANDING THE ADJACENT
A	SEAL, NEITHER THE ENGINEER NAMED NOR CHIEF BUILDINGS IS ACTING
	AS THE ENGINEER OF RECORD. THE
3	ENGINEER NAMED AND CHIEF BUILDINGS RESPONSIBILITY IS LIMITED TO THE
2	STRUCTURAL PERFORMANCE OF THE PRE-ENGINEERED COMPONENTS DESIGNED BY CHIEF BUILDINGS
A	The state of the bole birds.

SIUI	IWALL	DRAWINGS				
HEA	TH ST	EEL / WEAVE	R CONS	T. MAN	AGEMEN	sangrau E
FOL	INTAIN	, co				
RF	51'-0 1	'2''X39'X19'-4'	BAYS V	/ARY 3	:12	The state of the s

(F 51-0 1/2 X39 X1	84. BAY	SVARY	3:12	
	DRAWN	CHECK	ORDER NO.	S1
ILDINGS 7	RFH			,

B3004915

MATERIAL CALLOUTS:

All girts are 8" C-Section, 12 gage mat'l. Walk door framing is 8" C-section, 16 gage mat'l. Window framing is 8" C-section, 16 gage mat'l.

REVISIONS	NOTWITHSTANDING THE ADJACENT
A	SEAL, NEITHER THE ENGINEER NAMED NOR CHIEF BUILDINGS IS ACTING
A	AS THE ENGINEER OF RECORD. THE ENGINEER NAMED AND CHIEF BUILDINGS
(3)	RESPONSIBILITY IS LIMITED TO THE STRUCTURAL PERFORMANCE OF THE
2	PRE-ENGINEERED COMPONENTS DESIGNED BY CHIEF BUILDINGS.
À	The state of the s

SIDEWALL DRAWINGS		And the second s
HEATH STEEL / WEAVER	CONST.	MANAGEMENT
FOUNTAIN, CO		

The second secon		1 1407 11 5	- 4/11/1	W. F.	
Chiefi		DRAWN	CHECK	ORDER NO.	S2
UILDINGS livision of Chief Industries, Inc. GRA	BOX 2078 ND ISLAND, NE 12-2078	RFH		B3004915	s: