W

ENGINEER'S

COMMENTS:

WEAVER GENERAL CONSTRUCTION COMPANY

3679 S. Huron St., Suite 404 Englewood, CO 80110

Phone: (303) 789-4111 FAX: (303) 789-4310

SUBMITTAL TRANSMITAL

			April 7, 2011 WGC Submittal No: 03300-010
PROJECT:	Harold Thompson Regiona Birdsall Rd. Fountain, CO 80817 Job No. 2908	al WRF	WGC Submittal No. 03300-010
ENGINEER:	GMS, Inc. 611 No. Weber St., #300 Colorado Springs, CO 8090 719-475-2935 Roger Sams		
OWNER:	Lower Fountain Metropolit Sewage Disposal District 901 S. Santa Fe Ave. Fountain, CO 80817 719-382-5303 James Heck		
CONTRACTOR:	Garney Companies Inc. 7911 Shaffer Parkway Littleton, CO 80127		
SUBJECT: Concrete	Mix Design for walls and	slabs.	
SPEC SECTION: 03	300 - Cast-In-Place Conci	rete	
PREVIOUS SUBMISS	SION DATES: None		
DEVIATIONS FROM	SPEC:YES X_ N	Ю	
respect to the means, met	hods, techniques, & safety pre-	cautions & programs	neral Construction and approved with incidental thereto. Weaver General tents and comprises on deviations
Contractor's Stamp	:	Enç	gineer's Stamp:
Date: 4/7/11 Reviewed by: H.C. (X) Reviewed Witl () Reviewed With	hout Comments		

TRANSIT MIX CONCRETE CO.

Colorado Springs

P.O. Box-1030, CO 80901 (719) 475-0700 (Fax) 475-0226

P.O. Box-857, CO 81002 (719) 561-8350 (Fax) 566-0231

CONCRETE MIX DESIGN

March 30, 2011

Secondary Clarifier Birdsall Road East of Old Pueblo Road El Paso County, CO

"Structural Concrete for Liquid Containment Structures" 4500 PSI @ 28 Days • 15% Fly Ash • Air Entrained • 0.42 Maximum W/CM

GARNEY COMPANIES Inc. 7911 Shaffer Parkway Littleton, Colorado 80127

		ONE CUBIC YARD
Cement	(Holcim Type I/II)	520 lbs
Fly Ash	(SRMG Class F)	91 lbs
AEA	(Master Builders AE-90)	7.3 oz
WRA	(Master Builders 200N)	18.3 oz
HRWRA	(Master Builders Polyheed 1020)	22.9 oz
Sand	(Daniels Sand Co.)	1310 lbs
Rock	(Castle Concrete)	1700 lbs
Water	,	255 lbs

Transit Mix Concrete CO Identification Number: 34502110

Approximate Physical Properties:

Unit Weight - pcf ± 142.1 4" Max Slump - Inches Air Content - % $6\% \pm 1\%$ Water / Cementitious Ratio 0.42

This mix is derived from the enclosed "Summary of Concrete Mix Data" series (Table No.107-36). Compliance information on the various materials is also enclosed.

Production and delivery is in accordance with ASTM C 94 Standard Specification for Ready-Mixed Concrete. Compressive strength performance is conditional with strict adherence to the current ASTM Standards relating to concrete, and the latest revisions of ACI 301 and 318.

TRANSIT MIX CONCRETE CO.

Robert L. Montoya Technical Service Manager

Summary of Concrete Mix Data

Client

Transit Mix Concrete CO

Project:

Plant Mixes

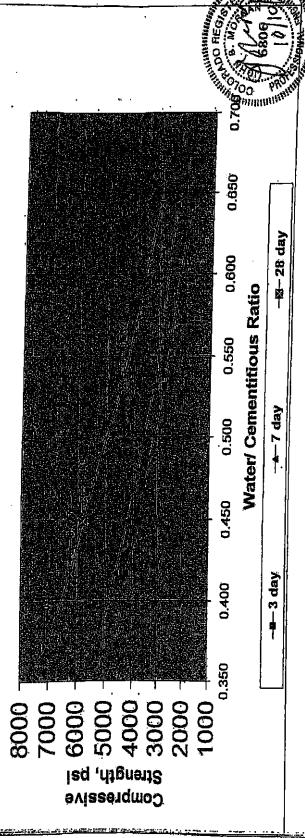
Aggregates:

ASTM C 33 Coarse and Fine

Cement:

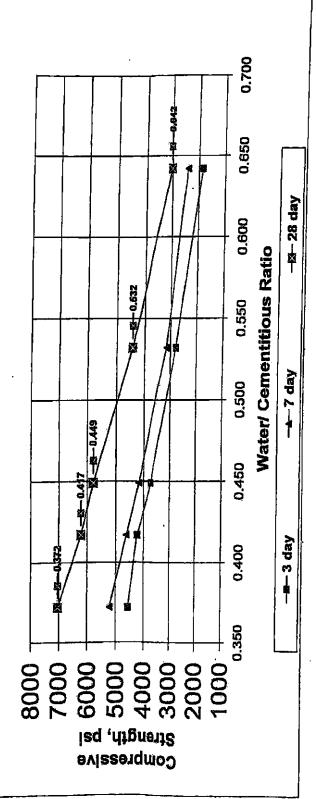
ASTM C-150 Type I-II

Fly Ash:


ASTM C 618 Class F ASTM C-494 AE and WRA 34502110

ASTM C-494 AE	and \	NRA				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	MHHHHHMAN	le.
. 4.	00	<u>4.50</u>	<u>5.00</u>	<u>5.50</u>	<u>6.00</u>	<u>6.50</u>	<u>7.00</u>	<u>7.50</u>
s. 33	20	360	400	440	480	520	560	600
. 5	6	63	70	77	84	<u>9</u> 1	.98	105
4	.9	5.4	6.1	6.5	6.9	7.3	7.6	8.1
11	.3	12.7	14.1	15.5	16.9	18.3	19.7	21.2
ducer, oz.	כ	0	0	19.4	21.1	22.9	24.7	26.4
egate, Ibs. 15	50	1500	1460	1390	1350	1310	1270	1230
regate, lbs. 17	00	1700	1700	1700	1700	1700	1700	1700
		29.5 245.7	30.0 249.9	30.2 251.8	30.4 253.2	30.6 254.9	31.0 258.2	31.5 262.4
. 14	0.6	140.8	141.1				•	142.4
4.:	25	4.25	4.50					4.25
5	.2	5,5	5.8	6.0	5.8	6.0		6.2
0.6	42	0.581	0.532	0.487	0.449	0.417	0.392	0.372
7	5	75	76	77	78	79	80	82
<u>th, pși</u> <u>20</u>	<u>00</u>	<u>2500</u>	<u>3000</u>	<u>3500</u>	<u>4000</u>	<u>4500</u>	<u>5000</u>	<u>5500</u>
18	50	2310	2780	3250	3720	4240	4380	4570
24	00	2860	3150	3640	4180	4620	5010	5220
30	20	3650	4440	5180	5790	6220	6740	7040
	4. 3. 5. 4 11 4. 4. 4. 4. 4. 5 0.6 7 44. 24	4.00 320 56 4.9 11.3 ducer, oz. 0 regate, lbs. 1550 regate, lbs. 1700 29.0 241.6 140.6 4.25 5.2 0.642 75	320 360 56 63 4.9 5.4 11.3 12.7 ducer, oz. 0 0 regate, lbs. 1550 1500 1700 29.0 29.5 241.6 245.7 140.8 4.25 4.25 5.2 5.5 0.642 0.581 75 75 1850 2310 2400 2860	4.00 4.50 5.00 3. 320 360 400 56 63 70 4.9 5.4 6.1 11.3 12.7 14.1 ducer, oz. 0 0 0 egate, lbs. 1550 1500 1460 gregate, lbs. 1700 1700 1700 29.0 29.5 30.0 241.6 245.7 249.9 140.6 140.8 141.1 4.25 4.25 4.50 5.2 5.5 5.8 0.642 0.581 0.532 75 75 76 1850 2310 2780 2400 2860 3150	4.60 4.50 5.00 5.50 3. 