

ENGINEER'S COMMENTS:__

WEAVER CONSTRUCTION MANAGEMENT, INC.

3679 S. Huron St., Suite 404 Englewood, CO 80110

Phone: (303) 789-4111 FAX: (303) 789-4310

SUBMITTAL TRANSMITAL

November 17, 2011

		<u>Submi</u>	ttal No: 05500-001.B	
PROJECT:	Harold Thompson Regional WRF Birdsall Rd. Fountain, CO 80817 Job No. 2908			
ENGINEER:	Colorado Springs, CO	GMS, Inc. 611 No. Weber St., #300 Colorado Springs, CO 80903 719-475-2935 Roger Sams		
OWNER:	Lower Fountain Metropolitan Sewage Disposal District 901 S. Santa Fe Ave. Fountain, CO 80817 719-382-5303 James Heckman			
CONTRACTOR:	Rocky Mountain Railings 11839 E. 51st Ave. Denver, CO 80239			
SUBJECT: Re-subr	nittal of Handrail for the	Headworks Buildi	ng	
SPEC SECTION: 0	5500 - Metal Fabricatio	ıs		
PREVIOUS SUBMI	SSION DATES: 10/17/1	1		
DEVIATIONS FROM	M SPEC:YES _X	_ NO		
respect to the means, met		autions & programs inci	Construction and approved with dental thereto. Weaver General and comprises on deviations	
Contractor's Stamp	:	Engine	er's Stamp:	
Date: 11/17/11 Reviewed by: H.C. (X) Reviewed With () Reviewed With	nout Comments			

ROCKY MOUNTAIN RAILINGS

November 17, 2011

Weaver Construction 3679 S. Huron St. Suite 404 Englewood, CO. 80110

Re: Harold D. Thompson R.W.R.F. & Lower Fountain Metro. S.D.D

Subject: Response Letter

This is Rocky Mountain Railings response to GSM. Incorreview comments,

Comment #1

A certification from ATEC Associates, Inc. was provided for load testing of the aluminum handrail titled, TABCO 2500 CONSTRUCITON. The testing data was provided on February 7, 1986. We question whether the certification provided is applicable to this handrail and if there is data more current than 25-year old data. Several pages following the certification is a letter provided by Rocky Mountain Railings, Inc. stating as of January 1, 2007, they have changed the aluminum alloy being used for the Schedule 40 pipe. Since this change was instituted in January 2007, we question the validity of the certification letter prepared in 1986

Response #1

Attached is test data that was done on 8/12/2009 for another project that we worked on. The loads required per the specification are congruent.

Comment #2

Reference is made to Marson stainless rivets in the shop submittal. No rivets are to be used in the fabrication and installation of the handrail system proposed for use at the LFMSDD HDTRWRF.

Response #2

No reference was made to said specific company and the mention of a blind rivet has been removed from the submittals.

Comment #3

H.B. Tenmecol: No Exception Taken

Response #3 Acknowledged

Comment #4

Aluminum Railing Design Calculations: We take no exception to the design analysis provided. However, we note the following:

- a. Guardrail %+Analysis allows for a 5g0+max. post spacing
- b. Guardrail % + Analysis allows for a 5q0+max. post spacing
- c. Guardrail %G+Analysis allows for a 5q0+max. post spacing
- d. Guardrail %2+Analysis allows for a 5q0+max. post spacing
- e. Guardrail %%+Analysis allows for a 4q5+max. post spacing

f. GMS, Inc. Construction Drawings indicate post spacing to be at a maximum of 6q0+. We request clarification on how the post spacing will be accomplished in the field. General notes No. 13) on Drawing No. D-1 indicates the maximum post spacing will be 6q0+. Please reconcile the differences between the design analysis provided, the shop drawings and the Construction Drawings.

Response #4

Attached are standard calculations that were done on 3/8/2011 that adhere to similar loads per this job specification. Rail sections pertaining to this job can be maxed out at 6q0+max post spacing per sheet B1 (13 of 64), C1 (19 of 64), and E1 (37 of 64).

Comment #5

Hilti HIT-RE 500 Epoxy Adhesive Anchoring Systems: No Exception Taken

Response #5 Acknowledged

Comment #6

Rocky Mountain Railings, Drawing D-1:

- a. General Note No. 5) references blind rivets. Based on our cursory review, we see no reference on the drawings indicating where riveting is proposed for use and installation. Per Comment No. 2 above, no rivets are to be used.
- b. Detail 80KD-7A: In Weaver Construction Management, Inc. (WCMI) correspondence issued on October 13, 2011 under additional comments, there was question whether Detail 80KD-7A is acceptable at the top of the stairs of the west side of the chain opening. We take no exception to the LEVEL P-END being used at this location.

Response #6

- All reference to blind rivets and rivets of any kind have been removed from this submittal.
- Acknowledged

Comment #7

We take no exception to the remainder of Rocky Mountain Railings drawings and details provided. The Contractor will be responsible for the cutting and placement of the appropriate lengths as indicated on the Construction Drawings on to meet field conditions.

Response #7
Acknowledged

Sincerely,
Danny Brown
Rocky Mountain Railings
dbrown@rockymountainrailings.com

R0001 – RMR Standard Calculations

Aluminum Railing Design Calculations – R11-02-15H

Colorado

Prepared for Rocky Mountain Railings Denver, CO

Design Criteria: Date: 3/8/11

1. Railing live loads per International Building Code 2009:

Guardrails

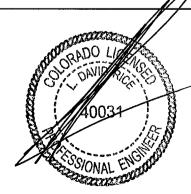
50 plf uniform load in any direction on top rail

200 pound concentrated load in any direction on top rail

50 pound concentrated load over 1 ft² of infill area

Concentrated load and uniform loads need not be assumed to act concurrently

Railing deflections per ASTM E985

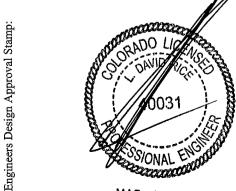

Members designed per Aluminum Association Inc, "Aluminum Design Manual"

- 2. Aluminum member sizes shall be as recommended in the calculation booklet
- 3. Aluminum alloys shall be as recommended in the calculation booklet
- 4. Stainless steel fasteners to be minimum Condition "CW", Fy= 65 ksi
- 5. Aluminum welds to be filler alloy 5356, unless noted otherwise
- 6. Concrete strength is assumed to be F'c= 4,000 psi, normal weight
- 7. Additional RISA Finite Element Analysis model data available upon request.

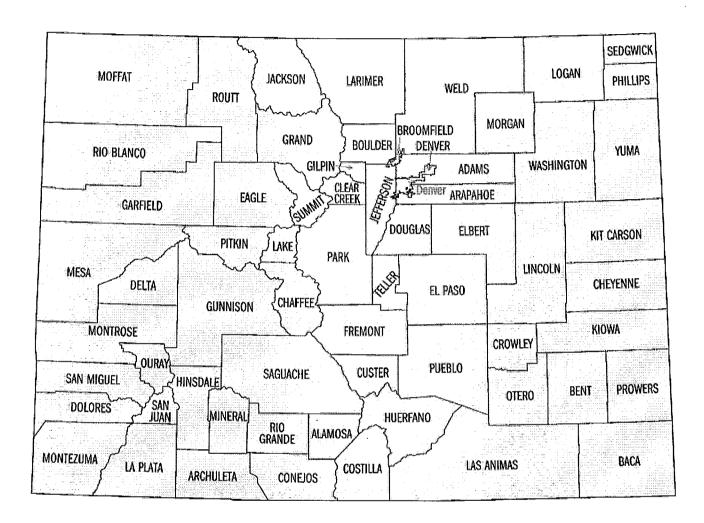
This Certification is limited to the structural design of structural components of this handrail or divider system. It does NOT include responsibility for:

- Structural design of misc. hardware (latches, hinges, etc.).
- Structural design of concrete slabs and other masonry units
- Structural design of wood blocking or wood framing
- Structural design of all other anchorage substrates
- The manufacture, assembly, or installation of the system.
- Quantities of materials or dimensional accuracy of drawings

Engineers Design Approval Stamp:



MAR 0 8 2011

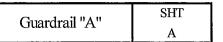

Chast				G1	<u> </u>	•
Sheet	D	ъ.	5	Sheet	5	
Number	Description	Date	Revision	Number	Description	Date
PL	Project Location & Specs	2/23/11		 		
A	Guardrail "A"	2/23/11				
	Guardrail "A" Analysis	2/23/11				
A2	2-Bolt Base Plate	2/23/11				
A3	Corner Base Plate	2/23/11				
A3.1	RISA Data	2/23/11				
A3.2	RISA Data	2/23/11				
В	Guardrail "B"	2/23/11				
B1-B1B	Guardrail "B" Analysis	2/23/11				
B2	Surface Mount Anchorage	2/23/11				
B3	Hilti Adhesive	2/23/11				
С	Guardrail "C"	2/23/11				A.
C1-C1B	Guardrail "C" Analysis	2/23/11	,			F
C2	Side Mount Anchorage	2/23/11			i de la companya de	. A
C3	Hilti Adhesive	2/23/11			,	
C4	Corner Side Mount Anchorage	2/23/11			273	A W
C4.1	RISA Data	2/23/11				Village Control
C4.2	RISA Data	2/23/11				- 100 Miles
C5	Hilti Adhesive	2/23/11				
C6	Side Mount Anchorage	2/23/11		 		
C7	Hilti Adhesive	2/23/11				
D	Guardrail "D"	2/23/11				
	Guardrail "D" Analysis	2/23/11				
D2	Side Mount Anchorage	2/23/11				
D3		2/23/11				-
E	Side Mount Anchorage Guardrail "E"					
		2/23/11				
	Guardrail "E" Analysis	2/23/11		I ├ ──		
E2	Side Mount Anchorage	2/23/11		 		
<u>E3</u>	Side Mount Anchorage	2/23/11				
F	Guardrail "F"	2/23/11	<u> </u>	,44		
	Guardrail "F" Analysis	2/23/11		A		
F2	Post Embedment in Grout	2/23/11		<u> </u>		
M1	Miscellaneous Connections	2/23/11		Aleksan, A		
M1A	RISA Data	2/23/11	, e	1	je.	
M2	Wall Rail Post Bracket	2/23/11		1	<u></u>	
M2A	RISA Data	2/23/11		4		
M2B	RISA Data	2/23/11				
	Wall or Grab Rail Analysis	2/23/11		NA.		
M4	Grab Rail Bracket Analysis	2/23/11				
M5	Wall Rail Bracket Amalysis	2/23/11				
M6	Offset Rail Connections	2/23/11	Villa 7			
M7	Wall Mount End Cap	2/23/11				
M8	2-Bolt Raked Base Plate	2/23/11				
	Algør Base Plate Modéls	2/23/11				
S1	Fastener Spec. Sheet	2/23/11				
		- 21				1
		, ¥ %				
		5				<u> </u>
			 	l		
		*		l 		
	<u>la j^y j^r j^r j</u>	L	l	I L		<u> </u>

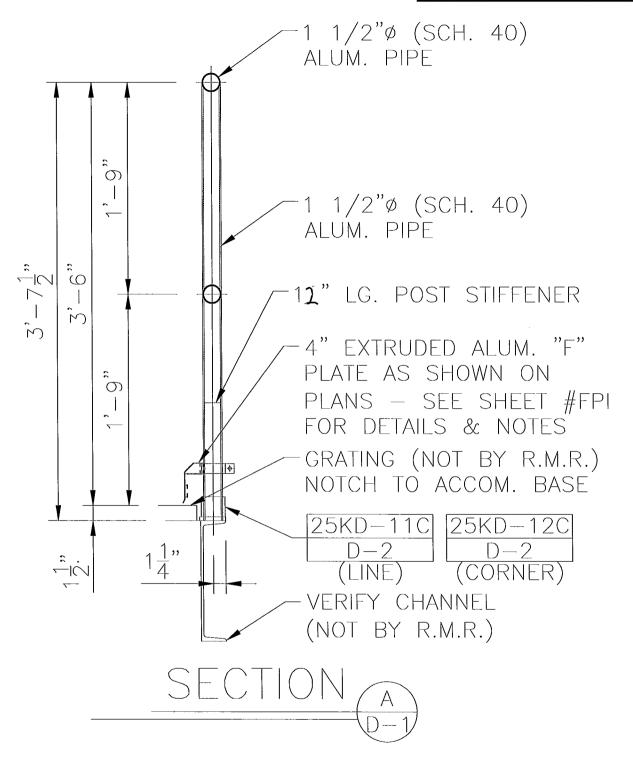
This Certification is limited to the structural design of structural components of this handrail or divider system. It does NOT include responsibility for:

- Structural design of misc. hardware (latches, hinges, etc.).
- Structural design of concrete slabs and other masonry units
- Structural design of wood blocking or wood framing
- Structural design of all other anchorage substrates
- The manufacture, assembly, or installation of the system.
- Quantities of materials or dimensional accuracy of drawings

MAR 0 8 2011

Project Location: Colorado


- Design Loads per IBC 2009


50 plf uniform load in any direction on top rail

200# concentrated load in any direction on top rail

50# concentrated load applied to 1 square foot of infill

DICE		105 School Creek Trail	Project Description:	Job No:		R11-02-15H	
RICE	INEEDING	Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	PL
ENGINEERING		R0001 - RMR Standard Calcs	Date:	2/23/11	Rev:		
Template:	REI-MC-2002	www.rice-inc.com		Chk By:		Date:	

Note: Structural steel, Concrete, CMU and all other anchorage substrates designed by others

ROCKY MOUNTAIN RAILINGS

<u>RICE</u>	
ENGINEERIN	√G

Template: REI-MC-5707

105 School Creek Trail Project Description: Luxemburg, WI 54217 Phone: (920)845-1042 Fax: (920)845-1048

www.rice-inc.com

R0001 - RMR Standard Calc

	Job No:		R11-02-15H	
	Engineer:	JDB	Sheet No:	A
S	Date:	2/23/11	Rev:	
	Chk By;		Date:	

Pipe Railing & Post

These calculations are based on emperical test data performed by Julius Blum & Co., Inc.

Guardrail "A" Analysis

ALUM. PIPE

1/2"ø (SCH. 40)

SHT **A**1

Input Variables:

Load Case 1 (Uniform Load) plf $F_{H} := 50$

 $F_{\mathbf{V}} := 0$ plf Simultaneous Vertical Uniform Load

Load Case 2 (Point Load) P := 200lb

 $L_{bp} := 21$ Unbraced Length of Post

h := 41Railing Height Above Base Flange

4'-10" MAX POST SPACING L := 58

V 1 span

(Anchor limits the V 2 span

span length) 3 or more spans

Railing Section:

1 1/4" Schd. 40

1 1/4" Schd. 80

1 1/2" Schd. 40

1 1/2" Schd. 80

1 1/2" tube

2" Schd. 40

2" Schd. 80

Railing Temper:

6063-T5

6063-T6

6061-T6 or 6105-T5

4/3 increase allowed

Post Section:

1 1/4" Schd. 40

1 1/4" Schd. 80

1 1/2" Schd. 40

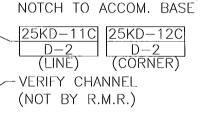
1 1/2" Schd. 80

1 1/2" tube

2" Schd. 40

2" Schd. 80

Post Temper:


6063-Т6

6005-T5

6061-T6 or 6105-T5

Post Welded to Base Plate

Ò 1 1/2"ø (SCH. 40) ALUM. PIPE . 1 12" LG. POST STIFFENER $\tilde{\gamma}$ 4" EXTRUDED ALUM. "F" PLATE AS SHOWN ON **"** PLANS - SEE SHEET #FPI FOR DETAILS & NOTES

GRATING (NOT BY R.M.R.)

