

SUBMITTAL TRANSMITAL

July 28, 2011 WGC Submittal No: 03300-010.E

- PROJECT: Harold Thompson Regional WRF Birdsall Rd. Fountain, CO 80817 Job No. 2908
- ENGINEER: GMS, Inc. 611 No. Weber St., #300 Colorado Springs, CO 80903 719-475-2935 Roger Sams
- OWNER: Lower Fountain Metropolitan Sewage Disposal District 901 S. Santa Fe Ave. Fountain, CO 80817 719-382-5303 James Heckman
- CONTRACTOR: Garney Companies Inc. 7911 Shaffer Parkway Littleton, CO 80127

SUBJECT: Resubmittal: Secondary Clarifier Concrete Wall Mix 5" Slump.

SPEC SECTION: 03300 - Cast-In-Place Concrete

PREVIOUS SUBMISSION DATES: 7/28/11

DEVIATIONS FROM SPEC: ____YES X__NO

CONTRACTOR'S STAMP: This submittal has been reviewed by Weaver General Construction and approved with respect to the means, methods, techniques, & safety precautions & programs incidental thereto. Weaver General Construction also warrants that this submittal complies with contracted documents and comprises on deviations thereto:

Contractor's Stamp:	Engineer's Stamp:
Date: July 28, 2011 Reviewed by: H.C. Myers (X) Reviewed Without Comments () Reviewed With Comments	
ENGINEER'S COMMENTS:	

TRANSIT MIX CONCRETE CO.

 Colorado Springs
 Pueblo

 P.O. Box-1030, CO 80901
 P.O. Box-857, CO 81002

 (719) 475-0700 (Fax) 475-0226
 (719) 561-8350 (Fax) 566-02
 Colorado Springs

Pueblo (719) 561-8350 (Fax) 566-0231

ONE OUDIO VADD

CONCRETE MIX DESIGN

July 28, 2011

Secondary Clarifier Birdsall Road East of Old Pueblo Road El Paso County, CO

ALTERNATE MIX DESIGN

"Structural Concrete for Liquid Containment Structures - Walls" 4500 PSI @ 28 Days (Specification) • Fly Ash • Air Entrained • 0.42 Maximum W/CM • 5000 PSI @ 28 Days (Design)

GARNEY COMPANIES Inc. 7911 Shaffer Parkway Littleton, Colorado 80127

			<u>ONE CUBIC YARD</u>
Cement	(Holcim I/II Florence, CO Terminal)	564 lbs
Fly Ash	(SRMG Class F)	141 lbs
WRA	(BASF 200N)	21.2 ozs
HWRA	(BASF Polyheed 1020)	49.4 ozs
AEA	(BASF AE 90)	4.1 ozs
Sand	(41% Daniels Sand ASTM C 33)	1200 lbs
Rock	(59% TMP #57/67 ASTM C 33)	1725 lbs
Water			268 lbs

Transit Mix Concrete CO Mix Identification Number: 65782110

Approximate Physical Properties:	
Unit Weight – pcf	± 142.1
Slump – Inches	5.00″ MAX
Air Content - %	$6.0\% \pm 1.0\%$
Water / Cement Ratio	0.380

This mix is derived from the enclosed John B. Morgan, P.E. Trial Mix Design dated January 5, 2010. Compliance information on the various materials is also enclosed.

Production and delivery is in accordance with ASTM C 94 Standard Specification for Ready-Mixed Concrete. Compressive strength performance is conditional with strict adherence to the current ASTM Standards relating to concrete, and the latest revisions of ACI 301 and 318.

TRANSIT MIX CONCRETE CO.

obut & M Robert L. Montoya

Technical Service Manager

J. B. Morgan, P. E., C.C.E.

Date Cast: Tuesday, January 05, 2010 Mix Proportions 1 Cubic Yard 1 Cubic Meter Cement (Holdim I/I - Florence, CO) 564 lbs 334.6 Kg Fly Ash (SRMG Class F - Cholla) 141 lbs 83.7 Kg WRA (MB 200 N) 21.2 ozs 820.0 mL HRWRA (MB Polyheed 1020) 49.4 ozs 1910.8 mL AEA (MB AE-90) 4.1 ozs 158.6 mL Coarse Aggregate (TMOP) 1725 lbs 1023.4 Kg Fine Aggregate (Daniels Sand CO) 1200 lbs 711.9 Kg Water 268 lbs 159.0 Kg Physical Properties Unit Weight 142.1 pcf 2276 Kg Slump 5.00 " 127 mm Air Content 5.4 % 5.4 % Temperature 77 °F 25.0 °C Water/Cement Ratio (by weight) 0.380 0.380 Relative Yield 1.02 1.02 Yield 27.43 pcf 1.02 Compressive Strength (PSI) (Mpa) 3 Days 4130 28.5 <
Fly Ash (SRMG Class F - Cholla) 141 lbs 83.7 Kg WRA (MB 200 N) 21.2 ozs 820.0 mL HRWRA (MB Polyheed 1020) 49.4 ozs 1910.8 mL AEA (MB AE-90) 4.1 ozs 158.6 mL Coarse Aggregate (TMOP) 1725 lbs 1023.4 Kg Fine Aggregate (Daniels Sand CO) 1200 lbs 711.9 Kg Water 268 lbs 159.0 Kg Physical Properties Unit Weight 142.1 pcf 2276 Kg Slump 5.00 " 127 mm Air Content 5.4 % 5.4 % Temperature 77 °F 25.0 °C Water/Cement Ratio (by weight) 0.380 0.380 Relative Yield 1.02 1.02 Yield 27.43 pcf 28.5 Average 4160 28.7 Average 5180 35.7 Average 5180 35.7 Average 5200 35.9
WRA (MB 200 N) 21.2 ozs 820.0 mL HRWRA (MB Polyheed 1020) 49.4 ozs 1910.8 mL AEA (MB AE-90) 4.1 ozs 158.6 mL Coarse Aggregate (TMOP) 1725 lbs 1023.4 Kg Fine Aggregate (Daniels Sand CO) 1200 lbs 711.9 Kg Water 268 lbs 159.0 Kg Physical Properties Unit Weight 142.1 pcf 2276 Kg Slump 5.00 " 127 mm Air Content 5.4 % 5.4 % Temperature 77 °F 25.0 °C Water/Cement Ratio (by weight) 0.380 0.380 Relative Yield 1.02 1.02 Yield 27.43 pcf 1.02 S Days 4130 28.5 Average 4160 28.7 7 Days 5180 35.7 5220 36.0 36.0 Average 5180 35.7 5220 36.0 35.9
HRWRA (MB Polyheed 1020) 49.4 ozs 1910.8 mL AEA (MB AE-90) 4.1 ozs 158.6 mL Coarse Aggregate (TMOP) 1725 lbs 1023.4 Kg Fine Aggregate (Daniels Sand CO) 1200 lbs 711.9 Kg Water 268 lbs 159.0 Kg Physical Properties Physical Properties Unit Weight 142.1 pcf 2276 Kg Slump 5.00 " 127 mm Air Content 5.4 % 5.4 % Temperature 77 °F 25.0 °C Water/Cement Ratio (by weight) 0.380 0.380 Relative Yield 1.02 1.02 Yield 27.43 pcf 1.02 S Days 4130 28.5 4190 28.9 28.9 Average 4160 28.7 7 Days 5200 35.9
Coarse Aggregate (TMOP) 1725 lbs 1023.4 Kg Fine Aggregate (Daniels Sand CO) 1200 lbs 711.9 Kg Water 268 lbs 159.0 Kg Physical Properties 2 2 Unit Weight 142.1 pcf 2276 Kg Slump 5.00 " 127 mm Air Content 5.4 % 5.4 % Temperature 77 °F 25.0 °C Water/Cement Ratio (by weight) 0.380 0.380 Relative Yield 1.02 1.02 Yield 27.43 pcf 1.02 S Days 4130 28.5 Atigo 28.9 Average 4160 28.7 7 Days 5180 35.7 5220 36.0 35.9
Fine Aggregate (Daniels Sand CO) 1200 lbs 711.9 Kg Water 268 lbs 159.0 Kg Physical Properties 142.1 pcf 2276 Kg Unit Weight 142.1 pcf 2276 Kg Slump 5.00 " 127 mm Air Content 5.4 % 5.4 % Temperature 77 °F 25.0 °C Water/Cement Ratio (by weight) 0.380 0.380 Relative Yield 1.02 1.02 Yield 27.43 pcf 102 Solays 4130 28.5 Average 4160 28.7 7 Days 5180 35.7 5220 36.0 35.9
Water 268 lbs 159.0 Kg Physical Properties 142.1 pcf 2276 Kg Unit Weight 142.1 pcf 2276 Kg Slump 5.00 " 127 mm Air Content 5.4 % 5.4 % Temperature 77 °F 25.0 °C Water/Cement Ratio (by weight) 0.380 0.380 Relative Yield 1.02 1.02 Yield 27.43 pcf 102 Compressive Strength (PSI) (Mpa) 3 Days 4130 28.5 4190 28.9 28.7 Average 4160 28.7 7 Days 5180 35.7 5220 36.0 Average 5200 35.9
Unit Weight 142.1 pcf 2276 Kg Slump 5.00 " 127 mm Air Content 5.4 % 5.4 % Temperature 77 °F 25.0 °C Water/Cement Ratio (by weight) 0.380 0.380 Relative Yield 1.02 1.02 Yield 27.43 pcf 1.02 Compressive Strength (PSI) (Mpa) 3 Days 4130 28.5 4190 28.9 28.9 Average 4160 28.7 7 Days 5180 35.7 5220 36.0 35.9
Slump 5.00 " 127 mm Air Content 5.4 % 5.4 % Temperature 77 °F 25.0 °C Water/Cement Ratio (by weight) 0.380 0.380 Relative Yield 1.02 1.02 Yield 27.43 pcf 1.02 Compressive Strength (PSI) (Mpa) 3 Days 4130 28.5 4190 28.9 28.9 Average 4160 28.7 7 Days 5180 35.7 5220 36.0 35.9
Air Content 5.4 % 5.4 % Temperature 77 °F 25.0 °C Water/Cement Ratio (by weight) 0.380 0.380 Relative Yield 1.02 1.02 Yield 27.43 pcf 70°F Compressive Strength (PSI) (Mpa) 3 Days 4130 28.5 Average 4160 28.7 7 Days 5180 35.7 5220 36.0 Average 5200 35.9
Temperature 77 °F 25.0 °C Water/Cement Ratio (by weight) 0.380 0.380 Relative Yield 1.02 1.02 Yield 27.43 pcf 7 Compressive Strength (PSI) (Mpa) 3 Days 4130 28.5 4190 28.9 28.7 7 Days 5180 35.7 5220 36.0 Average 5200 35.9
Water/Cement Ratio (by weight) 0.380 0.380 Relative Yield 1.02 1.02 Yield 27.43 pcf (Mpa) Compressive Strength (PSI) (Mpa) 3 Days 4130 28.5 <u>4190</u> 28.9 Average 4160 28.7 7 Days 5180 35.7 <u>5220</u> 36.0 Average 5200 35.9
Relative Yield 1.02 1.02 Yield 27.43 pcf 1.02 Compressive Strength (PSI) (Mpa) 3 Days 4130 28.5 <u>4190</u> 28.9 Average 4160 28.7 7 Days 5180 35.7 <u>5220</u> <u>36.0</u> Average 5200 35.9
Yield 27.43 pcf Compressive Strength (PSI) (Mpa) 3 Days 4130 28.5 <u>4190</u> 28.9 Average 4160 28.7 7 Days 5180 35.7 <u>5220</u> <u>36.0</u> Average 5200 35.9
3 Days 4130 28.5 Average 4190 28.9 Average 4160 28.7 7 Days 5180 35.7 5220 36.0 Average 5200 35.9
4190 28.9 Average 4160 28.7 7 Days 5180 35.7 5220 36.0 Average 5200 35.9
Average 4160 28.7 7 Days 5180 35.7 5220 36.0 Average 5200 35.9
7 Days 5180 35.7 5220 36.0 Average 5200 35.9
5220 36.0 Average 5200 35.9
<u>Average 5200 35.9</u>
44 Davia 6000 41 4
<u>6280</u> <u>43.3</u>
Average 6140 42.3 28 Days 6980 48.1
28 Days 6980 48.1 7140 49.2
<u>6990</u> <u>48.2</u>
Average 7040 48.5
7 Days Flexural 770 5.31
Average 765 5.27
Average 760 765 5.24 5.27 28 Days Flexural 825 5.7 845 5.8 5.8 840 5.8 840 5.8 830 5.7 835 5.8 840 5.8 840 5.8 840 5.8 840 5.8 840 5.8 840 5.8 840 5.8 840 5.8 840 5.8 840 5.8 840 5.8 840 5.8 840 5.8 840 5.8 840 5.8 840 5.8 835 5.8
845 5.8 5.8 840 5.8 5.8 840 5.8 5.8 840 5.8 840 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8
Average 5.0 840 5.8 830 5.7 835 5.8 400 South 7th Street, Raton, New Mexico 87740 400 South 7th Street, Raton, New Mexico 87740 Phone: (575) 445-8738 Mobile: (719) 332-4557 Fax: (575) 445-7055
Average 835 5.8

1

ī

				Material Certil	ication	Repor
Mate	erial:	Portland Ce	ment	Test Period	01-Feb-2	2011
Type:		I-II(MH) (AS	TM C 150)	То	: 28-Feb-2	2011
「平空之気をあ			्रध्यमाग	เตราเอม		
	Но	olcim cement meets	the specifications	of ASTM C 150 for Type I-II(MH) cen	nent.	
			Manane	ເຄມີອາທາງລະເພື່ອນ		
Supplier:	Holcim (US) In	C.		Source Location: Portland Plant		_
ddress:	3500 State Hig			3500 State Highw	-	
	Florence, Co.	81226		Florence, Co. 812	26	
elephone:	719-784-1307			Contact: Dick Roush		
ate Issued:	11-Mar-2011	sad on average test	data during the t	est period. The data is typical of cerno	ant shipped by Hold	m: individual
THE IONOWING	RIVINGUUT IS DE	and on average lest		ts may vary.		
			NUMBER OF STREET, STRE	Semencelleophemenie		
<u> Antsizizzi di dar</u>	$\leq \langle \langle \langle \langle \rangle \rangle \rangle + \langle \langle \rangle \rangle \rangle$		TO IL AOTEVIT			
		emical		Phys Item	Limit ^a	Result
	<u>m</u>	Limit ^A		Air Content (%)	12 max	6
iO ₂ (%)			19.0		260 min	
₂ O ₃ (%)		6.0 max	4.7	Blaine Fineness (m²/kg)	430 max	406
e ₂ O ₃ (%)		6.0 max	3.3			
≇O (%)		-	63.2			
gO (%)		6,0 max	1.5	Autoclave Expansion (%) (C 151)	0.80 max	-0.01
D ₃ (%) ^C		3.0 max	3.5	Compressive Strength MPa (psi):	· · · · · · · · · · · · · · · · · · ·	
ss on Ignition (%)		3.0 max	2.3	0.4000	10.0 (1450) min	31.0 (4500)
soluble Residue (9	<u>6)</u>	0.75 max	0.32	3 days 7 days	17.0 (2470) min	36.6 (5310)
O ₂ (%)			<u> </u>	r uays	17.0 (2470) 11117	30.0 (0010)
nestone (%) 1CO3 in Limestone		5.0 max 70 min	83	Initial Vicat (minutes)	45-375	123
organic Processing		5.0 max				
otential Phase Con				Mortar Bar Expansion (%) (C 1038)	· · · · ·	0.010
S (%)			59			
S (%)			11		-	
A (%)		8 max	7			
AF (%)		-	10		↓ ↓	
S + 4.75C ₃ A (%)		100 max	92			
		Tests Dat	non/ASTIM	Optional Requirements :		
	Ch	mical		Phys	ical	COLUMN TRANSPORT
	Crie		Denvilé	ltem	Limit ⁸	Result
	m	Limit"	Result		L Penning I	
Iter uivalent Alkalies (Limit ^A	Result 0.70	Heat of Hydration: 7 days, kJ/kg (cal/g) ⁸	2000	354 (85)

A Dashes in the limit / result columns mean Not Applicable.

Г

^B Test result represents most recent value and is provided for information only. Analysis of Heat of Hydration has been carried out by CTLGroup, Skokie, IL. ^C It is permissible to exceed the specification limit provided ASTM C 1038 Mortar Bar Expansion does not exceed 0.020 %.

^D Adjusted per Annex A1.6 of ASTM C150 and AASHTO M85.

This data may have been reported on previous mill certificates. It is typical of the cement being currently shipped.

Transit Mix Concrete Attn: Robert Montoya 444 E Costilia St. Colorado Springs, CO 80903-3761

Product: Class F Fly Ash, Cholla Fly Ash ASTM C 618

1-09-11 POZZOLAN TEST REPORT

Lot: 2064	Results	Specifica	<u>tions</u>
Chemical Analysis (C311/C114/D4326)			
Silicon Dioxide, SiO ₂	58.32 %		
Aluminum Oxide, Al ⁵ 0 ₃	23.56 %		
Ferric Oxide, Fe ₂ O ₃	6.48 %		
$SiO_2 + AI_2O_3 + Fe_2O_3$	88.36 %	70.00	Min
Calcium Ôxíde, CaO	3.26 %		
Magnesium Oxide, MgO	1.05 %		
Sulfur Trioxide, SO ₃	0.37 %		Max
Moisture Content	0.17 %		Max
Loss on Ignition	0.27 %	6.00	Max
Available Alkalis as Na ₂ O	0.22 %		
Alkalis (%Na ₂ O + 0.658% K ₂ O)	1.19 %		
R Factor (%ČaO -5) / (%FeŎ)	-0.27 %	441 Juni 849	
Physical Analysis			
Fineness, amount retained on			
#325 sieve, % (C430)	17.30	34.00	Max
variation, points from average	0.85	5.00	Max
Density, g/cm ³ (C188)	2.23		
Variation from average, %	0.03	5.00	Max
Strength Activity Index			
with Portland Cement (C311 / C109)			
at 7 days, % of cement control	80.16		
at 28 days, % of cement control	84.26	75.00	Min
Water Requirement (C311)			
% of cement control	96.69	105.00	Max
	C311 / C151)	_	
or contraction, %	-0.06	0.80	Max
		0.80	

All tests have been made in strict accordance with the current standards of the American Society for Testing and Materials covering the type of material specified.

Lee Gorby, Quality Assurance Manager 24 FEB 2011

Corporate Headquarters 8800 E Chaparral Rd, Ste 155 Scottsdale, AZ 85250 Phone: 480-850-5757 Fax: 480-850-5758

PHOENIXCEMENT

Cement Manufacturing 3000 W Cement Plant Rd Clarkdale, AZ 86324 Phone: 928-634-2261 Fax: 928-634-3543

Ctl#: 49287

19th Avenue Facility 1802 W Lower Buckeye Rd Phoenix, AZ 85007 Phone: 602-253-9149 Fax: 602-253-9160

Lower Buckeye Facility 1941 W Lower Buckeye Rd Phoenix, AZ 85009 Phone: 602-258-7798 Fax: 602-525-3362

> 21st Avenue Facility 1325 N 21st Avenue Phoenix, AZ 85009 Phone: 602-254-3824 Fax: 602-254-3825

Mesa Community Storage Dobson & McKellips Mesa, AZ 85211 Phone: 480-990-7847

> Cholla Fly Ash Facility P O Box 380 Joseph City, AZ 86032 Phone: 928-288-1661 Fax: 928-288-1663

Four Corners Fly Ash Facility P O Box 1007 Fruitland, NM 87416 Phone: 505-598-8657 Fax: 505-598-8633

> San Juan Fly Ash Facility San Juan Generating Station Waterflow, NM 87421 Phone: 505-598-7546 Fax: 505-598-7547

> Escalante Fly Ash Facility CR19 / P O Box 620 Prewitt, NM 87405 Phone: 505-285-4590 Fax: 505-285-4667

Gallup Fly Ash Facility 9001/4 N 9th St. Gallup, NM 87305

The Chemical Company

May 12, 2011

Transit Mix Concrete CO 444 East Costilla Colorado Springs, Colorado 80903

Attention: Robert Montoya Project: Various Project location: Various

Certificate of Conformance Pozzolith® 200 N BASF Corporation* Admixture for Concrete

*(successor in interest to BASF Construction Chemicals, LLC, which is successor by merger to BASF Admixtures, Inc., formerly known as Degussa Admixtures, Inc., formerly known as Master Builders, Inc.)

I, Richard Hubbard, Sr. Technical Marketing Specialist for BASF Corporation, Cleveland, Ohio, certify:

That Pozzolith 200 N is a BASF Corporation Water-Reducing Admixture for concrete; and

That no calcium chloride or chloride based ingredient is used in the manufacture of Pozzolith 200 N; and

That Pozzolith 200 N, based on the chlorides originating from all the ingredients used in its manufacture, contributes less than 0.00013 percent (1.3 ppm) chloride ions by weight of the cement when used at the rate of 65 mL per 100 kg (1 fluid ounce per 100 pounds) of cement; and

That, depending on the dosage used, Pozzolith 200 N meets the requirements for a Type A, Water-Reducing, Type B, Retarding, and Type D, Water Reducing and Retarding Admixture as specified in ASTM C 494, Corps of Engineers' CRD-C 87 and AASHTO M194, the Standard Specifications for Chemical Admixtures for Concrete.

Richard Hudbard I

Richard Hubbard Sr. Technical Marketing Specialist, BASF Corporation

BASF Corporation 23700 Chagrin Boulvard Cleveland, OH 44122 216 839-7500 ph www.masterbuilders.com

The Chemical Company

May 12, 2011

Transit Mix Concrete CO 444 East Costilla Colorado Springs, Colorado 80903

Attention: Robert Montoya Project: Various Project location: Various

Certificate of Conformance PolyHeed® 1020 BASF Corporation* Admixture for Concrete

*(successor in interest to BASF Construction Chemicals, LLC, which is successor by merger to BASF Admixtures, Inc., formerly known as Degussa Admixtures, Inc., formerly known as Master Builders, Inc.)

I, Richard Hubbard, Sr. Technical Marketing Specialist for BASF Corporation, Cleveland, Ohio, certify:

That PolyHeed 1020 is a BASF Corporation Mid-Range Water-Reducing Admixture for concrete; and

That no calcium chloride or chloride based ingredient is used in the manufacture of PolyHeed 1020; and

That PolyHeed 1020, based on the chlorides originating from all the ingredients used in its manufacture, contributes less than 0.00014 percent (1.4 ppm) chloride ions by weight of the cement when used at the rate of 65 mL per 100 kg (1 fluid ounce per 100 pounds) of cement; and

That, depending on the dosage used, PolyHeed 1020 meets the requirements for a Type A, Water-Reducing and Type F, Water-Reducing, High Range Admixture specified in ASTM C 494, Corps of Engineers' CRD-C 87 and AASHTO M194, the Standard Specifications for Chemical Admixtures for Concrete.

Richard Hudbard II

Richard Hubbard Sr. Technical Marketing Specialist, BASF Corporation

BASF Corporation 23700 Chagrin Boulvard Cleveland, OH 44122 216 839-7500 ph www.masterbuilders.com

The Chemical Company

July 20, 2011

Transit Mix Concrete CO 444 East Costilla Colorado Springs, Colorado 80903

Attention: Robert Montoya Project: Various Project location: Various

Certificate of Conformance MB-AE™ 90 BASF Construction Chemicals, LLC* Air-Entraining Admixture for Concrete

*(successor in interest to BASF Construction Chemicals, LLC, which is successor by merger to BASF Admixtures, Inc., formerly known as Degussa Admixtures, Inc., formerly known as Master Builders, Inc.)

I, Richard Hubbard, Sr. Technical Marketing Specialist for BASF Corporation, Cleveland, Ohio, certify:

That MB-AE 90 is a BASF Corporation Air-Entraining Admixture for concrete; and

That no calcium chloride or chloride based ingredient is used in the manufacture of MB-AE 90; and

That MB-AE 90, based on the chlorides originating from all the ingredients used in its manufacture, contributes less than 0.000068 percent (0.68 ppm) chloride ions by weight of the cement when used at the rate of 65 mL per 100 kg (1 fluid ounce per 100 pounds) of cement; and

That MB-AE 90 meets the requirements of ASTM C 260, Corps of Engineers' CRD-C 13 and AASHTO M154, the Standard Specifications for Air-Entraining Admixtures for Concrete.