320 360 400 440 56 63 70 77 4.9 5.4 6.1 6.5 11.3 12.7 14.1 15.5 ducer, oz. 0 0 0 19.4 regate, lbs. 1550 1500 1460 1390 gregate, lbs. 1700 1700 1700 1700 29.0 29.5 30.0 30.2 241.6 245.7 249.9 251.6 140.6 140.8 141.1 141.3 4.25 4.25 4.50 3.75 5.2 5.5 5.8 6.0 0.642 0.581 0.532 0.487 75 75 76 77 1850 2310 2780 3250 2400 2860 3150 3640	4.00 4.50 5.00 5.50 6.00 320 360 400 440 480 56 63 70 77 84 4.9 5.4 6.1 6.5 6.9 11.3 12.7 14.1 15.5 16.9 ducer, oz. 0 0 0 19.4 21.1 regate, lbs. 1550 1500 1460 1390 1350 regate, lbs. 1700 1700 1700 1700 1700 29.0 29.5 30.0 30.2 30.4 241.6 245.7 249.9 251.6 253.2 140.6 140.8 141.1 141.3 141.7 4.25 4.25 4.50 3.75 4.00 5.2 5.5 5.8 6.0 5.8 0.642 0.581 0.532 0.487 0.449 75 75 76 77 78 150 2310 2780 3250 3720 2400 2860 3150 3640 4180	4.00 4.50 5.00 5.50 6.00 6.50 5.50 5.6 6.00 6.50 5.6 63 70 77 84 91 4.9 5.4 6.1 6.5 6.9 7.3 11.3 12.7 14.1 15.5 16.9 18.3 10.0cer, oz. 0 0 0 19.4 21.1 22.9 10.5 1500 1460 1390 1350 1310 1310 1700 1700 1700 1700 1700 170	4.00 4.50 5.00 5.50 6.00 6.50 7.00 3. 320 360 400 440 480 520 560 56 63 70 77 84 91 98 4.9 5.4 6.1 6.5 6.9 7.3 7.6 11.3 12.7 14.1 15.5 16.9 18.3 19.7 ducer, oz. 0 0 0 18.4 21.1 22.9 24.7 egate, ibs. 1550 1500 1480 1390 1350 1310 1270 gregate, ibs. 1700 1700 1700 1700 1700 1700 29.0 29.5 30.0 30.2 30.4 30.6 31.0 241.6 245.7 249.9 251.6 253.2 254.9 258.2 140.6 140.8 141.1 141.3 141.7 142.1 142.4 4.25 4.26 4.50 3.75 4.00 4.00 4.00 5.2 5.5 5.8 6.0 5.8 6.0 6.0 0.642 0.581 0.532 0.487 0.449 0.417 0.392 75 75 76 77 78 79 80 140.0 2860 3150 3640 4180 4620 5010