Railing Properties

kr=	0.31
lyr=	0.31
Sxr=	0.326
Syr=	0.326
R=	0.95
t=	0.145

kr=	0.31
lyr=	0.31
Sxr=	0.326
Syr=	0.326
R=	0.95
t=	0.145

Post Properties

kr=	0.31
lyr=	0.31
Sxr=	0.326
Syr=	0.326
R=	0.95
t=	0.145

6.55

$s_{R1} \coloneqq \frac{R_r}{t_r}$	s _{R1} =
Spa :- Rp	Sna -

Computational Factors

$$K_1 := (8 \cdot q1) + (8 \cdot q2) + (9.5 \cdot q3)$$

$$K_2 := (4 \cdot q1) + (5 \cdot q2) + (5 \cdot q3)$$
 $K_2 = 5$

 $K_1 = 8$

All calculations below

this line are automatic

$$S_{R3} := \frac{R_p}{t_p}$$
 $S_{R3} = 6.55$ $K_3 := (48 \cdot q1) + (66 \cdot q2) + (87 \cdot q3)$ $K_3 = 66$

$$E_r := 10100000$$
 psi

 $I_{xtotr} := I_{xr}$ $I_{\text{xtotr}} = 0.31$

 $I_{xtotp} := I_{xp}$

 $I_{\text{xtotp}} = 0.31$

12" Min. Length AL. Ribbed Tube Stub

 $I_{st} := 0.174$

in⁴

 $L_{st} := 9.5$

 $I_{ytotr} := I_{yr}$

 $I_{ytotr} = 0.31$ in⁴

 $I_{ytotp} := I_{yp}$

 $I_{ytotp} = 0.31$

in³ $S_{st} := 0.224$

Fbst := 25000 psi

105 School Creek Trail

Luxemburg, WI 54217 Phone: (920)845-1042

Fax: (920)845-1048 www.rice-inc.com

Project Description:

R0001 - RMR Standard Calcs

Job No:		R11-02-15H	
Engineer:	JDB	Sheet No:	A 1
Date:	2/23/11	Rev:	
Chk By:		Date:	

<u>RICE</u>
ENGINEERING

Template:

REI-MC-5707

Railing Analysis:

$$W_h := \frac{F_H}{12}$$

$$W_{\mathbf{V}} := \frac{F_{\mathbf{V}}}{12}$$

Guardrail "A" Analysis

SHT **A1 A**

Case 1 Uniform Load:

$$\Delta_{yr1} \coloneqq \frac{5 \cdot W_h \cdot L^4}{384 \cdot E_r I_{ytotr}}$$

$$\Delta_{Vr1} = 0.196$$

$$\Delta_{xr1} \coloneqq \frac{5 {\cdot} W_v {\cdot} L^4}{384 {\cdot} E_r I_{xtotr}}$$

$$\Delta_{xr1} = 0$$

$$\Delta_{\text{allr}} := \frac{L}{96}$$

$$\Delta_{allr} = 0.6$$

$$M_{yrmax} := \frac{W_h \cdot L^2}{K_1}$$

$$M_{yrmax} = 1752$$

$$\mathbf{M}_{xrmax} \coloneqq \frac{\mathbf{W}_{v} \cdot \mathbf{L}^2}{\mathbf{K}_1}$$

$$M_{xrmax} = 0$$

D-

$$f_{bry1} := \frac{M_{yrmax}}{S_{yr}}$$

$$f_{bry1} = 5374$$

$$f_{brx1} := \frac{M_{xrmax}}{S_{xr}}$$

$$f_{brx1} = 0$$

Case 2 - Point Load:

$$\Delta_{yr2} \coloneqq \frac{P \! \cdot \! L^3}{K_3 \! \cdot \! E_r I_{ytotr}}$$

$$\Delta_{yr2} = 0.189$$

$$M_{yrmax2} := \frac{P \cdot L}{K_2}$$

$$M_{yrmax2} = 2320$$

$$f_{bry2} := \frac{M_{yrmax2}}{S_{yr}}$$

$$f_{bry2} = 7117$$

$$F_{bry} := \begin{cases} (F_{bry1} \cdot 1.33) & \text{if } IBC = 1 \\ F_{bry1} & \text{otherwise} \end{cases}$$

$$F_{bry} = 25000$$

psi

Calculation Results:_

$$Int_{\Gamma 1} := \left(\frac{f_{brx1}}{F_{bry}}\right) + \left(\frac{f_{bry1}}{F_{bry}}\right) \qquad \qquad Int_{\Gamma 1} = 0.21$$

$$Int_{r1} = 0.21$$

$$Int_{r2} := \frac{f_{bry2}}{F_{bry}}$$

$$Int_{\Gamma 2} = 0.28$$

$$\text{RAILS} := \left| \text{"OK"} \quad \text{if} \quad \frac{\text{max} \left(\Delta_{yr1}, \Delta_{xr1}, \Delta_{yr2} \right)}{\Delta_{allr}} \leq 1 \land \left(\frac{f_{brx1}}{F_{bry}} \right) + \left(\frac{f_{bry1}}{F_{bry}} \right) \leq 1 \land \frac{f_{bry2}}{F_{bry}} \leq 1$$

