W

WEAVER GENERAL CONSTRUCTION COMPANY

3679 S. Huron St., Suite 404 Englewood, CO 80110

Phone: (303) 789-4111 FAX: (303) 789-4310

SUBMITTAL TRANSMITAL

October 22, 2010 WGC Submittal No: 03300-009

PROJECT:	Harold Thompson Regiona Birdsall Rd. Fountain, CO 80817 Job No. 2908	al WRF				
ENGINEER:	GMS, Inc. 611 No. Weber St., #300 Colorado Springs, CO 809 719-475-2935 Roger Sams					
OWNER:	Lower Fountain Metropolit Sewage Disposal District 901 S. Santa Fe Ave. Fountain, CO 80817 719-382-5303 James Heck					
CONTRACTOR:	Baker Concrete Construct 1904 Jasper Street Aurora, CO 80011 937-536-9000 Nick Dewald					
SUBJECT: Concre	te Mix Designs					
SPEC SECTION: 0)3300 - Cast-In-Place C	oncrete				
PREVIOUS SUBMI	SSION DATES: None					
DEVIATIONS FROM	M SPEC:YES _X	NO				
respect to the means, met	hods, techniques, & safety pre	ewed by Weaver General Construction and approved with cautions & programs incidental thereto. Weaver General ith contracted documents and comprises on deviations				
Contractor's Stamp	:	Engineer's Stamp:				
Date: 10/22/10 Reviewed by: H.C. Myers (X) Reviewed Without Comments () Reviewed With Comments						
ENGINEER'S COMMENTS:						

Rocky Mountain Premix, Inc. 2895 Capital Drive Colorado Springs, CO 80915 Office: (719) 591-8080

> Fax: (719) 550-8000 Dispatch: (719) 638-8000

October 10, 2010

Mr. Dan Eynon Baker Concrete Construction, Inc. 1904 Jasper Street Aurora, CO 80011

Subject:

Concrete Mixture Proportions for Harold D. Thompson Water Treatment Plant Lower Fountain Metropolitan Sewage Disposal District Mixture A – N65FBZ05: Drilled Caissons; 3750 psi Mixture B – A70F: Walls, Footings, and General Use; 4500 psi

Mr. Eynon:

This letter presents the results of concrete mixture designs for the above mentioned project. The concrete mixture design and proportions were developed and tested in general accordance with applicable ACI, ASTM, AASHTO, and CDOT procedures. Concrete mixture verification testing was performed on October 11, 2010, at the Rocky Mountain Premix Quality Control Laboratory. Concrete mixtures incorporate Clevenger Pit coarse and fine aggregates, GCC Low Alkali Type I/II cement, Boral Denver Class F fly ash, and BASF admixtures.

Mixture proportions as designed and tested will meet applicable project specifications and criteria as delivered. This assumes proper handling and placement by the contractor and testing at the standard of care for the industry.

Admixture dosages and batch water may be adjusted based on aggregate conditions, varying environmental and jobsite conditions.

We trust this meets your current needs. If there are any questions or if we can be of further service regarding this concrete mixture, please do not hesitate to contact us.

Respectfully,

Zachoriah J. Ballard, El Quality Control Manager

ZJB/zjb

Attachments: Concrete mixture submittals and supporting documentation

Rocky Mountain Premix, Inc. 2895 Capital Drive

Colorado Springs, Colorado 80935

Office: (719) 591-8080 Fax: (719) 550-8000

Dispatch: (719) 638-8000

W/cm ratio: 0.38

Sand / Total Agg: 0.45

Design Unit Weight: 148.9

Design Air % Range: 1 - 3%

Placement Method: Chute

Design Slump Range: 5 - 7"

Mixture Design Submittal

10/11/2010 Date:

Harold D. Thompson Regional Water Reclamation Facility

Project: Contractor:

Baker Concrete Construction, Inc.

Lower Fountain Metropolitan Sewage Disposal District Location:

Design PSI:

N65FBZ05 Mix Design ID:

Plant:

Plant 1 & 2

Use: **Drilled Caissons**

	(%)	Wt. Lb	Sp.Gr.	Ft ³	Source	Spec.
Cementitious: Cement Type I II	85%	519	3.15	2.64	GCC / Pueblo	ASTM C 150
Fly Ash Class F	15%	92	2.36	0.62	Boral Denver	ASTM C 618
	(%)	Wt. Lb		Ft ³	Source	Spec.
Aggregates: ASTM # 57/67	55%	1770	2.64	10.74	Clevenger	ASTM C 33
ASTM Sand (WCS)	45%	1452	2.60	8.95	Clevenger	ASTM C 33