Date: Monday, September 08, 2008


Transit Mix Concrete Company Table No. 107-36

Compressive Strength vs. Water Cementitious Ratio

Transit Mix Concrete Company Table No. 107-36

Compressive Strength vs.
Water Cementitious Ratio

Material Certification Report

Material:

Portland Cement

Test Period:

01-Nov-2010

Type:

I-II (MH)(ASTM C 150)

To:

30-Nov-2010

Holcim cement meets the specifications of ASTM C 150 for Type I-II cement.

M. Corio al Information

Supplier:

Holcim (US) Inc.

Address:

3500 State Highway 120

Florence, Co. 81226

Telephone: Date Issued: 719-784-1307 09-Dec-2010 Source Location:

Portiand Plant

3500 State Highway 120

Florence, Co. 81226

Contact:

Dick Roush

The following information is based on average test data during the test period. The data is typical of cement shipped by Holcim; individual shipments may vary.

ests Data on AS IM Standard Requirements

Ch	emical		Physi	Physical			
ltem	Limit ^A	Result	item	Limit ^A	Result		
SiO₂ (%)	-	19.8	Air Content (%)	12 max	6		
Al ₂ O ₃ (%)	6.0 max	4.7	Blaine Fineness (m²/kg)	260 min	393		
Fe ₂ O ₃ (%)	6.0 max	3.2			-		
CaO (%)	-	63.1					
MgO (%)	6.0 max	1.5	Autoclave Expansion (%) (C 151)	0.80 max	0.00		
SO ₃ (%) ^C	3.0 max	3.4	Compressive Strength MPa (psi):				
Loss on Ignition (%)	3.0 max	2.5					
insoluble Residue (%)	0.75 max	0.39	3 days	12.0 (1740) min	30.8 (4470)		
CO ₂ (%)	-	1.3	7 days	19.0 (2760) min	36.0 (5220)		
Limestone (%)	5.0 max	3.6					
CaCO ₃ in Limestone (%)	70 min	83	Initial Vicat (minutes)	45-375	132		
Inorganic Processing Addition	5.0 max	0.0					
Potential Phase Compositions ^D :			Mortar Bar Expansion (%) (C 1038)		0.003		
C ₃ S (%)	-	56					
C ₂ S (%)		-13	Heat of Hydration: 7 days, kJ/kg (cal/g) ⁸	•	354 (85)		
C ₃ A (%)	8 max	7					
C ₄ AF (%)		1.0					
C ₃ S + 4.75C ₃ A (%)	-	89					

iess Date on ASTIM Obilonal Reconcernents

Cher	micai		riyaicai			
ltem	Limit ^A	Result	Item	Limit ^A	Result	
Equivalent Alkalies (%)		0.69		_		
			STREET, CONTRACTOR OF THE PROPERTY OF THE STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET,	TELEF #18 IN CORP. (SEE NEW YORK)	And Committee of the Section 2.3	

A Dashes in the limit / result columns mean Not Applicable.

B Test result represents most recent value and is provided for information only. Analysis of Heat of Hydration has been carried out by CTLGroup, Skokie, IL.

^c It is permissible to exceed the specification limit provided ASTM C 1038 Mortar Bar Expansion does not exceed 0.020 %.

D Adjusted per Annex A1.6 of ASTM C150 and AASHTO M85.

This data may have been reported on previous mill certificates. It is typical of the cement being currently shipped.

Transit Mix Concrete Attn: Robert Montoya 444 E Costilla St. Colorado Springs, CO 80903-3761

PHOENIXCEMENT

Corporate Headquarters 8800 E Chaparral Rd, Ste 155 Scottsdale, AZ 85250 Phone: 480-850-5757 Fax: 480-850-5758

Cement Manufacturing

Gallup Fly Ash Facility 9001/4 N 9th St.

Gallup, NM 87305

Product: Class F Fly Ash, Cholia Fly Ash

ASTM C 618

3000 W Cement Plant Rd Clarkdale, AZ 86324 Phone: 928-634-2261 POZZOLAN TEST REPORT Fax: 928-634-3543 Cti#: 49052 12-20-10 19th Avenue Facility 1802 W Lower Buckeye Rd Phoenix, AZ 85007 Phone: 602-253-9149 Lot: 2060 Results **Specifications** Chemical Analysis (C311 / C114 / D4326) Fax: 602-253-9160 Lower Buckeye Facility 1941 W Lower Buckeye Rd Silicon Dioxide, SiO₂ 58.75 % Aluminum Oxide, Al₂O₃ 23.97 % Phoenix, AZ 85009 Phone: 602-258-7798 Ferric Oxide, Fe₂O₃ 5.57 % Fax: 602-525-3362 70.00 Min SiO₂+Al₂O₃+Fe₂O₃ 88.29 % 3.14 % Calcium Oxide, CaO 21st Avenue Facility 1325 N 21st Avenue Magnesium Oxide, MgO 1.05 % Phoenix, AZ 85009 Phone: 602-254-3824 5.00 Max 0.30 % Sulfur Trioxide, SO₃ 3.00 Max Fax: 602-254-3825 Moisture Content 0.14 % 0.26 % 6.00 Max Mesa Community Storage Dobson & McKellips Loss on Ignition 0.22 % Available Alkalis as Na, O Mesa, AZ 85211 Alkalis (%Na, $O + 0.658\% K_2 O$) 1.50 % Phone: 480-990-7847 R Factor (%CaO -5) / (%FeO) -0.33 % Cholla Fly Ash Facility P O Box 380 Joseph City, AZ 86032 Phone: 928-288-1661 Physical Analysis Fineness, amount retained on Fax: 928-288-1663 #325 sieve, % (C430) 16.10 34.00 Max Four Corners Fly Ash Facility 5.00 Max variation, points from average 0.73 P O Box 1007 Fruitland, NM 87416 Density, g/cm³ (ciss) 2.20 Phone: 505-598-8657 5.00 Max 0.00 Variation from average, % Fax: 505-598-8633 Strength Activity Index San Juan Fly Ash Facility with Portland Cement (C311 / C109) San Juan Generating Station Waterflow, NM 87421 Phone: 505-598-7546 at 7 days, % of cement control 86.60 at 28 days, % of cement control 88.03 75.00 Min Fax: 505-598-7547 Water Requirement (C311) Escalante Fly Ash Facility CR19 / P O Box 620 95.45 105.00 Max % of cement control Soundness, autoclave expansion Prewitt, NM 87405 (C311 / C151) Phone: 505-285-4590 Fax: 505-285-4667 or contraction, % -0.03 0.80 Max

