

SUBMITTAL TRANSMITAL

April 20, 2011 WGC Submittal No: 03300-009.E

- PROJECT: Harold Thompson Regional WRF Birdsall Rd. Fountain, CO 80817 Job No. 2908
- ENGINEER: GMS, Inc. 611 No. Weber St., #300 Colorado Springs, CO 80903 719-475-2935 Roger Sams
- OWNER: Lower Fountain Metropolitan Sewage Disposal District 901 S. Santa Fe Ave. Fountain, CO 80817 719-382-5303 James Heckman
- CONTRACTOR: Baker Concrete Construction 1904 Jasper Street Aurora, CO 80011 937-536-9000 Nick Dewald

SUBJECT: Response to questions addressed in 03300-009.D on Polyheed 1720 admixture.

SPEC SECTION: 03300 - Cast-In-Place Concrete

PREVIOUS SUBMISSION DATES: 2/28/11

DEVIATIONS FROM SPEC: ____YES X__NO

CONTRACTOR'S STAMP: This submittal has been reviewed by Weaver General Construction and approved with respect to the means, methods, techniques, & safety precautions & programs incidental thereto. Weaver General Construction also warrants that this submittal complies with contracted documents and comprises on deviations thereto:

Contractor's Stamp:	Engineer's Stamp:
Date: 4/20/11 Reviewed by: H.C. Myers (X) Reviewed Without Comments () Reviewed With Comments	
ENGINEER'S COMMENTS:	

Letter of Transmittal/Submittal

FROM:	Ba	ker Concre	ete Construction							
		1904 Ja	sper Street			DATE		04/40/44	JOB NUMBER	
	Aurora, CO 80011						04/19/11	9921		
	303.367.8111					ATTENTION		John J	acob/Leslie Brown	
		Nick Dewal	vald 937.536.9000			Jonn		John Jo	Jacob/Lesne Brown	
TO:	John Jacob/	Leslie Bro	wn		_	RE:		Harold Tho	ompson Regional WRF	
	Weaver Gene	eral Const	ruction Co.		_					
	3679 South F	luron St.,	Suite 404		_					
	Englewood,	CO 80110			_	TR	#	03300-018		
	john@weave	rgc.com /	leslie@weavergc.con	n	_	SM	#	03300-009E		
We are send	ding you:	ATTACH	ED	via	EMAIL			the following:	SPECIFICATION	
COPIES	DATE	PAGES			Description	on				
1	4/19/2011	22	Response to 03300-	0091	D Questic	ons				

1	4/19/2011	22	Response to 03300-009D Questions

THESE ARE TRANSMITTED as noted below:

FOR APPROVAL]	
]	

REMARKS Attached is BCCI's response to the engineer's questions in 03300-009D concerning Polyheed 1720.

COPY TO File

SIGNED:

Nick Dewald

Baker Concrete Construction, Inc.

If enclosures are not as noted, kindly notify us at once

Rocky Mountain Premix, Inc. 2895 Capital Drive Colorado Springs, CO 80915 Office: (719) 591-8080 Fax: (719) 550-8000 Dispatch: (719) 638-8000

April 14, 2011

Mr. Nick Dewald Baker Concrete Construction, Inc. 1904 Jasper Street Aurora, CO 80011

Subject:

GMS, Inc. Letter Dated March 23, 2011 RE: Concrete Admixture Change to Polyheed 1720

Mr. Dewald:

This letter is in response to the above mentioned letter. Contained in the aforementioned letter were the following questions regarding the change from the chemical water reducing admixture Polyheed 1020 to Polyheed 1720:

1. We request the following information be provided regarding this product. These questions were asked at the Design Team Conference on March 18, 2011.

- a. Why is there a need to change the admixture presently being used in the mix designs?
- b. What changed in the project so a different product is needed?
- c. Is the Polyheed 1720 admixture a superior product to the Polyheed 1020?
- d. Is the request for the Polyheed 1720 being made because it is cheaper than Polyheed 1020?
- e. Has this product been previously used in a wastewater treatment plant application?

2. Provide documentation from the manufacturer the Polyheed 1720 is an approved and acceptable admixture to be used in a concrete mix design for wastewater treatment plant applications where hydrogen sulfide is present.

BASF has provided a letter that addresses the questions 1.c., 1.e., and 2. This letter has been attached for your review.

We at Rocky Mountain Premix, Inc. have done various laboratory and field trials using the Polyheed 1720 product and feel that the benefits the chemical admixture provides to our clients, and to us, justified the switch from the Polyheed 1020 to the Polyheed 1720. During these trials, we have experienced better slump retention, higher early age strengths, more consistent air contents, and better setting characteristics allowing us to provide our clients with a better end result product.

Switching to the Polyheed 1720 was not a result of any specific conditions on the Harold D. Thompson Regional Water Reclamation Facility project.

Polyheed 1720 allows us to better optimize concrete mixtures for our client's needs, allowing for the ability to value engineer individual products. This allows for several market-place advantages, with cost neutrality.

We trust this meets your current needs regarding the Polyheed 1720 product. If there are any questions or if we can be of further service regarding this concrete mixture, please do not hesitate to contact us.

Respectfully,

Cut

Zachoriah J. Ballard, El Quality Control Manager

ZJB/zjb

3

Attachments: BASF letter RE: Polyheed 1720, dated April 12, 2011.

,

April 12, 2011

Mr. Zachoriah Ballard Rocky Mountain Premix, Inc. Colorado Springs, CO

RE: PolyHeed 1720

Dear Mr. Ballard:

Per request of Bill Deal, our local area BASF Sales Specialist, I would like to confirm that PolyHeed 1720 will provide the same good concrete performance characteristics as PolyHeed 1020. PolyHeed 1720 is part of the next generation polycarboxylate admixtures which have been specifically designed to provide the same water reduction, better slump retention, better setting characteristics, more consistent air contents and higher early age strengths than the earlier polycarboxylate based Mid-Range Water Reducing Admixtures such as PolyHeed 1020. From a producer standpoint, usage and handling of PolyHeed 1720 will be very similar to that of PolyHeed 1020. Contractors will see the benefits of the longer slump retention and more consistent air content.

PolyHeed 1720 was introduced in 2007. It has been approved by 13 State DOT's and has been tested by AASHTO NTPEP. It conforms to ASTM C494 Type A, Water–Reducing and Type F, High-Range Water-Reducing Admixture specifications. The ASTM C494 Test Reports are available for review upon request.

The purpose of Water-Reducing admixtures such as PolyHeed 1720 and PolyHeed 1020 is to provide concrete workability while reducing water content, thus increasing concrete strength and durability properties. They are not generally designed to specifically provide protection against hydrogen sulfide attack in sewage treatment applications. However, by reducing the water/cement ratio of the concrete, the density of the concrete structure is increased and the permeability is decreased, which provides a more durable concrete which resists the ingress of corrosive chemicals.

Please feel free to give me a call with any questions you may have concerning BASF admixtures.

al & Pertur

Mark E. Piechuta Sr. Technical Marketing Specialist BASF Corporation (216) 839-7072

cc: Bill Deal- BASF Corporation

BASF Corporation 23700 Chagrin Boulevard Cleveland, Ohio 44122 USA 216 839-7500 ph www.basf-admixtures.com

Admixture Solutions

Rocky Mountain Premix, Inc. 2895 Capital Drive Colorado Springs, Colorado 80935 Office: (719) 591-8080 Fax: (719) 550-8000 Dispatch: (719) 638-8000

CONCRETE MIXTURE DESIGN REPORT

RMPM Mixture ID#:	A65FDP
Date Mix Reported :	4/12/2011
Class / Use:	Drilled Piers, 3750 psi

Material	Amount / Cubic Yard	Source / Type	ASTM Std
Cement	489 lbs	GCC, Pueblo Plant, Type I-II LA	C 150
Fly Ash	122 lbs	Boral, FACT Craig, Class F	C 618
Coarse Aggregate*	1690 lbs	RMMA, Clevenger Pit, #57/67	C 33
Fine Aggregate*	1340 lbs	RMMA, Clevenger Pit, WCS	C 33
Water (25.9 gal.)	216 lbs	Muncipal	C 94
Air Entraining Agent (1.05 oz./cwt)**	6.4 oz	BASF, MB AE 90	C 260
Water Reducer (1.47 oz./cwt)**	9.0 oz	BASF, Pozzolith 200 N	C 494
Water Reducer (3.99 oz./cwt)**	24.4 oz	BASF, Polyheed 1720	C 494

*Aggregate masses determined in SSD condition. **Admixture dosages may be adjusted based on varying environmental and/or jobsite conditions.

Design Physical Properties

Unit Weight:	141.5 pcf
Air Content:	6.6 %
Slump:	5.25 in.
(w/cm) Ratio:	0.35
Relative Yield:	1.01 cy
Percent Fly Ash:	20 %
Cementitious Content:	611 lbs.
Percent Coarse Aggregate:	56 %

Prepared by Rocky Mountain Premix, Inc.

Zachoriah J. Ballard, El Quality Control Manager

Cast Date	7 Day Break Results	Cast Date	28 day Break Results
2/12/2011	3820	2/12/2011	5120
	4180	A2952-2012-2012-2017-2017-2017-2017-2017-201	5260
1/21/2011	3240	1/21/2011	4020
	3290		4240
1/19/2011	3270	1/19/2011	4650
	3290		4520
1/17/2011	3800	1/17/2011	4650
	3840		4410
1/14/2010	3360	1/14/2010	4040
	3050		4180
1/8/2011	3790	1/8/2011	4200
	3980		4650
	3900		4820
1/5/2011	4070	1/5/2011	5010
	3900		4940
12/23/2010	3420	12/23/2010	4700
			4810
	-		

28 day Avg Strength:	4601	psi
Standard Deviation:	376	psi
k-factor(K):	1.16	
f'c:	4000	psi
f' _c required:	f' _c +1.34ks	
f' _c required:	4584	psi

April 12, 2011

Project: Various Project location: Various

Certificate of Conformance MB-AE[™] 90 BASF Construction Chemicals, LLC* Air-Entraining Admixture for Concrete

*(successor in interest to BASF Construction Chemicals, LLC, which is successor by merger to BASF Admixtures, Inc., formerly known as Degussa Admixtures, Inc., formerly known as Master Builders, Inc.)