ENGINEERING

Template:

REI-MC-5707

105 School Creek Trail Luxemburg, WI 54217 Phone: (920)845-1042 Fax: (920)845-1048 www.rice-inc.com

	Enginee
R0001 - RMR Standard Calcs	Date:
	Chile Desi

Project Description:

Job No:		R11-02-15H
Engineer:	JDB	Sheet No: A1 A
Date:	2/23/11	Rev:
Chk By:		Date:

Post Analysis:

 $E_p \coloneqq E_r$

Guardrail "A" Analysis	
------------------------	--

SHT A1 B

$$\Delta_{xp1} \coloneqq \frac{W_h \cdot L \cdot \left(h - L_{st}\right)^3}{3 \cdot E_p \cdot \left(I_{xp}\right)}$$

$$\Delta_{xp1} = 0.804$$

$$\Delta_{Xp2}\!:=\frac{P\!\cdot\!0.85\!\cdot\!\left(h-L_{St}\right)^3}{3\!\cdot\!E_{p}\!\cdot\!\left(I_{Xp}\right)}$$

$$\Delta_{xp2} = 0.566$$

in

in

Max Deflection:

$$\Delta_{tot} \coloneqq \frac{W_h \cdot L \left(h - L_{st}\right)^3}{3 \cdot E_{D} \cdot I_{XD}} + \frac{W_h \cdot L \left[h^3 - \left(h - L_{st}\right)^3\right]}{3 \cdot \left[\left(E_{D} \cdot I_{XD}\right) + \left(E_{D} \cdot I_{St}\right)\right]}$$

$$\Delta_{\text{tot}} = 1.425$$

$$\Delta_{\text{allp}} := \frac{h}{12}$$

)

$$\Delta_{\text{allp}} = 3.42$$

Case 1 - Uniform Load:

$$\mathbf{M}_{xp} \coloneqq \left(\mathbf{W}_{h} \cdot \mathbf{L} \cdot \mathbf{h} \right) + \mathbf{W}_{v} \cdot \mathbf{L} \cdot \Delta_{tot}$$

$$M_{xpmax} := 0.5 \cdot M_{xp} \cdot q1 + M_{xp} \cdot q2 + M_{xp} \cdot q3$$

$$M_{xpmax} = 9908$$

$$M_{xp2} := W_h \cdot L \cdot (h - L_{st}) + W_v \cdot L \cdot \Delta_{xp1}$$

$$M_{xpmax2} := 0.5 \cdot M_{xp2} \cdot q1 + M_{xp2} \cdot q2 + M_{xp2} \cdot q3$$

$$M_{xpmax2} = 7613$$

Case 2 - Point Load:

$M_{xpmax4} := P \cdot (h - L_{st}) \cdot 0.85$

$$M_{xpmax4} = 5355$$

$$M_{xpmax3} := (P \cdot h \cdot 0.85)$$

$$M_{xpmax3} = 6970$$

Max Post Stress:

$$f_{bpx} := \frac{max \left(M_{xpmax2}, M_{xpmax4}\right)}{S_{xp}}$$

$$f_{bpx} = 23351$$

psi

$$F_{bpx} := \left(F_{bpx1} \cdot 1.33 \right) \text{ if } IBC = 1$$
 $F_{bpx1} \text{ otherwise}$

$$F_{bpx} = 25000$$

Max Post/Stub Combined Stress:

$$f_{bpx2} := max(M_{xpmax}, M_{xpmax3}) \cdot \frac{I_{xp}}{(I_{xp} + I_{st}) \cdot S_{xp}}$$

$$f_{bpx2} = 19467$$

psi

R11-02-15H

A1 B

Sheet No:

Rev:

Date:

Max Stub Stress:

$$f_{bst} := max(M_{xpmax}, M_{xpmax3}) \cdot \frac{I_{st}}{(I_{xp} + I_{st}) \cdot S_{st}}$$

$$\mathbf{F_{bpx}} = \mathbf{25000}$$

$$F_{bst} = 25000$$

psi

Calculation Results:

$$\mathrm{Int}_{p1} \coloneqq \mathrm{max}\!\!\left(\frac{\mathrm{f}_{bpx}}{\mathrm{F}_{bpx}}, \frac{\mathrm{f}_{bpx2}}{\mathrm{F}_{bpx}}, \frac{\mathrm{f}_{bst}}{\mathrm{F}_{bst}}\right)$$