Ft3

Air: (%) Design Air	1.5%		0.41
Water (Gal - lbs - Vol)	30.9	257	4.11
Fiber / Color			
Totals		4090	27.47

	Oz/cwt	Oz/yd ³	Source	Spec.
Admixtures: POLYHEED 1020	7.00	42.8	BASF	ASTM C 494

We guarantee that the strengths produced by this concrete mix design will meet the acceptance criteria of ACI 318, "Building Code Requirements for Reinforced Concrete" and ACI 301, "Specification for Structural Concrete Buildings" when sampling and specimen preparation are performed by personnel certified as technicians by ACI in full accord with applicable ASTM standards. ASTM C94 requires that the ready-mix producer be given copies of test reports in a timely manner or on request.

Rocky Mountain Premix, Inc. 2895 Capital Drive Colorado Springs, CO 80915

Office: (719) 591-8080

Fax: (719) 550-8000 Dispatch: (719) 638-8000

Concrete Mixture Design # N65FBZ05 (Drilled Caissons)

MIX DESIGN MATERIALS

Material	Amount / Cubic Ya	ard	Specific Gravity	
Sand	1410 lbs.		2.64	
Aggregate Size 57/67	1720 lbs.		2.66	
Cement (Type I/II)	519 lbs.		3.15	
Fly Ash (Class F)	92 lbs.		2.34	
Water	257 lbs.	(27.9 gal.)	1.00	
POLYHEED 1020 (water reducer)	42.8 oz.	(7.00 oz./cwt)	1.10	

DESIGN PHYSICAL PROP	ERTIES (A	As Tested)	SPECIFIED PHYSICAL PR	OPERTIES	
Unit Weight	148.1	lbs./cu. Ft.	Compressive Strength F'c	3750	psi (Min)
W/(C+P) Ratio	0.42		W/(C+P) Ratio	0.45	(Max.)
Air Content	2.0	%	Air Content	N/A	%
Slump	3	in.	Slump	1-4	in. (Range)
Percent Fly Ash	15	%	Percent Fly Ash (Class F)	15-20	% Range
Cementitious Content	611	lbs.	Cementitious Content	610	lb/cy (Min.)
Percent Coarse Agg.	55	%	Percent Coarse Agg.	N/A	%
Yield	1.00	су	Yield	0.99-1.	02 cy (Range)

The above weights are based upon aggregates in a saturated surface dry condition. Batch plant corrections must be made for moisture in aggregates.

COMPRESSIVE STRENGTH RESULTS (From Laboratory Trial)

Cylinder Break Time	#1	#2	#3	#4	#5	#6	#7	#8	#9	Average Strength (psi)
1-Day	2300	2060								2180
7-Day			4310	4240			Strange of the Strang			4280
28-Day		and the same of th								The state of the s
56-Day										

MATERIAL SUPPLIERS AND SOURCES

Material	Company	Source
Fine Aggregate	RMMA	Clevenger Pit
Coarse Aggregate	RMMA	Clevenger Pit
Cement (Type I/II)	GCC	Pueblo
Fly Ash (Class F)	Boral	Denver
Mid Range Water Reducer	BASF	POLYHEED 1020

Rocky Mountain Premix, Inc. 2895 Capital Drive

Colorado Springs, Colorado 80935

Office: (719) 591-8080 Fax: (719) 550-8000 Dispatch: (719) 638-8000

Mixture Design Submittal

10/11/2010 Date:

Harold D. Thompson Regional Water Reclamation Facility

Contractor:

Baker Concrete Construction, Inc.

Lower Fountain Metropolitan Sewage Disposal District Location:

Design PSI:

Mix Design ID: A70F

Project:

Plant: Plant 1 & 2

Use: Walls, Footings, and General Use

W/cm ratio: 0.40

Sand / Total Agg: 0.45

Design Unit Weight: 141.1

Design Slump Range: 5 - 8"

Design Air % Range: 5 - 7% Placement Method: Chute

1000000000 1000000000 100000000 10000000						
	(%)	Wt. Lb	Sp.Gr.	Ft ³	Source	Spec.
Cementitious: Cement Type I II	85%	559	3.15	2.84	GCC / Pueblo	ASTM C 150
Fly Ash Class F	15%	99	2.36	0.67	Boral Denver	ASTM C 618
	(%)	Wt. Lb		Ft ³	Source	Spec.
Aggregates: ASTM # 57/67	55%	1590	2.64	9.65	Clevenger	ASTM C 33
ASTM Sand (WCS)	45%	1300	2.60	8.01	Clevenger	ASTM C 33
Air: (%) Design Air	6.0%			1.62		
Water (Gal - lbs - Vol)	31.6	263		4.21		
Fiber / Color						
Totals		3811		27.00		
	Oz/cwt	Oz/yd ³			Source	Spec.
Admixtures: POLYHEED 997	6.84	45.0			BASF	ASTM C 494
MB AE 90	1.22	8.0			BASF	ASTM C 260