Richard Hubberd I

Richard Hubbard Sr. Technical Marketing Specialist, BASF Corporation

BASF Corporation 23700 Chagrin Boulvard Cleveland, OH 44122 216 839-7500 ph www.masterbuilders.com

444 East Costilla Avenue Colorado Springs, Colorado 80903 Ph. (719) 475-0700 Fax (719) 475-0226

2596 Hwy 96 East Pueblo, Colorado 81002 Ph. (719) 543-7898 Fax (719) 583-0345

February 17, 2011

RE: Fine Concrete Aggregate Daniels Sand Pit 3710 Bradley Road Colorado Springs, Colorado 80916

Gentlemen:

This letter presents the results of physical properties and deleterious substances tests performed on a Fine. Concrete Aggregate that was sampled on January 6, 2011 at Daniels Sand Pit. The results are as follows:

Sieve Size	Percent Passing		Specifications
			ASTM C 33 Fine Concrete Agg.
9.5 mm, 3/8"	100		100
4.75 mm, No. 4	100		95 - 100
2.36 mm, No. 8	89		- 80 - 100
1.18 mm, No. 16	69		50 - 85
600 um, No. 30		· •	25 - 60
300 um, No. 50	51 28	•	10 - 30
150 um, No. 100	8.2		0 - 10
75 um, No. 200	1.0		0-3
Fineness Modulus: 2.60			AASHTO T-37
Bulk Specific Gravity (SSD): 2.	59 Absorption: 1.0%		AÁSHTÓ T-85
Magnesium Sulfate Soundness (Fiv	ve Cycles): 2.1% Loss		AASHTO T-104
Sodium Sulfate Soundness (Five C	ycles): 1.0% Loss		AASHTO T-104
Average Sand Equivalent: 87			AASHTO I-176
Organic Impurities: Clear			AASHTO T-21
Mortar Bar Expansion (ASR) - Sodiu	um Hydroxide:	0.04%	AASHTO T-303

The above sample was tested according to American Society for Testing and Materials (ASTM) procedures D-75, D-2419, C-702, C-117, C-136, C-33, C-40, C-88, C-128 and C-1260,

If you have any questions feel free to contact me at your earliest convenience.

Respectfully Submitted,

Grant W. Smith Quality Control Manager

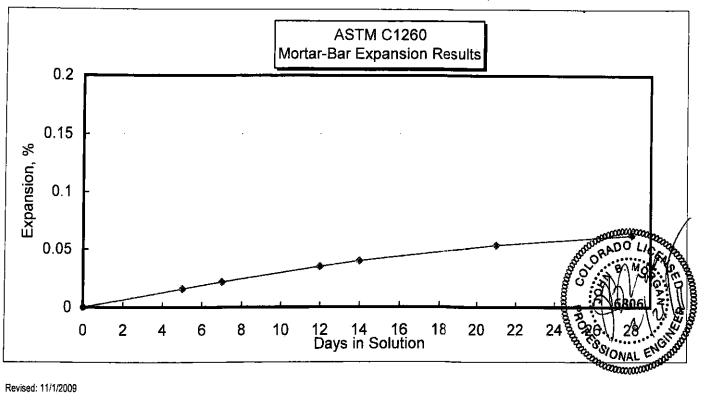
444 East Costilla Avenue Colorado Springs, Colorado 80903 Ph. (719) 475-0700 Fax (719) 475-0226

2596 Hwy 96 East Pueblo, Colorado 81002 Ph. (719) 543-7898 Fax (719) 583-0345

Modified ASTM C 1260 / C 1567 Tests

No. 1025D-1-6

Standard Test Method for Accelerated Detection of Potentially Deleterious Expansion of Mortar Bars Due to Alkali-Silica Reaction


<u>Materials</u>	<u> </u>	Source		urce Produc		end	Batch V	Veights, g	<u> </u>	lotes
Cement	Holcim	Florence, C	:o	Type I/II 10		0%	440		Batched:	1/17/2011
Flyash						·	+	440		
Coarse		·				_				
Sand	Daniels	Colo Spgs,	co	FCA	10	0%	990	990		
Water							20	6.8		
W/C Ratic				·			0.	47	Completed:	2/16/2011
S	pecimen ID:		D-	1, 2, 3	L		4		<u>_</u>	· · <u> </u>
Days	Date	Co	Comparator Readings			-	Mor	tar Bar Expa	nsion, %	Average
		1		2	3		1	2	3	
0	1/19/2011	0.1700	0	.1700	0.1710					0.0000
5	1/24/2011	0.1716	0	.1714	0.1727		0.0160	0.0140	0.0170	0.0157
7	1/26/2011	0.1721	0	.1722	0.1732		0.0210	0.0220	0.0220	0.0217
12	1/31/2011	0.1735	0.	.1735	0.1745		0.0350	0.0350	0.0350	0.0350
14	2/2/2011	0.1740	0.	.1740	0.1750		0.0400	0.0400	0.0400	0.0400
21	2/9/2011	0.1753	0.	.1754	0.1764		0.0530	0.0540	0.0540	0.0537
28	2/16/2011	0.1763	0	.1762	0.1772		0.0630	0.0620	0.0620	0.0623

Average Percent Expansion at 14 days in solution (16 days of age)

28 Day expansion results are for informational purposes only

0.06

0.04

Colorado Springs, Colorado 80903 Ph. (719) 475-0700 Fax (719) 475-0226 2596 Hwy 96 East Pueblo, Colorado 81002 Ph. (719) 543-7898 Fax (719) 583-0345

February 15, 2011

RE: No. 57/67 Coarse Concrete Aggregate Transit Mix of Pueblo Pueblo, CO 81002

Gentlemen:

This letter presents the results of physical properties and deleterious substances tests performed on a coarse aggregate that was sampled on January 5, 2011 at Transit Mix of Pueblo Aggregate Pit. The results are as follows:

Sieve Size	Percent Passing	Specifi	cations
		No. 57	No. 67
37.5 mm, 1 1/2"	100	100	
25.0 mm, 1"	100	95 - 100	100
19.0 mm, 3/4"	9 1		90 - 100
12.5 mm, 1/2"	53	25 - 60	
9.5 mm, 3/8"	30		20 - 55
4.75 mm, No. 4	3.1	0 - 10	0-10
2.36 mm, No. 8	2.0	0 - 5	0 - 5
75 um, No. 200	0.9	0 - 1.5	0 - 1.5
Los Angeles Abrasion (G	rading B): 30.0% Loss	AASHTO	T-96
Bulk Specific Gravity (SSI	D): 2.62 Absorption: 1.1%	AASHTO	T-85
Magnesium Sulfate Sour	ndness (Five Cycles): 3.0% Loss	AASHTO	T-104
Sodium Sulfate Soundne	ss (Five Cycles): 1.0% Loss	AASHTO	T-104
Clay Lumps and Friable	Particles: 0	AASHTO	T-112
ractured Particles (2 Fro	ictured Faces): 72%	ASTM D 5	
	léar .	AASHTO	
ulk Density by Rodding:	99 lb/ft ³ Voids: 39%	AASHTO	r-19
	SR) - Sodium Hydroxide: 0.09%	ASTM C 1	

The above sample was tested according to American Society for Testing and Materials (ASTM) procedures D-75, C-702, C-117, C-136, C-33, C-40, C-142, C-88, C-127, C-131, C-29 and C-1260.