I, Richard Hubbard, Sr. Technical Marketing Specialist for BASF Corporation, Cleveland, Ohio,certify:

That MB-AE 90 is a BASF Corporation Air-Entraining Admixture for concrete; and

That no calcium chloride or chloride based ingredient is used in the manufacture of MB-AE 90; and

That MB-AE 90, based on the chlorides originating from all the ingredients used in its manufacture, contributes less than 0.000068 percent (0.68 ppm) chloride ions by weight of the cement when used at the rate of 65 mL per 100 kg (1 fluid ounce per 100 pounds) of cement; and

That MB-AE 90 meets the requirements of ASTM C 260, Corps of Engineers' CRD-C 13 and AASHTO M154, the Standard Specifications for Air-Entraining Admixtures for Concrete.

Richard Hudberd II

Richard Hubbard Sr. Technical Marketing Specialist, BASF Corporation

BASF Corporation 23700 Chagrin Boulvard Cleveland, OH 44122 216 839-7500 ph www.masterbuilders.com

April 12, 2011

Project: Various Project location: Various

Certificate of Conformance Polyheed® 1720 BASF Corporation* Admixture for Concrete

*(successor in interest to BASF Construction Chemicals, LLC, which is successor by merger to BASF Admixtures, Inc., formerly known as Degussa Admixtures, Inc., formerly known as Master Builders, Inc.)

I, Richard Hubbard, Sr. Technical Marketing Specialist for BASF Corporation, Cleveland, Ohio,certify:

That PolyHeed 1720 is a BASF Corporation Mid-Range Water-Reducing Admixture for concrete; and

That no calcium chloride or chloride based ingredient is used in the manufacture of PolyHeed 1720; and

That PolyHeed 1720, based on the chlorides originating from all the ingredients used in its manufacture, contributes less than 0.00014 percent (1.4 ppm) chloride ions by weight of the cement when used at the rate of 65 mL per 100 kg (1 fluid ounce per 100 pounds) of cement; and

That, depending on the dosage used, PolyHeed 1720 meets the requirements for a Type A, Water-Reducing, and Type F, Water-Reducing High Range Admixture specified in ASTM C 494, Corps of Engineers' CRD-C 87 and AASHTO M194, the Standard Specifications for Chemical Admixtures for Concrete.

Richard Hudbord II

Richard Hubbard Sr. Technical Marketing Specialist, BASF Corporation

BASF Corporation 23700 Chagrin Boulvard Cleveland, OH 44122 216 839-7500 ph www.masterbuilders.com

April 12, 2011

Project: Various Project location: Various

Certificate of Conformance Pozzolith® 200 N BASF Corporation* Admixture for Concrete

*(successor in interest to BASF Construction Chemicals, LLC, which is successor by merger to BASF Admixtures, Inc., formerly known as Degussa Admixtures, Inc., formerly known as Master Builders, Inc.)

I, Richard Hubbard, Sr. Technical Marketing Specialist for BASF Corporation, Cleveland, Ohio,certify:

That Pozzolith 200 N is a BASF Corporation Water-Reducing Admixture for concrete; and

That no calcium chloride or chloride based ingredient is used in the manufacture of Pozzolith 200 N; and

That Pozzolith 200 N, based on the chlorides originating from all the ingredients used in its manufacture, contributes less than 0.00013 percent (1.3 ppm) chloride ions by weight of the cement when used at the rate of 65 mL per 100 kg (1 fluid ounce per 100 pounds) of cement; and

That, depending on the dosage used, Pozzolith 200 N meets the requirements for a Type A, Water-Reducing, Type B, Retarding, and Type D, Water Reducing and Retarding Admixture as specified in ASTM C 494, Corps of Engineers' CRD-C 87 and AASHTO M194, the Standard Specifications for Chemical Admixtures for Concrete.

Richard Hudbord II

Richard Hubbard Sr. Technical Marketing Specialist, BASF Corporation

BASF Corporation 23700 Chagrin Boulvard Cleveland, OH 44122 216 839-7500 ph www.masterbuilders.com

June 14, 2010

Rocky Mountain Premix Inc. 2895 Capital Drive Colorado Springs, Colorado 80939

Attention: Mr. Randy Morris

Subject: Physical Properties Testing No. 57/67, Clevenger Pit Project No. CT15042.000-400

Dear Mr. Morris:

This report presents results of physical properties testing performed on material delivered to our laboratory in May, 2010. Representative samples delivered were identified as No. 57/67 rock from the Clevenger Pit. Testing was performed to determine the materials compliance with Colorado Department of Transportation (CDOT) specifications. The following testing was performed in general conformance with the applicable standards.