We guarantee that the strengths produced by this concrete mix design will meet the acceptance criteria of ACI 318, "Building Code Requirements for Reinforced Concrete" and ACI 301, "Specification for Structural Concrete Buildings" when sampling and specimen preparation are performed by personnel certified as technicians by ACI in full accord with applicable ASTM standards. ASTM C94 requires that the ready-mix producer be given copies of test reports in a timely manner or on request.

Rocky Mountain Premix, Inc. 2895 Capital Drive Colorado Springs, CO 80915

Office: (719) 591-8080 Fax: (719) 550-8000 Dispatch: (719) 638-8000

Concrete Mixture Design # A70F (Walls, Footings, and General Use)

MIX DESIGN MATERIALS

Material	Amount / Cu	ibic Yard		Specific Gravity
Sand	1320	lbs.		2.64
Aggregate Size 57/67	1610	lbs.		2.66
Cement (Type I/II)	559	lbs.		3.15
Fly Ash (Class F)	99	lbs.		2.34
Water	243	lbs.	(29.2 gal.)	1.00
POLYHEED 997 (water reducer)	45.0	oz.	(6.84 oz./cwt)	1.10

DESIGN PHYSICAL PROP	ERTIES (A	s Tested)	SPECIFIED PHYSICAL PRO	<u> PERTIES</u>	
Unit Weight	141.1	lbs./cu. Ft.	Compressive Strength F'c	4500	psi (Min)
W/(C+P) Ratio	0.36		W/(C+P) Ratio	0.45	(Max.)
Air Content	5.6	%	Air Content	5-7	%
Slump	5	in.	Slump	1-3	in. (Range)
Percent Fly Ash	15	%	Percent Fly Ash (Class F)	15-20	% Range
Cementitious Content	658	lbs.	Cementitious Content	N/A	lb/cy (Min.)
Percent Coarse Agg.	55	%	Percent Coarse Agg.	N/A	%
Yield	1.00	су	Yield	0.99-1.	02 cy (Range)

The above weights are based upon aggregates in a saturated surface dry condition. Batch plant corrections must be made for moisture in aggregates.

COMPRESSIVE STRENGTH RESULTS (From Laboratory Trial)

Cylinder Break Time	#1	#2	#3	#4	#5	#6	#7	#8	#9	Average Strength (psi)
1-Day	1990	2090								2040
7-Day			3790	3780						3790
28-Day										
56-Day										

MATERIAL SUPPLIERS AND SOURCES

Material	Company	Source
Fine Aggregate	RMMA	Clevenger Pit
Coarse Aggregate	RMMA	Clevenger Pit
Cement (Type I/II)	GCC	Pueblo
Fly Ash (Class F)	Boral	Denver
Mid Range Water Reducer	BASF	POZZOLITH 997

June 14, 2010

Rocky Mountain Premix Inc. 2895 Capital Drive Colorado Springs, Colorado 80939

Attention:

Mr. Randy Morris

Subject:

Physical Properties Testing No. 57/67, Clevenger Pit Project No. CT15042.000-400

Dear Mr. Morris:

This report presents results of physical properties testing performed on material delivered to our laboratory in May, 2010. Representative samples delivered were identified as No. 57/67 rock from the Clevenger Pit. Testing was performed to determine the materials compliance with Colorado Department of Transportation (CDOT) specifications. The following testing was performed in general conformance with the applicable standards.

- 1) Sieve Analysis (Gradation)
- 2) Material Finer Than No. 200 Sieve by Washing
- 3) Specific Gravity & Absorption
- 4) Clay Lumps & Friable Particles
- 5) Lightweight Particles 2.0 & 2.4
- 6) Sodium Sulfate Soundness
- 7) Rodded Unit Weight & Voids
- 8) Los Angeles Abrasion

A summary of the aggregate test results is attached, followed by the complete test results. Based on the test results, the material tested meets the CDOT specifications for coarse aggregate. If you have any questions regarding this report, please call.

Reviewed by

Damon B. Thomas, P.E.

Division Manager

Respectfully submitted.

CTL | THOMPSON MATERIALS ENGINEERS, INC.