The above sample conforms to the requirements of ASTM C 33, TABLE 3, Limits for Deleterious Substances and Physical Property Requirements of Coarse Aggregate for Concrete, (15, 25, 35, 45, <u>55</u>, 1M, 2M, 3M, 4M, 5M, 1N and 2N).

If you have any questions feel free to contact me at your earliest convenience.

Respectfully Submitted,

Grant W. Smith Quality Control Manager

444 East Costilla Avenue Colorado Springs, Colorado 80903 Ph. (719) 475-0700 Fax (719) 475-0226

2596 Hwy 96 East Pueblo, Colorado 81002 Ph. (719) 543-7898 Fax (719) 583-0345

Modified ASTM C 1260 / C 1567 Tests

No. 100801T

0.0750

0.0870

0.1040

0.1170

0.0760

0.0870

0.1063

0.1210

0.09

Standard Test Method for Accelerated Detection of Potentially Deleterious Expansion of Mortar Bars Due to Alkali-Silica Reaction

Materia	als S	Source		ct Ble	nd	Batch \	Neights, g	No	otes
Ceme	nt Holcim	Florence, C			100% 440				/11/2011
Flyas	h						- 440 -		
Coars	e TMOP	Pueblo, C	57/67	/ 100	%	990	+	<u> </u>	
Sand							990 -		
Water)6.8		<u> </u>
W/C Ra	tio		1.04			0.	.47 (Completed: 2	/10/2011
	Specimen ID:		801T-1, 2, 3	3			,L		
Days	Date	C	omparator Readi	ngs	+-	Mor	tar Bar Expans	ion, %	Average
		1	2	3		1	2	3	
0	1/13/2011	0.1775	0.1777	0.1695					0.0000
4	1/17/2011	0.1810	0.1814	0.1731).0350	0.0370	0.0360	0.0360
7	1/20/2011	0.1828	0.1833	0.1750		0.0530	0.0560	0.0550	0.0547

0.1770

0.1782

0.1799

0.1812

0.0750

0.0860

0.1030

0.1200

0.0780

0.0880

0.1120

0.1260

Average Percent Expansion at 14 days in solution (16 days of age)

0.1855

0.1865

0.1889

0.1903

28 Day expansion results are for informational purposes only Ō 12 **ASTM C1260** Mortar-Bar Expansion Results 0.2 0.15 % Expansion, 0.1 0.05 0 2 12 14 16 Days in Solution 0 6 8 10 4 18 20 22 A Constant of the second secon 24

Revised: 11/1/2009

11

14

21

28

1/24/2011

1/27/2011

2/3/2011


2/10/2011

0.1850

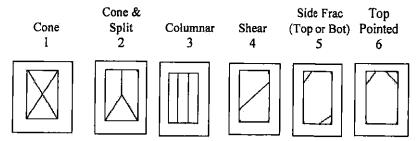
0.1861

0.1878

0.1895

5910 Buttermere Dive Colorado Springs, CO 80906

COMPRESSIVE STRENGTH OF CYLINDRICAL CONCRETE SPECIMENS


				Project No:	09-33	3
Client: MA Mort	enson			Lab No:	C2HS	#1
				Reviewed by:		
				Date of Report:	5/06/1	0
Project: Wildernes	s IBCT COFS		Location:	FTC		
Contractor: MAM			Arch / Eng			
Sample Location:	COF-2 hardstand	@ gridlines 13	. 6 - E.3	·		
Source of Sample: true	ck chute, midload,	pump hose, oth	er:			
Concrete Supplier:	Transit Mix		Water adde	ed on job, gal:		0
Ticket No:	136079			o, in: (C143)	4 1/4	
Batch Size, cy:	9.0		Mea Air co	ontent, %: (C231)	5.0	
Mix Ident:	65782110			p, Deg F: (C1064)		
Des Strength, PSI	5500	28 Days	Ambient T	emp, Deg F:	53	
Required Str, PSI	5000	28 Days	Plastic Uni	t, PCF:	143.1	
Max Size Agg, in:	3/4"		No of Cyli	No of Cylinders Cast: (C31)		4
Batch Time:	6:20		Sampled by		Date:	5/06/10
Discharge Time:	DNO		Authorized		Date:	5/06/10
Truck No.:	28	······		dure: ASTM C39		

Remarks:

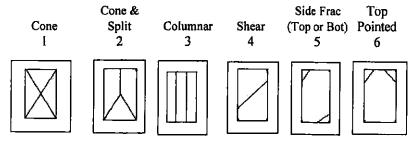
Note: Cylinders are 4" x 8", area =

12.57 sq in, unless otherwise indicated.

Specimen	Date	Specimen	Compressive Strength				Type of	Defects in	Tested
Marking	Tested	Age in Day	Pound Force	Diameter	Area	Psi	Fracture	Spec/Cap	by
C2HS #1	5/13/10	7	68630	4.001	12.57	5458	2	-	TB/JA
C2HS #1	6/3/10	28	94170	3.998	12.55	7501	2		EC/JA
C2HS #1	S #1 6/3/10 28	28	97110	3.998	12.55	7735	2		EC/JA
				28 Day Average		7618			· · · · · · · · · · · · · · · · · · ·

5910 Buttermere Dive Colorado Springs; CO 80906

COMPRESSIVE STRENGTH OF CYLINDRICAL CONCRETE SPECIMENS


					Project No:	09-33		
Client:	MA Mort	enson			Lab No:	C3HS a	C3HS #1	
					Reviewed by:			
					Date of Report:	5/18/1	0	
Project:	Wildernes	ss IBCT COFS		Location:	FTC			
Contractor	: MAM			Arch / Eng		· · · · ·		
Sample Lo		COF-3 hardstand	@ gridlines 14	.8 - E.2,				
Source of s	Sample: <i>tru</i>	ck chute, midload, j	oump hose, oth	er:				
Concrete S	upplier:	Transit Mix		Water add	ed on job, gal:		0	
Ticket No:		136758		Mea Slum	p, in: (C143)	4	1/4	
Batch Size	, <u>cy:</u>	10.0		Mea Air co	ontent, %: (C231)		6.4	
Mix Ident:		65782110		Conc Tem	p, Deg F: (C1064)		69	
Des Streng	th, PSI	5500	28 Days		emp, Deg F:	52		
Required S	tr, PSI	5000	28 Days	Plastic Uni	t, PCF:	14	0.6	
Max Size A	Agg, in:	3/4"		No of Cyli	nders Cast: (C31)		5	
Batch Time	e <u>:</u>	6:27		Sampled by	<u>````</u>	Date:	5/18/10	
Discharge '	Time:	DNO		Authorized	by:	Date:	5/18/10	
Truck No.:		94	-	Test Proce	dure: ASTM C39			