- 1) Sieve Analysis (Gradation)
- 2) Material Finer Than No. 200 Sieve by Washing
- 3) Specific Gravity & Absorption
- 4) Clay Lumps & Friable Particles
- 5) Lightweight Particles 2.0 & 2.4
- 6) Sodium Sulfate Soundness
- 7) Rodded Unit Weight & Voids
- 8) Los Angeles Abrasion

A summary of the aggregate test results is attached, followed by the complete test results. Based on the test results, the material tested meets the CDOT specifications for coarse aggregate. If you have any questions regarding this report, please call.

Respectfully submitted,

CTL | THOMPSON MATERIALS ENGINEERS, INC.

aniel J. Barre Daniel L. Barrett

Materials Lab Manager

DLB:DBT/dlb Enclosures Pamon B. Thomas, P.E. Division Manager

CTLITHOMPSON

1 copy emailed:

lab@rockymountainpremix.com

Aggregate Qualification Summary - CDOT Specifications (AASHTO M 80)

Rocky Mountain Premix - Clevenger Pit, No. 57/67

Project No. CT15042-400

Report Date: June 14, 2010

Sieve Analysis (AASHTO T 27 & T 11)				
	Sieve Size	Passing (%)	Specification (%)	
1-1/2 inch (37.5 mm)	100	100	
1 inch (25 mm)		100	100	
3/4 inch (19 mm)		90	90-100	
1/2 inch (12.5 mm)		47	25-60	
3/8 inch (9.5 mm)		24	20-55	
No. 4 (4.75 mm)	·	5	0-10	
No. 8 (2.36 mm)		3	0-5	
No. 200 (75 µm)		0.7	1.0 Max	
Fineness Modulus		-	-	
	Test	Results	Specification	
Specific Gravity (AA	SHTO T 85)	2.64	**	
Absorption (AASHT	ОТ 85)	1.2%	-	
	able Particles (AASHTO T 112)	0.7% Weighted Particles	2.0% Max	
	s, 2.0 sp.g. (AASHTO T 113)	< 0.1%	0.5% Max	
Lightweight Particles	s, 2.4 sp.g. (AASHTO T 113)	2.1%	3.0% Max	
Sodium Sulfate Sou	ndness (AASHTO T 104)	0% Weighted Loss	12% Max	
Magnesium Sulfate	Soundness (AASHTO T 104)	-	18% Max	
Rodded Unit	Unit Weight	104 pcf	-	
Weight & Voids	Percent Voids	36%		
(AASHTO T 19)	Tons per cubic yard	1.4 tons/cu. yd.		
Loose Unit	Unit Weight	-	-	
Weight & Voids	Percent Voids	-	-	
(AASHTO T 19)	Tons per cubic yard	-	-	
Los Angeles Abrasio	on (AASHTO T 96)	27%	45% Max	

CTL | THOMPSC ERS, INC. 0990 CALALLEN COM ۲homas, P.E.

ATTACHMENT A

LABORATORY TEST RESULTS

PHYSICAL PROPERTIES OF AGGREGATES

Company Name:Rocky Mountain PremixMaterial Source:Clevenger PitMaterial Type:No. 57/67

Project No. CT15042-400 Report Date: June 14, 2010

Sieve Analysis of Coarse Aggregate

(AASHTO	Т	27)	
---------	---	-----	--

Sieve Size	Percent Passing No. 57/67	Percent Passing (AASHTO M 80)
1-1/2 inch (37.5 mm)	100	100
1 inch (25 mm)	100	100
3/4 inch (19 mm)	90	90-100
1/2 inch (12.5 mm)	47	25-60
3/8 inch (9.5 mm)	24	20-55
No. 4 (4.75 mm)	5	0-10
No. 8 (2.36 mm)	3	0-5
No. 200 (75 µm)	0.7	1.0 Max

Material Finer Than No. 200 Sieve by Washing

C	(AASHTO T 11)					
Initial Dry Weight (g)	Final Dry Weight (g)	Material Finer Than No. 200 Sieve (%)				
5340.3	5300.3	0.7				

Specific Gravity and Absorption of Coarse Aggregate

	(AASHTO T 85)							
Oven Dry Weight (g)	SSD in Air Weight (g)	Submerged Weight (g)	Bulk Volume	Bulk (SSD) Specific Gravity	Absorption (%)			
6765.8	6845.8	4254.0	2591.8	2.64	1.2			

Clay Lumps and Friable Particles in Aggregate

(AASHTO T 112)