Daniel L. Barrett

Materials Lab Manager

DLB:DBT/dlb Enclosures

1 copy emailed:

lab@rockymountainpremix.com

Aggregate Qualification Summary - CDOT Specifications (AASHTO M 80)

Rocky Mountain Premix - Clevenger Pit, No. 57/67

Project No. CT15042-400

Report Date: June 14, 2010

Sieve Analysis (AASHTO T 27 & T 11)			
Sieve Size	Passing (%)	Specification (%)	
1-1/2 inch (37.5 mm)	100	100	
1 inch (25 mm)	100	100	
3/4 inch (19 mm)	90	90-100	
1/2 inch (12.5 mm)	47	25-60	
3/8 inch (9.5 mm)	24	20-55	
No. 4 (4.75 mm)	5	0-10	
No. 8 (2.36 mm)	3	0-5	
No. 200 (75 μm)	0.7	1.0 Max	
Fineness Modulus	-	-	

	Test	Results	Specification
Specific Gravity (AASHTO T 85)		2.64	
Absorption (AASH	TO T 85)	1.2%	
Clay Lumps and Fi	riable Particles (AASHTO T 112)	0.7% Weighted Particles	2.0% Max
Lightweight Particle	es, 2.0 sp.g. (AASHTO T 113)	< 0.1%	0.5% Max
Lightweight Particle	es, 2.4 sp.g. (AASHTO T 113)	2.1%	3.0% Max
Sodium Sulfate Soundness (AASHTO T 104)		0% Weighted Loss	12% Max
Magnesium Sulfate	Soundness (AASHTO T 104)		18% Max
Rodded Unit	Unit Weight	104 pcf	
Weight & Voids	Percent Voids	36%	-
(AASHTO T 19)	Tons per cubic yard	1.4 tons/cu. yd.	_
Loose Unit	Unit Weight	-	-
Weight & Voids	Percent Voids	-	-
(AASHTO T 19) Tons per cubic yard		-	-
Los Angeles Abras	sion (AASHTO T 96)	27%	45% Max

CTL | THOMPSO

RIALS

ZERS, INC.

mag

Thomas, P.E.

ATTACHMENT A LABORATORY TEST RESULTS

PHYSICAL PROPERTIES OF AGGREGATES

Company Name: Rocky Mountain Premix

Material Source: Clevenger Pit Material Type: No. 57/67

Project No. CT15042-400 Report Date: June 14, 2010

Sieve Analysis of Coarse Aggregate

(AASHTO T 27)

Sieve Size	Percent Passing No. 57/67	Percent Passing (AASHTO M 80)
1-1/2 inch (37.5 mm)	100	100
1 inch (25 mm)	100	100
3/4 inch (19 mm)	90	90-100
1/2 inch (12.5 mm)	47	25-60
3/8 inch (9.5 mm)	24	20-55
No. 4 (4.75 mm)	5	0-10
No. 8 (2.36 mm)	3	0-5
No. 200 (75 μm)	0.7	1.0 Max

Material Finer Than No. 200 Sieve by Washing

(AASHTO T 11)

Initial Dry	Final Dry	Material Finer Than
Weight (g)	Weight (g)	No. 200 Sieve (%)
5340.3	5300.3	0.7

Specific Gravity and Absorption of Coarse Aggregate (AASHTO T 85)

Oven Dry Weight (g)	SSD in Air Weight (g)	Submerged Weight (g)	Bulk Volume	Bulk (SSD) Specific Gravity	Absorption (%)
6765.8	6845.8	4254.0	2591.8	2.64	1.2

Clay Lumps and Friable Particles in Aggregate

Siev	e Size	Percent Grading of	Weight Before	Weight After	Percent Loss	Weighted Percent
Passing	Retained	Sample	(g)	(g)		Loss
	1-1/2 inch	0				
1-1/2 inch	3/4 inch	10	3002.5	2991.1	0.4	0.0
3/4 inch	3/8 inch	66	2001.8	1988.3	0.7	0.5
3/8 inch	No. 4	19	1000	992.4	0.8	0.2
Less Th	nan No. 4	5		-	-	Area.