All tests have been made in strict accordance with the current standards of the American Society for Testing and Materials covering the type of material specified.

Lee Gorby, Quality Assurance Manager

26 JAN 2011

The Chemical Company

January 27, 2011

Transit Mix Concrete CO 444 East Costilla Colorado Springs, Colorado 80903

Attention: Robert Montoya Project: Various Project location: Various

Certificate of Conformance
MB-AE™ 90
BASF Construction Chemicals, LLC* Air-Entraining Admixture for Concrete

*(successor in interest to BASF Construction Chemicals, LLC, which is successor by merger to BASF Admixtures, Inc., formerly known as Degussa Admixtures, Inc., formerly known as Master Builders, Inc.)

I, Richard Hubbard, Sr. Technical Marketing Specialist for BASF Corporation, Cleveland, Ohio, certify:

That MB-AE 90 is a BASF Corporation Air-Entraining Admixture for concrete; and

That no calcium chloride or chloride based ingredient is used in the manufacture of MB-AE 90; and

That MB-AE 90, based on the chlorides originating from all the ingredients used in its manufacture, contributes less than 0.000068 percent (0.68 ppm) chloride ions by weight of the cement when used at the rate of 65 mL per 100 kg (1 fluid ounce per 100 pounds) of cement; and

That MB-AE 90 meets the requirements of ASTM C 260, Corps of Engineers' CRD-C 13 and AASHTO M154, the Standard Specifications for Air-Entraining Admixtures for Concrete.

Richard Hubbard

Sr. Technical Marketing Specialist, BASF Corporation

Richard Hubbard I

BASF Corporation 23700 Chagrin Boulvard Cleveland, OH 44122 216 839-7500 ph www.masterbuilders.com

Master Builders Admixture Solutions

The Chemical Company

January 27, 2011

Transit Mix Concrete CO 444 East Costilla Colorado Springs, Colorado 80903

Attention: Robert Montoya Project: Various Project location: Various

Certificate of Conformance PolyHeed® 1020 BASF Corporation* Admixture for Concrete

*(successor in interest to BASF Construction Chemicals, LLC , which is successor by merger to BASF Admixtures, Inc., formerly known as Degussa Admixtures, Inc., formerly known as Master Builders, Inc.)

I, Richard Hubbard, Sr. Technical Marketing Specialist for BASF Corporation, Cleveland, Ohio, certify:

That PolyHeed 1020 is a BASF Corporation Mid-Range Water-Reducing Admixture for concrete; and

That no calcium chloride or chloride based ingredient is used in the manufacture of PolyHeed 1020; and

That PolyHeed 1020, based on the chlorides originating from all the ingredients used in its manufacture, contributes less than 0.00014 percent (1.4 ppm) chloride ions by weight of the cement when used at the rate of 65 mL per 100 kg (1 fluid ounce per 100 pounds) of cement; and

That, depending on the dosage used, PolyHeed 1020 meets the requirements for a Type A, Water-Reducing and Type F, Water-Reducing, High Range Admixture specified in ASTM C 494, Corps of Engineers' CRD-C 87 and AASHTO M194, the Standard Specifications for Chemical Admixtures for Concrete.