Siev	e Size	Percent Grading of	Weight Before	Weight After	Percent Loss	Weighted Percent
Passing	Retained	Sample	(g)	(g)		Loss
	1-1/2 inch	0	· .			
1-1/2 inch	3/4 inch	10	3002,5	2991.1	0.4	0.0
3/4 inch	3/8 inch	66	2001.8	1988.3	0.7	0.5
3/8 inch	No. 4	19	1000	992.4	0.8	0.2
Less Tł	nan No. 4	5	-	-	-	-
Total I	Percent Grading	100		Total W	eighted Loss	0.7%

PHYSICAL PROPERTIES OF AGGREGATES

Company Name: Rocky Mountain Premix Material Source: Clevenger Pit Material Type: No. 57/67

Project No. CT15042-400 Report Date: June 14, 2010

Lightweight Particles in Aggregate (AASHTO T 113)

Sample	Specific Gravity	Percentage by Mass of				
Weight (g)	of Liquid	Lightweight Particles				
8156.4	2.0	< 0.1				
8156.4	2.4	2.1				

Soundness of Coarse Aggregates by Use of Sodium Sulfate (AASHTO T 104)

Sieve	e Size	Percent Grading	Weight	Weight	Percent	Weighted
Passing	Retained	of Sample	Before(g)	Before(g) After (g)		% Loss
1-1/2 inch	1 inch	0]
1 inch	3/4 inch	10	670.4	670.1	0.0	0.0
3/4 inch	1/2 inch	43	1000.0	999.6	0.0	0.0
1/2 inch	3/8 inch	23	330.1	329.3	0.2	0.1
3/8 inch	No. 4	19	300.0	298.8	0.4	0.1
Less Th	an No. 4	5	-	<u></u>	-	

Total Percent Grading: 100

Total Weighted Loss:

0

Bulk Density (Unit Weight) and Voids in Aggregates (Rodded Method) (AASHTO T 19)

Sample Weight (lbs)	Bucket Volume (ft ³)	Unit Weight (pcf)
34.70	0.333	104.2
34.36	0.333	103.2
34.46	0.333	103.5
	Average Unit Weight:	104 pcf

Average Unit Weight:

Bulk Specific Gravity (OD) = 2.61

Voids in Aggregate Compacted by Rodding = 36%

Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine

(AASHTO T 96)						
Grading	Initial Weight	Final Weight	Percent Loss			
В	5000	3638.9	27.2			

June 14, 2010

Rocky Mountain Premix Inc. 2895 Capital Drive Colorado Springs, Colorado 80939

Attention: Mr. Randy Morris

Subject: Physical Properties Testing Sand, Clevenger Pit Project No. CT15042.000-400

Dear Mr. Morris:

This report presents results of physical properties testing performed on material delivered to our laboratory in May, 2010. Representative samples delivered were identified as Sand from the Clevenger Pit. Testing was performed to determine the materials compliance with Colorado Department of Transportation (CDOT) specifications. The following testing was performed in general conformance with the applicable standards.

- 1) Sieve Analysis (Gradation)
- 2) Material Finer Than No. 200 Sieve by Washing
- 3) Specific Gravity & Absorption
- 4) Clay Lumps & Friable Particles
- 5) Lightweight Particles 2.0
- 6) Sodium Sulfate Soundness
- 7) Rodded Unit Weight & Voids
- 8) Sand Equivalency
- 9) Organic Impurities

A summary of the aggregate test results is attached, followed by the complete test results. Based on the test results, the material tested meets the CDOT specifications for fine aggregate. If you have any questions regarding this report, please call.

Respectfully submitted,

CTL | THOMPSON MATERIALS ENGINEERS, INC.

9. Barre

Daniel L. Barrett Materials Lab Manager

DLB:DBT/dlb Enclosures

1 copy emailed:

lab@rockymountainpremix.com

CTLITHOMPSON

Aggregate Qualification Summary - CDOT Specifications (AASHTO M 6)