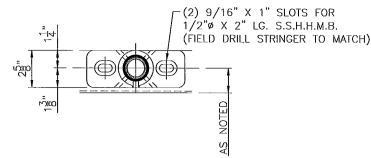
$$Int_{D1} = 0.93$$

POSTS :=
$$| \text{"OK"} \quad \text{if } \quad \text{Int}_{p1} \leq 1 \land \frac{\max\left(\Delta_{xp1}, \Delta_{xp2}, \Delta_{tot}\right)}{\Delta_{allp}} \leq 1$$

Job No:

RICE ENGINEERING

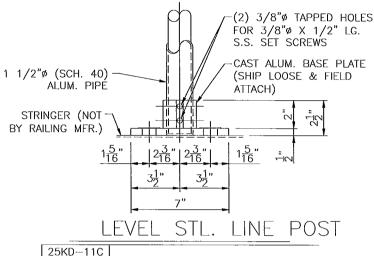
REI-MC-5707


Template:

105 School Creek Trail
Luxemburg, WI 54217
Phone: (920)845-1042
, ,
Fax: (920)845-1048

www.rice-inc.com

	Engineer:	JDB
R0001 - RMR Standard Calcs	Date:	2/23/11
	Chk Bv:	


Project Description:

 $R_{\text{max}} := 242$ lh

 $M_{\text{max}} := 9908 + R_{\text{max}} \cdot 2.5 = 10513$

d:= 2.5 in (sleeve dia.)

Chk shear on shoe wall:

$$P := \frac{M_{\text{max}}}{0.85 \cdot (2.375)}$$
 $P = 5208$ lb

$$f_V := \frac{(P + R_{max})}{2 \cdot (0.315) \cdot (2)}$$
 $f_V = 4325$ psi

$$F_{\mathbf{v}} := \frac{0.57 \cdot (18000)}{1.65}$$
 $F_{\mathbf{v}} = 6218$ psi

$$I := \frac{f_V}{F_V} \hspace{1cm} I = 0.7 \hspace{1cm} \underline{Shear Stress "OK"}$$

Note: 4'10" & Post spacing @ 3'7'2" (ail height Chk Aluminum Base Plate: (as shown) It (ail height was 3'6" then & Post Spacing L2:= 2.625 in 1:= 0.563 in

Chk Bolts to Steel Stringer:

D2 := 1.25

D1:= 1.3125

t:= 0.563

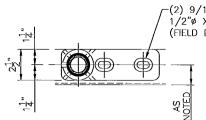
 $L := L1 - (2 \cdot D1)$ L = 4.38in

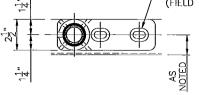
 $V_b := \frac{R_{max}}{2}$ $P := \frac{M_{max}}{d}$ $V_b = 121$

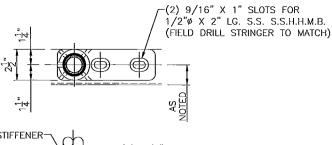
P = 4205lb

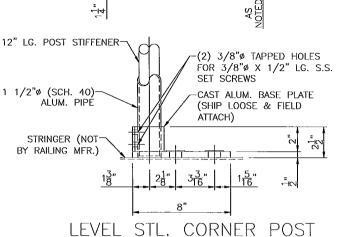
 $T_b := \frac{M_{max}}{2.1.25}$ $T_b = 4205$ $M_{p1} := 0.5 \cdot P \cdot 0.9375$ $M_{p1} = 1971$ in·lb

 $F_y := \frac{1.3 \cdot (18000)}{1.65}$ $F_y = 14182$ psi $V_{all} := 0.196 \cdot 23094$ $V_{all} = 4526$


 $t_{req1} := \sqrt{\frac{M_{p1} \cdot 6}{F_{v} \cdot L2}}$ $T_{all} := 0.142 \cdot 40000$ $T_{all} = 5680$ $t_{req1} = 0.564$


 $I_3 := \left(\frac{V_b}{V_{all}}\right)^2 + \left(\frac{T_b}{T_{all}}\right)^2$ $I_2 := \frac{t_{req1}}{t}$ $I_3 = 0.55$ $I_2 = 1$


Use (2) - 1/2" Dia. S.S. Thru-Bolts Condition "CW" - Fy = 65 ksi


Use Cast Aluminum Base, as shown 535 casting alloy, Fu= 35 ksi min.

105 School Creek Trail Project Description: Job No: R11-02-15H <u>RICE</u> Luxemburg, WI 54217 Engineer: Sheet No: JDB A2 Phone: (920)845-1042 **ENGINEERING** R0001 - RMR Standard Calcs Date: 2/23/11 Rev: Fax: (920)845-1048 Template: www.rice-inc.com Chk By: Date:

 $R_{max} = 101$

Reactions from RISA Model

 $M_{max} := 0$

lb-in

(Comer Post Modeled as a Pin Connection)

d:= 2.5 in (sleeve dia.)