Richard Hubbard

Sr. Technical Marketing Specialist, BASF Corporation

Ruhand Julband III

BASF Corporation 23700 Chagrin Boulvard Cleveland, OH 44122 216 839-7500 ph www.masterbuilders.com

Master Builders Admixture Solutions

The Chemical Company

January 27, 2011

Transit Mix Concrete CO 444 East Costilla Colorado Springs, Colorado 80903

Attention: Robert Montoya

Project: Various

Project location: Various

Certificate of Conformance Pozzolith® 200 N BASF Corporation* Admixture for Concrete

*(successor in interest to BASF Construction Chemicals, LLC, which is successor by merger to BASF Admixtures, Inc., formerly known as Degussa Admixtures, Inc., formerly known as Master Builders, Inc.)

I. Richard Hubbard, Sr. Technical Marketing Specialist for BASF Corporation, Cleveland, Ohio, certify:

That Pozzolith 200 N is a BASF Corporation Water-Reducing Admixture for concrete; and

That no calcium chloride or chloride based ingredient is used in the manufacture of Pozzolith 200 N; and

That Pozzolith 200 N, based on the chlorides originating from all the ingredients used in its manufacture, contributes less than 0.00013 percent (1.3 ppm) chloride ions by weight of the cement when used at the rate of 65 mL per 100 kg (1 fluid ounce per 100 pounds) of cement; and

That, depending on the dosage used, Pozzolith 200 N meets the requirements for a Type A, Water-Reducing, Type B, Retarding, and Type D, Water Reducing and Retarding Admixture as specified in ASTM C 494, Corps of Engineers' CRD-C 87 and AASHTO M194, the Standard Specifications for Chemical Admixtures for Concrete.

Richard Hubbard

Sr. Technical Marketing Specialist, BASF Corporation

Richard Hubbard III

BASF Corporation 23700 Chagrin Boulvard Cleveland, OH 44122 216 839-7500 ph www.masterbuilders.com

444 East Costilla Avenue Colorado Springs, Colorado 80903 Ph. (719) 475-0700 Fax (719) 475-0226

2596 Hwy 96 East Pueblo, Colorado 81002 Ph. (719) 543-7898 Fax (719) 583-0345

October 18, 2010

RE:

No. 57/67 Coarse Concrete Aggregate Transit Mix of Pueblo Pueblo, CO 81002

Gentlemen:

This letter presents the results of physical properties and deleterious substances tests performed on a coarse aggregate that was sampled on September 8, 2010 at Transit Mix of Pueblo Aggregate Pit. The results are as follows:

Sieve Size	Percent Passing	Specifi	cations
	-	No. 57	No. 67
37.5 mm, 1 1/2"	100	100	
25.0 mm, 1"	100	95 - 100	100
19.0 mm, 3/4"	90	• • • •	90 - 100
12.5 mm, 1/2"	48	25 - 60	70 100
9.5 mm, 3/8"	26		20 - 55
4.75 mm, No. 4	3.8	0 - 10	0 - 10
2.36 mm, No. 8	1.3	0-5	0-5
75 um, No. 200	0.4	0 - 1.5	0 - 1.5
os Angeles Abrasion (Grad	ding B): 29.0% Loss	AASHT	O T-96
Bulk Specific Gravity (SSD):		AASHT	- · · · -
Magnesium Sulfate Soundr		AASHT	
odium Sulfate Soundness		AASHT	
Clay Lumps and Friable Pa		AASHT	- · :- ·
ractured Particles (2 Fract			1 D 5821
Organic Impurities: Clea	•	AASHT	
Bulk Density by Rodding:	98 lb/ft ³ Voids: 40%		O T-19
Nortar Bar Expansion, (ASR)			C 1260

The above sample was tested according to American Society for Testing and Materials (ASTM) procedures D-75, C-702, C-117, C-136, C-33, C-40, C-142, C-88, C-127, C-131, C-29 and C-1260.