Total Percent Grading

100

Total Weighted Loss

0.7%

PHYSICAL PROPERTIES OF AGGREGATES

Material Source: Clevenger Pit Material Type: No. 57/67

Project No. CT15042-400 Report Date: June 14, 2010

Lightweight Particles in Aggregate

(AASHTO T 113)

Sample	Specific Gravity	Percentage by Mass of
Weight (g) 8156.4	of Liquid	Lightweight Particles
8156.4	2.4	2.1

Soundness of Coarse Aggregates by Use of Sodium Sulfate

(AASHTO T 104)

Siev	e Size	Percent Grading	Weight	Weight	Percent	Weighted
Passing	Retained	of Sample	Before(g)	After (g)	Loss	% Loss
1-1/2 inch	1 inch	0				7
1 inch	3/4 inch	10	670.4	670.1	0.0	0.0
3/4 inch	1/2 inch	43	1000.0	999.6	0.0	0.0
1/2 inch	3/8 inch	23	330.1	329.3	0.2	0.1
3/8 inch	No. 4	19	300.0	298.8	0.4	0.1
Less Th	an No. 4	5	-	-	_	-

Total Percent Grading: 100

Total Weighted Loss:

0

Bulk Density (Unit Weight) and Voids in Aggregates (Rodded Method)

(AASHTO T 19)

Sample Weight (lbs)	Bucket Volume (ft³)	Unit Weight (pcf)
34.70	0.333	104.2
34.36	0.333	103.2
34.46	0.333	103.5

Average Unit Weight:

104 pcf

Bulk Specific Gravity (OD) = 2.61

Voids in Aggregate Compacted by Rodding = 36%

Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine

(AASHTO T 96)

Grading	Initial	Final	Percent
	Weight	Weight	Loss
В	5000	3638.9	27.2

June 14, 2010

Rocky Mountain Premix Inc. 2895 Capital Drive Colorado Springs, Colorado 80939

Attention:

Mr. Randy Morris

Subject:

Physical Properties Testing

Sand, Clevenger Pit

Project No. CT15042.000-400

Dear Mr. Morris:

This report presents results of physical properties testing performed on material delivered to our laboratory in May, 2010. Representative samples delivered were identified as Sand from the Clevenger Pit. Testing was performed to determine the materials compliance with Colorado Department of Transportation (CDOT) specifications. The following testing was performed in general conformance with the applicable standards.

- 1) Sieve Analysis (Gradation)
- 2) Material Finer Than No. 200 Sieve by Washing
- 3) Specific Gravity & Absorption
- 4) Clay Lumps & Friable Particles
- 5) Lightweight Particles 2.0
- 6) Sodium Sulfate Soundness
- 7) Rodded Unit Weight & Voids
- 8) Sand Equivalency
- 9) Organic Impurities

A summary of the aggregate test results is attached, followed by the complete test results. Based on the test results, the material tested meets the CDOT specifications for fine aggregate. If you have any questions regarding this report, please call.

Reviewed by:

Damon B. Thomas, P.E.

Division Manager

Respectfully submitted,

CTL | THOMPSON MATERIALS ENGINEERS, INC.

Daniel L. Barrett

Materials Lab Manager

DLB:DBT/dlb Enclosures

1 copy emailed:

lab@rockymountainpremix.com

Aggregate Qualification Summary - CDOT Specifications (AASHTO M 6)

Rocky Mountain Premix - Clevenger Pit, Sand

Project No. CT15042-400

Report Date: June 08, 2010

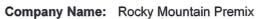
Sieve Analysis (AASHTO T 27 & T 11)				
Sieve Size	Passing (%)	Specification (%)		
2 inch (50 mm)	100	-		
1-1/2 inch (37.5 mm)	100	-		
1 inch (25 mm)	100			
3/4 inch (19 mm)	100	-		
1/2 inch (12.5 mm)	100	-		
3/8 inch (9.5 mm)	100	100		
No. 4 (4.75 mm)	97	95-100		
No. 8 (2.36 mm)	80	80-100		
No. 16 (1.18 mm)	62	50-85		
No. 30 (600 µm)	43	25-60		
No. 50 (300 µm)	18	10-30		
No. 100 (150 μm)	5	2-10		
No. 200 (75 µm)	1.7	3.0 Max		
Fineness Modulus	2.95	2.50 - 3.50		

	Test	Results	Specification
Specific Gravity (AASHTO T 84)		2.60	-
Absorption (AASHTO T 84)		1.1%	_
Clay Lumps and F	riable Particles (AASHTO T 112)	2.4% Weighted Particles	3.0% Max
Lightweight Particl	es, 2.0 sp.g. (AASHTO T 113)	0.1%	0.5% Max
Lightweight Particl	es, 2.4 sp.g. (AASHTO T 113)	-	3.0% Max
Sodium Sulfate So	oundness (AASHTO T 104)	1% Weighted Loss	10% Max
Magnesium Sulfate Soundness (AASHTO T 104)		-	15% Max
Rodded Unit	Unit Weight	111 pcf	-
Weight & Voids	Percent Voids	31%	-
(AASHTO T 19)	Tons per cubic yard	1.5 tons/cu. yd.	-
Loose Unit	Unit Weight	-	-
Weight & Voids	Percent Voids	-	-
(AASHTO T 19)	Tons per cubic yard	-	-
Los Angeles Abras	sion (AASHTO T 96)		-
Percentage of Fractured Particles (ASTM D 5821)		~	-
Sand Equivalency	(AASHTO T 176)	88 (Average)	80 Minimum
Sum of Deleterious	s Materials	-	-
Organic Impurities	(AASHTO T 21)	Plate 1	< Plate 3

	Potential Alkali Reactivity	(ASTM C 1260 & CP-L 42	01)
Days in Soak	Average Expansion (%)	Classification	Potential for Deleterious ASR
-	-		Dillian -

CTL | THOMPSO

RIALS


EERS, INC.