Rocky Mountain Premix - Clevenger Pit, Sand

Project No. CT15042-400

Report Date: June 08, 2010

		ASHTO T 27 & T 11)	o 'e' /' /0/)
	Sieve Size	Passing (%)	Specification (%)
2 inch (50 mm)		100	a
1-1/2 inch (37.5 mm)	100	
1 inch (25 mm)		100	u
3/4 inch (19 mm)		100	-
1/2 inch (12.5 mm)		100	10
3/8 inch (9.5 mm)		100	100
No. 4 (4.75 mm)		97	95-100
No. 8 (2.36 mm)		80	80-100
No. 16 (1.18 mm)		62	50-85
No. 30 (600 µm)		43	25-60
No. 50 (300 µm)		18	10-30
No. 100 (150 µm)	an an an ann an an an an an an an an an	5	2-10
No. 200 (75 µm)		1.7	3.0 Max
Fineness Modulus		2.95	2.50 - 3.50
	Test	Results	Specification
Specific Gravity (AA	SHTO T 84)	2.60	_
Absorption (AASHTO T 84)		1.1%	
Clay Lumps and Friable Particles (AASHTO T 112)		2.4% Weighted Particles	3.0% Max
Lightweight Particles, 2.0 sp.g. (AASHTO T 113)		0.1%	0.5% Max
and the second se	s, 2.4 sp.g. (AASHTO T 113)	- 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 1997 - 19	3.0% Max
	ndness (AASHTO T 104)	1% Weighted Loss	10% Max
	Soundness (AASHTO T 104)		15% Max
Rodded Unit	Unit Weight	111 pcf	paparan
Weight & Voids	Percent Voids	31%	2.22000-00-00-00-00-00-00-00-00-00-00-00-0
(AASHTO T 19)	Tons per cubic yard	1.5 tons/cu. yd.	
Loose Unit	Unit Weight	-	
Weight & Voids	Percent Voids		
(AASHTO T 19)	Tons per cubic yard	<u>a mangan ng kapang kapang kana pang kapang kananan ng kapang kapang kananan kanang kanang kapang kapang kapang Ma</u>	
Los Angeles Abrasi		-	
	ured Particles (ASTM D 5821)	_	-
Sand Equivalency (88 (Average)	80 Minimum
Sum of Deleterious			
Organic Impurities (Plate 1	< Plate 3
erganie inipanties (
Dave in Soak		(ASTM C 1260 & CP-L 4201 Classification	Potential for
Days in Soak	Average Expansion (%)	Glassification	Deleterious ASR
		-	

CTL | THOMPSO ERS, INC. ban 🖉. Thomas, PE 61 Manager

ATTACHMENT A

•

LABORATORY TEST RESULTS

PHYSICAL PROPERTIES OF AGGREGATES

Company Name:Rocky Mountain PremixMaterial Source:Clevenger PitMaterial Type:Sand

Project No. CT15042-400 Report Date: June 8, 2010

Sieve Analysis of Fine Aggregate

(A	AS	HТ	0	T	27)

Sieve Size	Percent Passing Sand	Percent Passing (AASHTO M 6)
3/8 inch (9.5 mm)	100	100
No. 4 (4.75 mm)	97	95-100
No. 8 (2.36 mm)	80	80-100
No. 16 (1.18 mm)	62	50-85
No. 30 (600 μm)	43	25-60
No. 50 (300 μm)	18	10-30
No. 100 (150 μm)	5	2-10
No. 200 (75 μm)	1.7	3.0 Max

Material Finer Than No. 200 Sieve by Washing

(AASHTO T 11)

Initial Dry	Final Dry	Material Finer Than
Weight (g)	Weight (g)	No. 200 Sieve (%)
757.7	744.6	1.7

Specific Gravity and Absorption of Fine Aggregate

(AASHTO T 84)

Pycnometer	SSD In	Pycnometer	Bulk	Oven	Bulk (SSD)	Absorption
Weight With	Air Weight	Weight With	Volume	Dry	Specific	(%)
Water (g)	(g)	Sample (g)		Weight (g)	Gravity	
672.3	500.0	980.3	192.0	494.6	2.60	1.1

Clay Lumps and Friable Particles in Aggregate

(AASHTO T 112)

Sieve	Sieve Size		Weight	Percent	
Passing	Retained	(g)	After (g)	Particles	
No. 4	No. 16	25.2	24.6	2.4	

Lightweight Particles in Aggregate

(AASHTO T 113)						
Sample Weight (g)	Specific Gravity of Liquid	Percentage by Mass of Lightweight Particles				
2297.6	2.0	0.1				
	2.4					

PHYSICAL PROPERTIES OF AGGREGATES

1

Company Name:Rocky Mountain PremixMaterial Source:Clevenger PitMaterial Type:Sand

Project No. CT15042-400 Report Date: June 8, 2010

Soundness of Fine Aggregates by Use of Sodium Sulfate (AASHTO T 104)

Sieve Size		Percent Grading	Weight	Weight	Percent	Weighted
Passing	Retained	of Sample	Before(g)	After (g)	Loss	% Loss
3/8"	No. 4	3	-	-	0.6	0.0
No. 4	No. 8	17	100.0	99.4	0.6	0.1
No. 8	No. 16	18	100.0	99.3	0.7	0.1
No. 16	No. 30	19	100.0	99.0	1.0	0.2
No. 30	No. 50	25	100.0	98.6	1.4	0.4
Less that	an No. 50	18	es.	8		

Total Percent Grading: 100

Total Weighted Loss:

Bulk Density (Unit Weight) and Voids in Aggregates (Rodded Method)

(AASHTOTT9)						
Sample Weight (lbs)	Bucket Volume (ft ³)	Unit Weight (pcf)				
10.88	0.0985	110.5				
10.90	0.0985	110.7				
10.94	0.0985	111.1				

Average Unit Weight:

111 pcf

.