The above sample conforms to the requirements of ASTM C 33, TABLE 3, Limits for Deleterious Substances and Physical Property Requirements of Coarse Aggregate for Concrete, (15, 25, 35, 45, 55, 1M, 2M, 3M, 4M, 5M, 1N and 2N).

If you have any questions feel free to contact me at your earliest convenience.

Respectfully Submitted,

Grant W. Smith

Quality Control Manager

444 East Costilla Avenue Colorado Springs, Colorado 80903 Ph. (719) 475-0700 Fax (719) 475-0226

Pueblo, Colorado 81002 Ph. (719) 543-7898 Fax (719) 583-0345

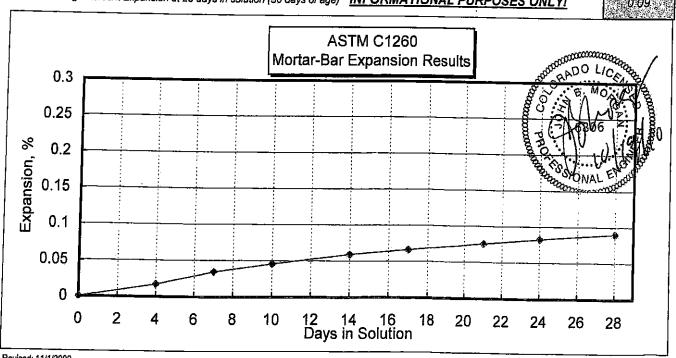
Modified ASTM C 1260 / C 1567 Tests

No.

001709T

Standard Test Method for Accelerated Detection of Potentially Deleterious Expansion of Mortar Bars Due to Alkali-Silica Reaction

Materials	S	ource	Type	Qty.	Batch Weights, g	Notes
Cement	Holcim	Florence, CO	I/II LA	100%	440	Batched: 9/15/2010
Flyash				0%	0	Solution: Sodium Hydroxide
Coarse	TMOP	Pueblo, CO	57/67	100%	990	Goldanii Godinii Tiyaroxido
Sand						
Water					206.8	
W/C Ratio					0.47	Completed: 10/15/2010


	Specimen ID:]	TMOP67 1, 2	2, 3				
Days	Date		omparator Read	ings	Mo	on, %	Average	
175		1	2	3	1	1 2	3	设施建设建设设置
0	9/17/2010	0.1656	0.1674	0.1701				.0.0000
44	9/21/2010	0.1671	0.1693	0.1719	0.0150	0.0190	0.0180	0.0173
7	9/24/2010	0.1684	0.1714	0.1737	0.0280	0.0400	0.0360	0.0347
10	9/27/2010	0.1693	0.1722	0.1754	0.0370	0.0480	0.0530	0.0460
14	10/1/2010	0.1706	0.1736	0.1767	0.0500	0.0620	0.0660	0.0593
17	10/4/2010	0.1714	0.1741	0.1775	0.0580	0.0670	0.0740	0.0663
21	10/8/2010	0.1723	0.1751	0.1785	0.0670	0.0770	0.0840	0.0760
24	10/11/2010	0.1730	0.1757	0.1793	0.0740	0.0830	0.0920	0.0830
28	10/15/2010	0.1738	0.1765	0.1799	0.0820	0.0910	0.0980	0.0903

Average Percent Expansion at 14 days in solution (16 days of age)

0.06

Average Percent Expansion at 28 days in solution (30 days of age) INFORMATIONAL PURPOSES ONLY!

0.09

Revised: 11/1/2009

444 East Costilla Avenue Colorado Springs, Colorado 80903 Ph. (719) 475-0700 Fax (719) 475-0226 2596 Hwy 96 East Pueblo, Colorado 81002 Ph. (719) 543-7898 Fax (719) 583-0345

October 18, 2010

Daniels Sand Company 3710 Bradley Road Colorado Springs, Colorado 80916.