Chk shear on shoe wall:

$$P := \frac{M_{max}}{0.85 \cdot (2.375)}$$

1b

$$f_{\text{V}} \coloneqq \frac{\left(P + R_{max}\right)}{2 \cdot (0.315) \cdot (2)}$$

psi

$$F_{V} := \frac{0.57 \cdot (18000)}{1.65}$$

 $F_v = 6218$

psi

$$I := \frac{f_V}{F_V}$$

I = 0.01 Shear Stress "OK"

Chk Aluminum Base Plate:

D1 := 1.3125 in

L2 := 2.625 in

D2 := 1.25

in

t := 0.563 in

 $L := L1 - (2 \cdot D1)$

L = 4.38

 $P := \frac{M_{\text{max}}}{d}$

lb

 $M_{p1} := P \cdot 0.9375$

 $M_{p1} = 0$

in·lb

 $F_{y} := \frac{1.3 \cdot (18000)}{1.65}$

psi

 $F_V = 14182$

A3

 $t_{req1} := \sqrt{\frac{M_{p1} \cdot 6}{F_{v} \cdot L2}}$

 $t_{req1} = 0$

R11-02-15H

 $\mathrm{I}_2 := \frac{t_{req1}}{t}$

 $I_2 = 0$

Use (2) - 1/2" Dia. S.S. Thru-Bolts or Drill & Tap - 3/16" Min. Thread Engagement Condition "CW" - Fy = 65 ksi

Use Cast Aluminum Base, as shown 535 casting alloy, Fu= 35 ksi min.

Job No:

ENGINEERING

Template:

25KD-12C

Chk Bolts to Steel Stringer:

 $V_b := \frac{R_{max}}{2}$

 $T_b := \frac{M_{\text{max}}}{2 \cdot 1.25}$

 $V_{all} := 0.196 \cdot 23094$

 $T_{all} := 0.142 \cdot 40000 \cdot \frac{0.1875}{0.456}$

 $I_3 := \left(\frac{V_b}{V_{all}}\right)^2 + \left(\frac{T_b}{T_{all}}\right)^2$

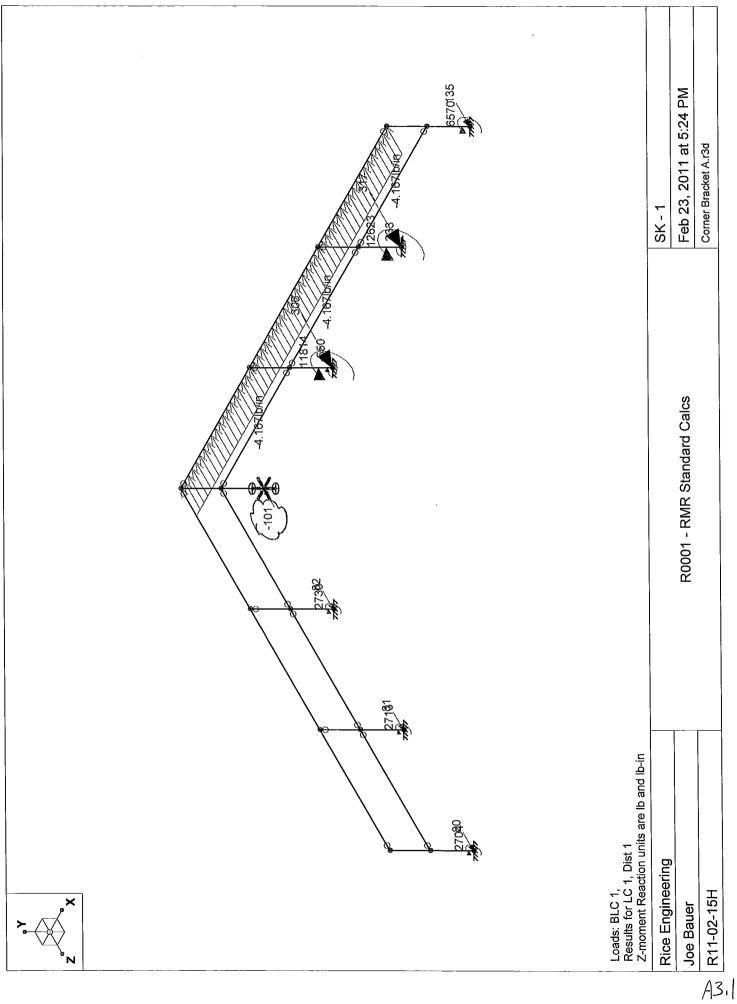
105 School Creek Trail Luxemburg, WI 54217 Phone: (920)845-1042 Fax: (920)845-1048