Bulk Specific Gravity (OD) = 2.58

Voids in Aggregate Compacted by Rodding = 31%

Sand Equivalent Value of Soils and Fine Aggregate

(AASHTO T 176)

Tube Number	Clay Reading	Sand Reading	Sand Equivalent
No. 1	4.3	3.8	88
No. 2	4.2	3.7	88
No. 3	4.2	3.7	88

Average Sand Equivalency:

Organic Impurities in Fine Aggregate

(AASHTO T 21)

Organic Plate
Plate Number 1

88

ASTM C 618 TEST REPORT

Sample Number: S-101210012 Sample Date: November 2010		Report Date: Sample Source: Tested By:	1/28/2011 Denver jx
TESTS	RESULTS	ASTM C 618 CLASS F/C	AASHTO M 2 CLASS F/C
CHEMICAL TESTS			
Silicon Dioxide (SiO2), %	54.82		
Aluminum Oxide (Al2O3), %	23.70		
Iron Oxide (Fe2O3), %	5.30		
Sum of SiO2, Al2O3, Fe2O3, %	83.82	70.0/50.0 min.	70.0/50.0 min.
Calcium Oxide (CaO), %	8.57		
Magnesium Oxide (MgO), %	2.31		
Sulfur Trioxide (SO3), %	0.45	5.0 max.	5.0 max.
Sodium Oxide (Na2O), %	0.37		
Potassium (K2O), %	1.21		
Total Alkalies (as Na2O), %	1.17		
Available Alkalies (as Na2O), %	0.59		
PHYSICAL TESTS			
Moisture Content, %	0.04	3.0 max.	3.0 max.
Loss on Ignition, %	0.59	6.0 max.	5.0 max.
Amount Retained on No. 325 Sieve, %	18.31	34 max.	34 max.
Specific Gravity	2.34		
Autoclave Soundness, %	0.03	0.8 max.	0.8 max.
SAI, with Portland Cement at 7 Days, % of Control	77.7	75 min.*	75 min.*
SAI, with Portland Cement at 28 Days, % of Control	92.4	75 min.*	75 min.*
Water Required, % of Control	95.9	105 max.	105 max.
Loose, Dry Bulk Density, lb/cu. ft.	71,90		

Meets ASTM C 618 and AASTO M 295, FDOT Section 929, TXDOT DMS 4610, SCDHPT and MDOT specifications for Class F Fly Ash

* Meeting the 7 day or 28 day Strength Activity Index will indicate specification compliance.

Approved By:

lana Diana Benfield QG SpecialIst

Approved By:

han suco

Brian Shaw Materials Testing Manager

Potential Alkali Reactivity (Mortar Bar Method) ASTM C 1567

(250 mm Mold)

Modified for Proportioning of Aggregates & Blends of Cementitious Materials

Project No.:	11.013.B, Rocky	Mountain Premix, Inc.	Technician:	raz
Project Name:	General Lab Tes	ting	Date:	23-Mar-11
Lab ID Number:	115031		Reviewer:	WSC
Type & Source of	Aggregate (1):	Clevenger Pit # 57/ # 67 (55%)		
Type & Source of	Aggregate (2):	Clevenger Washed Concrete Sand (45%)		
Type & Source of Cement:		GCC LA Type I/II (80%)		
Type & Source of	Fly Ash:	Boral Fact Craig Class F (20%)		

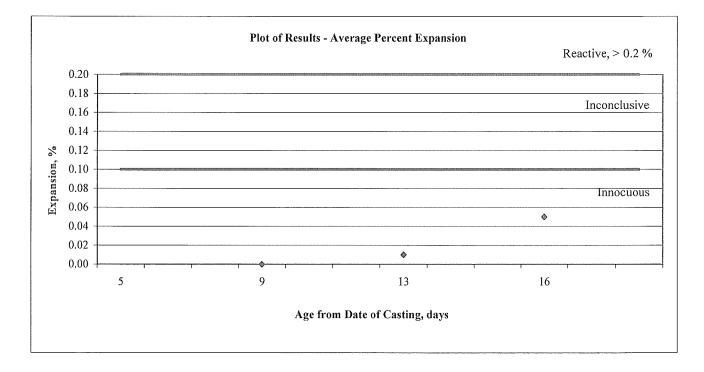
Crading: Dataining Sigua	WCS Mass, g @		Cemer
Grading: Retaining Sieve	(45%)	(55%)	(8
#8	44.5	54.5	3
#16	111.4	136.1	Mass of
#30	111.4	136.1	Mass o
#50	111.4	136.1	
#100	66.8	81.7	
45.0%	445.5	544.5	55.0%
Total	99	0.0	

Cement Mass, g	Fly Ash Mass, g
(80%)	(20%)
352.0	88.0
Mass of Cement, g:	440.0
Mass of Water, g:	206.8
W/C Ratio:	0.47

Comparator Readings

	(24 hrs) Initial	A:	0.594	(48 hrs) Zero	A:	0.772
	Readings:	B:	-0.342	Readings:	B:	-0.162
Date:	3/24/2011	C:	-0.214	3/25/2011	C:	-0.038