RE:

Fine Concrete Aggregate

Gentlemen:

This letter presents the results of physical properties and deleterious substances tests performed on a Fine Concrete Aggregate that was sampled on September 9, 2010 at Daniels Sand Pit. The results are as follows:

Sieve Size	Percent Passing	Specifications
-		ASTM C 33 Fine Concrete Agg.
9.5 mm, 3/8"	10Ó	100
4.75 mm, No. 4	100	95 - 100
2.36 mm, No. 8	88	80 - 100
1.18 mm, No. 16	62	50 - 85
600 um, No. 30	40	25 - 60
300 um, No. 50	21	10 - 30
150 um, No. 100	7.0	0 - 10
75 um, No. 200	0.8	0-3
Fineness Modulus: 2.80		AASHTO T-37
Bulk Specific Gravity (SSD):	2.59 Absorption: 1.1%	AASHTO T-85
Magnesium Sulfate Soundnes	ss (Five Cycles): 2.0% Loss	AASHTO T-104
Sodium Sulfate Soundness (Fi		AASHTO T-104
Clay Lumps and Friable Partic		AASHTO T-112
Average Sand Equivalent:	88	AASHTO T-176
Organic Impurities: Clear		AASHTO T-21
Mortar Bar Expansion (ASR) -	Sodium Hydroxide: 0.04	4% AASHTO T-303

The above sample was tested according to American Society for Testing and Materials (ASTM) procedures D-75, D-2419, C-702, C-117, C-136, C-33, C-40, C-142, C-88, C-128 and C-1260.

If you have any questions feel free to contact me at your earliest convenience.

Respectfully Submitted,

Grant W. Smith

Quality Control Manager

444 East Costilla Avenue Colorado Springs, Colorado 80903 Ph. (719) 475-0700 Fax (719) 475-0226 2596 Hwy 96 East Pueblo, Colorado 81002 Ph. (719) 543-7898 Fax (719) 583-0345

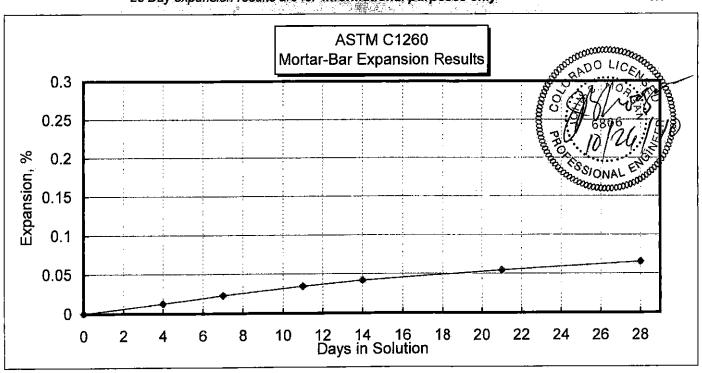
Modified ASTM C 1260 / C 1567 Tests

No.

0050D-9-9

Standard Test Method for Accelerated Detection of Potentially Deleterious Expansion of Mortar Bars Due to Alkali-Silica Reaction

Materials		Source		Batch Weights, g	Notes
Cement	Holcim	Florence, CO	100%	440	Batched: 9/14/2010
Flyash			0%	0	
Coarse			•		
Sand	Daniels	Colo Spgs, CO		990	Daniels Fine Concrete Aggregate
Water				206.8	
W/C Ratio				0.47	Completed: 10/14/2010


	Specimen ID:	D	DansFA 1, 2, 3						
Days	Date	Co	Comparator Readings			rtar Bar Expansio	on, %	Average	
		1	2	3	1	2	3		
0	9/16/2010	0.1755	0.1707	0.1689				0.0000	
4	9/20/2010	0.1768	0.1720	0.1701	0.0130	0.0130	0.0120	0.0127	
7	9/23/2010	0.1777	0.1730	0.1713	0.0220	0.0230	0.0240	0.0230	
11	9/27/2010	0.1788	0.1742	0.1725	0.0330	0.0350	0.0360	0.0347	
14	9/30/2010	0.1795	0.1749	0.1733	0.0400	0.0420	0.0440	0.0420	
21	10/7/2010	0.1810	0.1763	0.1742	0.0550	0.0560	0.0530	0.0547	
28	10/14/2010	0.1822	0.1774	0.1752	0.0670	0.0670	0.0630	0.0657	

Average Percent Expansion at 14 days in solution (16 days of age)

0.04

28 Day expansion results are for informational purposes only

0.07

Revised: 11/1/2009