Thomas, PE

MANY

ATTACHMENT A LABORATORY TEST RESULTS

PHYSICAL PROPERTIES OF AGGREGATES

Material Source: Clevenger Pit

Material Type: Sand

Project No. CT15042-400 Report Date: June 8, 2010

Sieve Analysis of Fine Aggregate

(AASHTO T 27)

Sieve Size	Percent Passing Sand	Percent Passing (AASHTO M 6)	
3/8 inch (9.5 mm)	100	100	
No. 4 (4.75 mm)	97	95-100	
No. 8 (2.36 mm)	80	80-100	
No. 16 (1.18 mm)	62	50-85	
No. 30 (600 µm)	43	25-60	
No. 50 (300 μm)	18	10-30	
No. 100 (150 μm)	5	2-10	
No. 200 (75 μm)	1.7	3.0 Max	

Material Finer Than No. 200 Sieve by Washing

(AASHTO T 11)

Initial Dry	Final Dry	Material Finer Than
Weight (g)	Weight (g)	No. 200 Sieve (%)
757.7	744.6	1.7

Specific Gravity and Absorption of Fine Aggregate

(AASHTO T 84)

Pycnometer	SSD In	Pycnometer	Bulk	Oven	Bulk (SSD)	Absorption
Weight With Water (g)	Air Weight (g)	Weight With Sample (g)	Volume	Dry Weight (g)	Specific Gravity	(%)
672.3	500.0	980.3	192.0	494.6	2.60	1.1

Clay Lumps and Friable Particles in Aggregate

(AASHTO T 112)

Sieve	Size	Weight Before	Weight	Percent
Passing	Retained	(g)	After (g)	Particles
No. 4	No. 16	25.2	24.6	2.4

Lightweight Particles in Aggregate

(AASHTO T 113)

Sample Weight (g)	Specific Gravity of Liquid	Percentage by Mass of Lightweight Particles
2297.6	2.0	0.1
	2.4	

PHYSICAL PROPERTIES OF AGGREGATES

Material Source: Clevenger Pit

Material Type: Sand

Project No. CT15042-400 Report Date: June 8, 2010

Soundness of Fine Aggregates by Use of Sodium Sulfate

(AASHTO T 104)

Sieve Size		Percent Grading	Weight	Weight	Percent	Weighted
Passing	Retained	of Sample	Before(g)	After (g)	Loss	% Loss
3/8"	No. 4	3	-	-	0.6	0.0
No. 4	No. 8	17	100.0	99.4	0.6	0.1
No. 8	No. 16	18	100.0	99.3	0.7	0.1
No. 16	No. 30	19	100.0	99.0	1.0	0.2
No. 30	No. 50	25	100.0	98.6	1.4	0.4
Less that	an No. 50	18	-	-	-	-

Total Percent Grading: 100

Total Weighted Loss:

1

Bulk Density (Unit Weight) and Voids in Aggregates (Rodded Method)

(AASHTO T 19)

Sample Weight (lbs)	Bucket Volume (ft ³)	Unit Weight (pcf)
10.88	0.0985	110.5
10.90	0.0985	110.7
10.94	0.0985	111.1

Average Unit Weight:

111 pcf

Bulk Specific Gravity (OD) = 2.58 Voids in Aggregate Compacted by Rodding = 31%

Sand Equivalent Value of Soils and Fine Aggregate

(AASHTO T 176)

Tube Number	Clay Reading	Sand Reading	Sand Equivalent
No. 1	4.3	3.8	88
No. 2	4.2	3.7	88
No. 3	4.2	3.7	88

Average Sand Equivalency:

88

Organic Impurities in Fine Aggregate

(AASHTO T 21)

	(AASHIO I ZI)	
ry-market.	Organic Plate	
	Number	er Armericke
	Plate Number 1	

Phone: (719) 647-6800

GCC of America

130 Rampart Way, Ste. 205 Denver, CO 80230 Sales (303) 739-5900 Customer Service (800) CALL GCC

Plant: Pueblo Cement Type: I/II,I/II(MH), Low Alkali 3600 Lime Road Date: 9/30/2010 Pueblo, CO 81004 Production Period: September 1, 2 & 4 Contact: David Eckhardt Silo:

STANDARD REQUIREMENTS ASTM C 150 -09/AASHTO M 85

	CHEMICA	L
Item	Spec.	Test
	Limit	Result
SiO ₂ (%)	Α	20.54
Al ₂ O ₃ (%)	6.0 max	4.50
Fe ₂ O ₃ (%)	6.0 max	3.32
CaO (%)	A	
MgO (%)	6.0 max.	1.11
SO ₃ (%)	3.0 max.	2.96
Ignition Loss (%)	3.0 max.	2.60
Na ₂ O (%)	A	
K ₂ O (%)	А	
Equivalent Alkalies	В	0.55
Insoluble Residue	0.75 max	0.75
CO ₂ (%)	Α	
Limestone (%)	5.0 max.	3.35
CaCO₃ in Limestor	70 min	87
C₂S	A	
C ₃ A	8 max.	6.32
C ₄ AF	А	10.08
C ₃ S + 4.75 C ₃ A	100 max.	83.3

		PHYSICA			
item		Spec.	Test		
		Limit	Result		
Air content of mort		12 max.	7.9		
Blaine fineness (m		260 min.	392		
		430 max.			
Autoclave expansi 0.80 max					
False set (%)		50 min.	63		
Compres	sive stre	ength (MF	MPa	psi	
1 day, Minim		Α	15	2560	
3 day, Minim12 (1740)		25	4300		
7 day, Minim19 (2760)		25	5170		
28 day, Minim		Α	0	0	
Time of setting, Vicat (min					
Initia	al No	45	11	10	
Initia	al No	375			
PRO	CESS AL	DITION	If Applica	ible)	
Al ₂ O ₃ (%)	N/A	C ₂ S	N	'A	
Fe ₂ O ₃ (%	N/A	C₃A	N/A		
CaO (%)	N/A	C ₄ AF	N/A		
SO ₃ (%)	N/A				

DULVETORI

information only

GCC of America Portland Cement Is warranted to conform at the time of shipment with ASTM C 150/AASHTO 85. No other warranty is made or implied. Having no control over the use of its cements, GCC of America does not guarantee finished work. GCC is not r

we certify that the above described cement, at the time of shipment, meets the chemical and physical requirements of

Signature:	DAVID ECKHARDT	Title:	Quality Control Manager

A Not applicable.

D. Lamit not appeared by purchaser. Test result for

ASTM C 618 TEST REPORT

Sample Number: Sample Date:

S-100511020 April 2010 Report Date:

6/17/2010

Sample Source:

Denver

Tested By:

jx .

TESTS

RESULTS

ASTM C 618 CLASS F/C AASHTO M 295 CLASS F/C

CHEMICAL TESTS			
Silicon Dioxide (SiO2), %	55.48		
Aluminum Oxide (Al2O3), %	23.08		
Iron Oxide (Fe2O3), %	5.71		
Sum of SiO2, Al2O3, Fe2O3, %	84.27	70.0/50.0 min.	70.0/50.0 min.
Calcium Oxide (CaO), %	8.37		
Magnesium Oxide (MgO), %	2.02		
Sulfur Trioxide (SO3), %	0.36	5.0 max.	5.0 max.
Sodium Oxide (Na2O), %	0.37		
Potassium (K2O), %	1.22		
Total Alkalies (as Na2O), %	1.17		
PHYSICAL TESTS			
Moisture Content, %	0.01	3.0 max.	3.0 max.
Loss on Ignition, %	0.74	6.0 max.	5.0 max.
Amount Retained on No. 325 Sieve, %	19.92	34 max.	34 max.
Specific Gravity	2.36		
Autoclave Soundness, %	-0.01	0.8 max.	0.8 max.
SAI, with Portland Cement at 7 Days, % of Control	79.9	75 min.*	75 min.*
SAI, with Portland Cement at 28 Days, % of Control	88.8	75 min.*	75 min.*
Water Required, % of Control	95.9	105 max.	105 max.
Loose, Dry Bulk Density, lb/cu. ft.	69.50		

Meets ASTM C 618 and AASTO M 295, FDOT Section 929, TxDOT DMS 4610, SCDHPT and MDOT specifications for Class F Fly Ash

Approved By:

Diana Benfield QC Specialist Approved By:

Brian Shaw

Materials Testing Manager

^{. *} Meeting the 7 day or 28 day Strength Activity Index will indicate specification compliance.