Remarks:

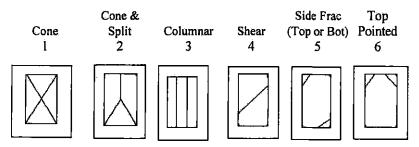
Note: Cylinders are 4" x 8", area =

12.57 sq in, unless otherwise indicated.

Specimen	Date	Specimen	0	Compressiv	e Strength	Type of	Defects in	Tested	
Marking	Tested	Age in Day	Pound Force	Diameter	Area	Psi	Fracture	Spec/Cap	by
C3HS #1	5/21/10	3	61240	3.996	12.54	4883	2	-	DC/JA
C3HS #1	5/25/10	7	63020	3.996	12.54	5025	2	-	LS/JA
C3HS #1	6/15/10	28	81280	3.999	12.56	6471	2	-	LS/JA
C3HS #1	6/15/10	28	82990	4.002	12.58	6597	2		LS/JA
	-			28 Day .	Average	6534			

5910 Buttermere Dive Colorado Springs, CO 80906

. /


COMPRESSIVE STRENGTH OF CYLINDRICAL CONCRETE SPECIMENS

				Project No:	09-33	3		
Client: MA Mor	tenson			Lab No:	C3HS	C3HS #2		
	•			Reviewed by:				
				Date of Report:	5/19/1	0		
Project: Wilderne	ss IBCT COFS		Location:	FTC	· · ·			
Contractor: MAM		-	Arch / Eng	<u>;</u>				
Sample Location:	COF-3 hardstand	@ gridlines 6.6	- E.2			·······		
Source of Sample: tru	ick chute, midload, p	ump hose, oth	er:		· · · · · · · · · · · · · · · · · · ·			
Concrete Supplier:	Transit Mix		Water add	ed on job, gal:		0		
Ticket No:	136785		Mea Slum	p, in: (C143)	4	3/4		
Batch Size, cy:	10.0		Mea Air co	ontent, %: (C231))	5.1		
Mix Ident:	65782110		Conc Tem	p, Deg F: (C1064		70		
Des Strength, PSI	5500	28 Days	Ambient T	emp, Deg F:	-	52		
Required Str, PSI	5000	28 Days	Plastic Uni	it, PCF:	14	2.0		
Max Size Agg, in:	3/4"		No of Cyli	nders Cast: (C31))	5		
Batch Time:	6:02		Sampled by			5/19/10		
Discharge Time:	DNO		Authorized	by:	Date:	5/19/10		
Truck No.:	55		Test Proce	dure: ASTM C39)			

Remarks:

Note: Cylinders are 4" x 8", area = 12.57 sq in, unless otherwise indicated.

	·			-		i bio i biq ini		mise mercated.	
Specimen	Date	Specimen	0	ompressiv	e Strength		Type of	Defects in	Tested
Marking	Tested	Age in Day	Pound Force	Diameter	Area	Psi	Fracture	Spec/Cap	by
C3HS #2	5/22/10	3	61960	3.996	12.54	4940	2	-	TB/JA
C3HS #2	5/26/10	7	68230	3.996	12.54	5440	2	-	LS/JA
C3HS #2	6/16/10	28	91530	4.001	12.57	7280	2	-	LS/JA
C3HS #2	6/16/10	28	89250	4.000	12.57	7102	2	-	LS/JA
				28 Day .	Average	7191			

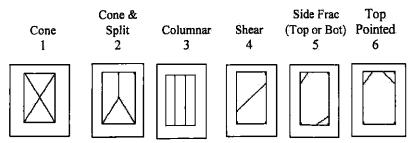
merican Testing, Inc.

5910 Buttermere Dive Colorado Springs, CO 80906

. 4

÷

COMPRESSIVE STRENGTH OF CYLINDRICAL CONCRETE SPECIMENS


				Project No:	09-33	}	
Client: MA Mort	enson			Lab No:	C4HS	C4HS #1	
			_	Reviewed by:			
				Date of Report:	6/07/1	0	
Project: Wildernes	IBCT COFS		Location:	FTC			
Contractor: MAM			Arch / Eng	g:			
Sample Location:	COF-4 hardstand	l @ gridlines 16.	3 E.3				
Source of Sample: tru	ck chute, midload,	<u>pump hose,</u> oth	er:				
Concrete Supplier:	Transit Mix		Water add	ed on job, gal:		0	
Ticket No:	137697		 Mea Slum	p, in: (C143)	3		
Batch Size, cy:	10.0		Mea Air c	ontent, %: (C231)		5.0	
Mix Ident:	65782110		Conc Tem	p, Deg F: (C1064)	ļ	80	
Des Strength, PSI	5500	28 Days	Ambient T	emp, Deg F:		70	
Required Str, PSI	5000	28 Days	Plastic Uni	it, PCF:	14	2.5	
Max Size Agg, in:	3/4"		No of Cyli	nders Cast: (C31)		4	
Batch Time:	5:20		Sampled by	y: MAC	Date:	6/07/10	
Discharge Time:	DNO		Authorized	l by:	Date:	6/07/10	
Truck No.:	7			dure: ASTM C39			

Remarks:

Note: Cylinders are 4" x 8", area =

12.57 sq in, unless otherwise indicated.

Specimen	Date	Specimen	C	ompressiv	e Strength	Type of	Defects in	Tested	
Marking	Tested	Age in Day	Pound Force	Diameter	Area	Psi	Fracture	Spec/Cap	by
C4HS #1	6/14/10	7	65260	4.003	12.59	5185	5	-	LS/JA
C4HS #1	7/5/10	28	88060	3.999	12.56	7011	2	-	LS/JA
C4HS #1	7/5/10	28	85700	3.998	12.55	6826	2	-	LS/JA
				28 Day	Average	6919			

Kumar & Associates, Inc.