Date	Age, days	Reading, mm		Difference	% Change	Average % Expansion	
		Α	0.740	-0.032	-0.013		
3/28/2011	3/28/2011 5	В	-0.186	-0.024	-0.010	-0.01	
		C	-0.068	-0.030	-0.012		
		A	0.768	-0.004	-0.002		
4/1/2011	9	В	-0.164	-0.002	-0.001	0.00	
		C	-0.050	-0.012	-0.005		
		A	0.795	0.023	0.009		
4/5/2011	13	В	-0.142	0.020	0.008	0.01	
		C	-0.026	0.012	0.005		
	16		A	0.900	0.128	0.051	
4/8/2011		В	-0.023	0.139	0.056	0.05	
		С	0.080	0.118	0.047		



Potential Alkali Reactivity (Mortar Bar Method) ASTM C 1567

(250 mm Mold)

Modified for Proportioning of Aggregates & Blends of Cementitious Materials

Project No.:	11.013.B, Rocky Mountain Premix, Inc.		Technician:	raz
Project Name: General Lab Testing		Date:	23-Mar-11	
Lab ID Number:	115031		Reviewer:	WSC
Type & Source of	Aggregate (1):	Clevenger Pit # 57/ # 67 (55%)		
Type & Source of	Aggregate (2):	Clevenger Washed Concrete Sand (45%)		
Type & Source of	Cement:	GCC LA Type I/II (80%)		
Type & Source of	Fly Ash:	Boral Fact Craig Class F (20%)		

GCC of America 130 Rampart Way, Sle. 205 Denver, CO 80230 Sales (303) 739-5900 Customer Service (800) CALL GCC

Plant: Pueblo	Cement Type:	VII,I/II(MH), Low Alkali
3600 Lime Road	Date:	15-Feb-11
Pueblo, CO 81004	Production Period:	Jan-11
Contact: Bob Venable	Silo:	1, 2, 4
Phone: (719) 647-6800	······	

STANDARD REQUIREMENTS ASTM C 150 -09/AASHTO M 85

6	HEMIGAL		
ltem	Spec. Limit	Test Result	
SiO ₂ (%)	A	20.7	
Al _z O ₃ (%)	6.0 max	4.5	
Fe ₂ O ₃ (%)	6.0 max	3.3	
СаО (%)	A	63.9	
MgO (%)	6.0 max.	1.0	
SO3(%)	3,0 max.	2.9	
Ignition Loss (%)	3.0 max.	2.4	
Na₂O (%)	A	0,15	
K₂O (%)	A	0.57	
Equivalent Alkalies (%)	8	0.53	
Insoluble Residue (%)	0.75 max.	0.41	
CO₂ (%)	A	1.27	
Limestone (%)	5.0 max.	3.3	
CaCO3 in Limestone (%)	70 min	87	
Potential Compounds (%)			
C ₃ S	Α	54	
C ₂ S	A	19	
C3A	8 max	6	
C₄AF	A	10	
C ₃ S + 4.75 C ₃ A	100 max	84	

	PHY	SICAL		
	ltem	Spec. Limit	Test Result	
Air content of	mortar (volume %)	12 max	7	
Blaine finenes	s (m²/kg)	260 mln.	400	
		430 max.		
C-1038		0,02 max.	0.01	
Autoclave exp	anslon (%)	0.80 max.	0.01	
False sel (%)		50 min.	68	
Compressive	strength (MPa)		MPa	psi
1 day, M	linimum MPa (psi)	A	20	2860
3 day, M	linimum MPa (psl)	12 (1740)	32	4660
7 day, N	linimum MPa (psi)	19 (2760)	38	5470
28 day, N	linimum MPa (psi)	A	In Progress	
Time of settin	g, Vicat (minutes)			
Initial	Not less than	45	113	
Initial	Not more than	375		
ADDITION (ff.	Applicable)			
Pozzolan Typ	e: N/A Poten	tial Compour	nds (%)	
SIO2(%)	N/A	C ₃ S	N/A	
Al ₂ O ₃ (%)	N/A	C ₂ S	N/A	
Fe ₂ O ₃ (%)	92O3(%) N/A		N/A	
CaO (%)	N/A	C₄AF	N/A	
SO3(%)	N/A			

A Not applicable.

B Limit not specified by purchaser. Test result for information only.

GCC of America Portland Cement is warranted to conform at the time of shipment with ASTM C-150/AASHTO 85. No other warranty is made or implied. Having no control over the use of its cements, GCC of America does not guarantee finished work. GCC is not responsible for any additives not stated in the Certificate of Compliance. GCC of America certifies that the data described above under "Process Addition" represents the materials in the cement manufactured during the production period indicated.

We cerfity that the above described cement, at the time of shipment, meets the chemical and physical requriements of ASTM C 150-09 and AASHTO M 85-09.

Signature:

<u>Admithe</u> Title:

Plant Manager