The Chemical Company

October 19, 2010

Project: Various

Project location: Various

Certificate of Conformance PolyHeed® 1020 BASF Construction Chemicals, LLC* Admixture for Concrete

(*Previously doing business as BASF Admixtures, Inc. and prior to that as Degussa Admixtures, Inc. and Master Builders, Inc.)

I, Richard Hubbard, Sr. Technical Marketing Specialist for BASF Construction Chemicals, LLC , Cleveland, Ohio,certify:

That PolyHeed 1020 is a BASF Construction Chemicals, LLC Mid-Range Water-Reducing Admixture for concrete; and

That no calcium chloride or chloride based ingredient is used in the manufacture of PolyHeed 1020; and

That PolyHeed 1020, based on the chlorides originating from all the ingredients used in its manufacture, contributes less than 0.00014 percent (1.4 ppm) chloride ions by weight of the cement when used at the rate of 65 mL per 100 kg (1 fluid ounce per 100 pounds) of cement; and

That, depending on the dosage used, PolyHeed 1020 meets the requirements for a Type A, Water-Reducing and Type F, Water-Reducing, High Range Admixture specified in ASTM C 494, Corps of Engineers' CRD-C 87 and AASHTO M194, the Standard Specifications for Chemical Admixtures for Concrete.

Richard Hubbard

Richard Jubbard III

Sr. Technical Marketing Specialist BASF Construction Chemicals, LLC

BASF Construction Chemicals, LLC 23700 Chagrin Boulvard Cleveland, OH 44122 216 839-7500 ph www.masterbuilders.com

The Chemical Company

October 19, 2010

Project: Various

Project location: Various

Certificate of Conformance PolyHeed® 997 BASF Construction Chemicals, LLC* Admixture for Concrete

(*Previously doing business as BASF Admixtures, Inc. and prior to that as Degussa Admixtures, Inc. and Master Builders, Inc.)

I, Richard Hubbard, Sr. Technical Marketing Specialist for BASF Construction Chemicals, LLC , Cleveland, Ohio,certify:

That PolyHeed 997 is a BASF Construction Chemicals, LLC Mid-Range Water-Reducing Admixture for concrete; and

That no calcium chloride or chloride based ingredient is used in the manufacture of PolyHeed 997; and

That PolyHeed 997, based on the chlorides originating from all the ingredients used in its manufacture, contributes less than 0.00012 percent (1.2 ppm) chloride ions by weight of the cement when used at the rate of 65 mL per 100 kg (1 fluid ounce per 100 pounds) of cement; and

That PolyHeed 997 meets the requirements for a Type A, Water-Reducing Admixture, and Type F, Water-Reducing, High Range Admixture specified in ASTM C 494, Corps of Engineers' CRD-C 87 and AASHTO M194, the Standard Specifications for Chemical Admixtures for Concrete.

Richard Hubbard

Richard Hubbard III

Sr. Technical Marketing Specialist BASF Construction Chemicals, LLC

BASF Construction Chemicals, LLC 23700 Chagrin Boulvard Cleveland, OH 44122 216 839-7500 ph www.masterbuilders.com

Master Builders Admixture Solutions

The Chemical Company

October 19, 2010

Project: Various

Project location: Various

Certificate of Conformance
MB-AE™ 90
BASF Construction Chemicals, LLC* Air-Entraining Admixture for Concrete

(*Previously doing business as BASF Admixtures, Inc. and prior to that as Degussa Admixtures, Inc. and Master Builders, Inc.)

I, Richard Hubbard, Sr. Technical Marketing Specialist for BASF Construction Chemicals, LLC , Cleveland, Ohio,certify:

That MB-AE 90 is a BASF Construction Chemicals, LLC Air-Entraining Admixture for concrete; and

That no calcium chloride or chloride based ingredient is used in the manufacture of MB-AE 90; and

That MB-AE 90, based on the chlorides originating from all the ingredients used in its manufacture, contributes less than 0.000068 percent (0.68 ppm) chloride ions by weight of the cement when used at the rate of 65 mL per 100 kg (1 fluid ounce per 100 pounds) of cement; and

That MB-AE 90 meets the requirements of ASTM C 260, Corps of Engineers' CRD-C 13 and AASHTO M154, the Standard Specifications for Air-Entraining Admixtures for Concrete.

Richard Hubbard

Richard Jubbard III

Sr. Technical Marketing Specialist BASF Construction Chemicals, LLC

BASF Construction Chemicals, LLC 23700 Chagrin Boulvard Cleveland, OH 44122 216 839-7500 ph www.masterbuilders.com

Master Builders Admixture Solutions