Geotechnical and Materials Engineers and Environmental Scientists 6735 Kumar Heights Colorado Springs, CO 80918 phone: (719) 632-7009 fax: (719) 632-1049 email: kacolospgs@kumarusa.com www.kumarusa.com

Other Office Locations: Denver, Fort Collins, Pueblo, Winter Park/Fraser, and Frisco Colorado

CONCRETE TEST RESULTS (ASTM C39)

Phyllis Carias US Army Corps of Engineers PO Box 13049 Fort Carson, CO 80913

PROJECT NO. 09-2-112H Wilderness Road, COF's W912HN-08-D-0021 DK01 Cambrey Torres/Dave Micklewright,

Sample Location Hardstand Under Canopy at COF's #4 – 160' North, 10' East of Southwest Corner of Hardstands

Date Sampled 6/7/2010	Time Sampled 9:40 AM	Sampled By Jason Eiffler
No. of Specimens 4	Curing Method Cure Box	
Supplier TMC		Batch Size 10 CY
Truck Number 55	Ticket Number 34165	Batch Time 8:55 AM
Mix Design 65782110	Date Received in Lab 6/8/2010	
Slump 4 in.	Air Content 4.7 %	Unit Weight 140.9 pcf
Air Temperature 84	Concrete Temperature 81	
Water Added 6 gais		

STRENGTH TEST DATA

Average Spec	imen Diameter	4 in. Area 12.	Design Strength 5000 psi			
Specimen	Test Date	Age (days)	Load (Ibs)	Strength (psi)	Percent of Design	Type of Fracture
C1946-1	6/14/2010	7	56435	4490	90	5
C1946-2	7/6/2010	29	76581	6090	122	2
C1946-3	7/6/2010	29	79832	6350	127	2

Average 28-Day Strength: 6220 psi

Comments: None

Reported By

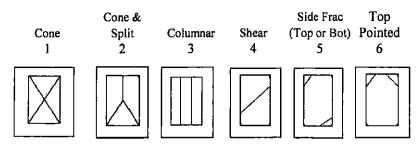
Brandon K. Barker, Project Supervisor

cc: book, file, TMC

These test results only apply to the samples which were tested. The testing report shall not be reproduced, except in full, without the written approval of Kumar and Associates, Inc. Testing performed in accordance with ASTM C31, C39, C138, C143, C231, C1064, C1231.

5910 Buttermere Dive Colorado Springs, CO 80906

COMPRESSIVE STRENGTH OF CYLINDRICAL CONCRETE SPECIMENS


				Project No:	09-33	
MA Mort	enson		Lab No:	C6 HS	1	
			_	Reviewed by:		
				Date of Report:	7/08/1	0
Wildernes	ss IBCT COFS		Location:	FTC		
			Arch / Eng			
ation:	COF-6 HS @ gri	dlines E.3-19.4	_			
ample: tru	<u>ck chute,</u> midload, j	oump hose, othe	r:			
upplier:	Transit Mix	·	Water add	ed on job, gal:		0
	139402		_Mea Slum	p, in: (C143)	4	1/4
cy:	10.0	-	Mea Air co	ontent, %: (C231)	-	6.3
<u> </u>	65782110		Conc Tem	p, Deg F: (C1064)		77
h, PSI	5000	28 Days	Ambient T	emp, Deg F:		54
tr, PSI	5000	28 Days	Plastic Un	it, PCF:	14	0.0
.gg, in:	3/4"		No of Cyli	nders Cast: (C31)		4
	4:20		Sampled b	y: DC	Date:	7/08/10
Time:	DNO		Authorized	l by:	Date:	7/08/10
	7		Test Proce	dure: ASTM C39		
	Wildernes ation: ample: tru upplier: cy: h, PSI r, PSI gg, in: :	COF-6 HS @ gri ample: truck chute, midload, p applier: Transit Mix 139402 cy: 10.0 65782110 h, PSI 5000 r, PSI 5000 gg, in: 3/4" : 4:20	Wilderness IBCT COFS cation: COF-6 HS @ gridlines E.3-19.4 ample: truck chute, midload, pump hose, othe upplier: Transit Mix 139402 cy: 10.0 65782110 h, PSI 5000 28 Days r, PSI 5000 28 Days gg, in: 3/4" : 4:20	Wilderness IBCT COFSLocation: Arch / Engcation:COF-6 HS @ gridlines E.3-19.4ample:truck chute, midload, pump hose, other :amplier:Transit MixWater add139402Mea Slumcy:10.0Mea Air ca65782110Conc Temh, PSI500028 Daysh, PSI500028 Daysgg, in:3/4"No of Cyli:4:20Sampled bCime:DNOAuthorized	MA MortensonLab No: Reviewed by: Date of Report:Wilderness IBCT COFSLocation: Arch / Eng:Exation:COF-6 HS @ gridlines E.3-19.4 ample: 139402ample: truck chute, midload, pump hose, other : applier:Water added on job, gal: Mea Slump, in: (C143) Core Temp, Deg F: (C1064)k, PSI500028 Days Solok, PSI500028 Days Slaysk, PSI500028 Days Sampled by:k, PSI3/4"k, PSI3/4"k, PSI3/4"k, PSISolok, PSI5000k, PSI500	MA MortensonLab No:C6 HS Reviewed by: Date of Report:7/08/11Wilderness IBCT COFSLocation:FTCArch / Eng:Arch / Eng:cation:COF-6 HS @ gridlines E.3-19.4ample:truck chute, midload, pump hose, other :ample:Transit MixWater added on job, gal:139402Mea Slump, in: (C143)65782110Conc Temp, Deg F: (C1064)h, PSI500028 Daysr, PSI500028 Daysgg, in:3/4"No of Cylinders Cast:(C31):4:20Sampled by:DNOAuthorized by:Date:

Remarks:

Note: Cylinders are 4" x 8", area =

12.57 sq in, unless otherwise indicated.

Specimen	Date	Specimen	C	ompressiv	e Strength	Type of	Defects in	Tested	
Marking	Tested	Age in Day	Pound Force	Diameter	Area	Psi	Fracture	Spec/Cap	by
C6 HS 1	7/15/10	7	52830	4.000	12.57	4204	2	-	LS/JA
C6 HS 1	8/5/10	28	72030	3.997	12.55	5740	2	-	LS/JA
C6 HS 1	8/5/10	28	71500	4.002	12.58	5684	2	-	LS/JA
				28 Day .	Average	5712			
				-					