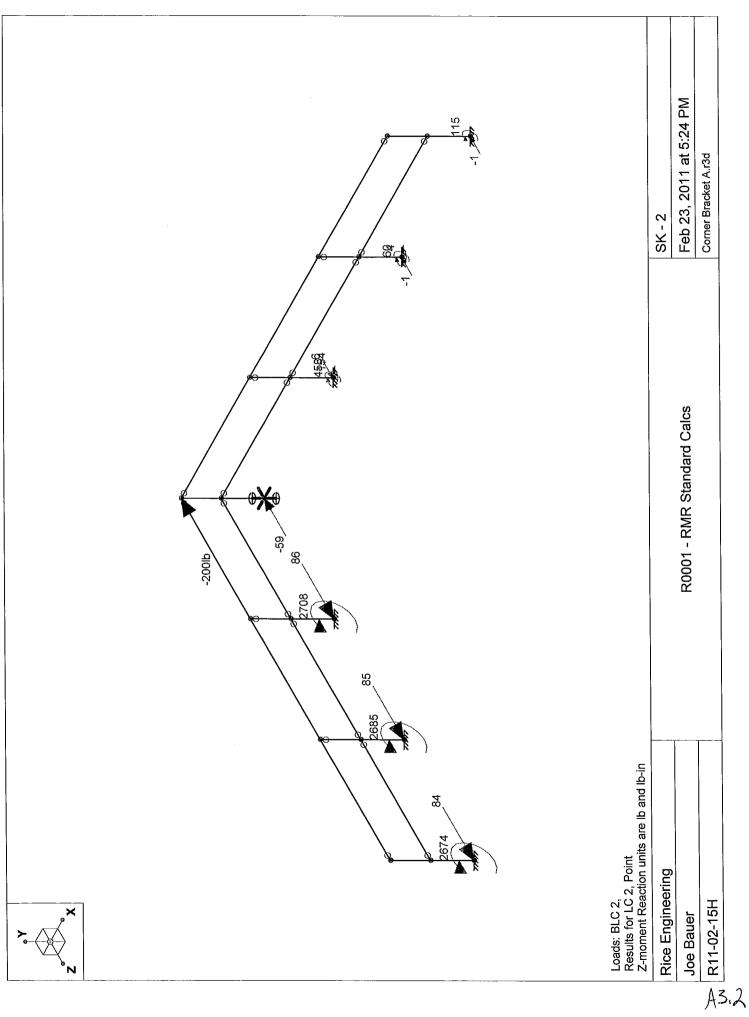
www.rice-inc.com

 $V_{b} = 50.5$

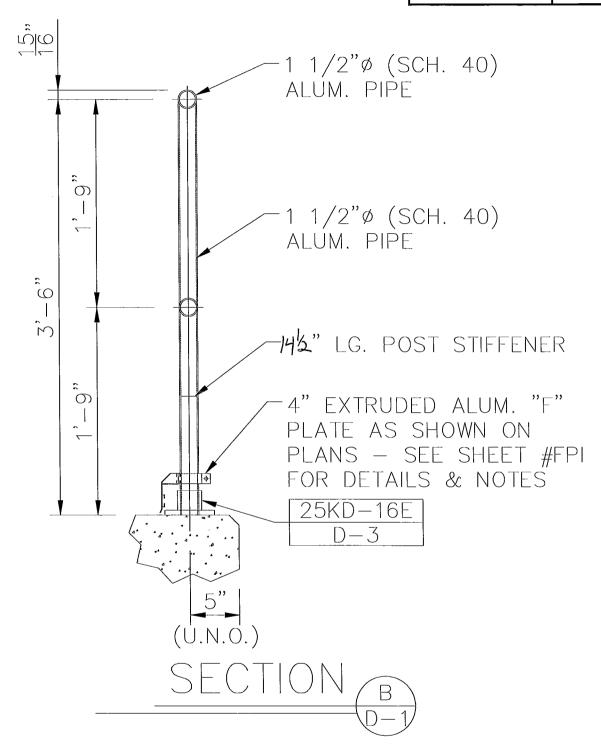
 $T_b = 0$

 $V_{all} = 4526$


 $T_{all}=2336$


 $I_3 = 0$

lb


Project Description:

Engineer: JDB Sheet No: Date: R0001 - RMR Standard Calcs 2/23/11 Rev: Chk By: Date:

Guardrail "B" SHT

Note: Structural steel, Concrete, CMU and all other anchorage substrates designed by others

ROCKY MOUNTAIN RAILINGS

<u>RICE</u>
ENGINEERING

Template: REI-MC-5707

105 School Creek Trail Luxemburg, WI 54217 Phone: (920)845-1042 Fax: (920)845-1048 www.rice-inc.com

Project Description:

R0001 - RMR Standard Calcs

	Job No:	R11-02-15H		
Į	Engineer:	JDB	Sheet No:	В
S	Date:	2/23/11	Rev:	
	Chk By:		Date:	

Pipe Railing & Post

These calculations are based on emperical test data performed by Julius Blum & Co., Inc.

ည်က

3'-6"

"

1,19,

Guardrail "B" Analysis

ALÚM. PIPE

ALÚM. PIPE

25KD-16E

D-3

14.5" Min. Length AL. Ribbed Tube Stub

 $L_{st} := 12$

Fbst := 25000 psi

in⁴

in³

 $I_{St} := 0.174$

 $S_{st} := 0.224$

(Ú.N.Ó.)

1/2"ø (SCH. 40)

1 1/2"ø (SCH. 40)

LG. POST STIFFENER

4" EXTRUDED ALUM. "F"

PLATE AS SHOWN ON PLANS — SEE SHEET #FPI

FOR DETAILS & NOTES

SHT B1

Input Variables:

 $F_{\mbox{$V$}} := 0 \hspace{1cm} \mbox{plf} \hspace{1cm} \mbox{Simultaneous Vertical Uniform Load}$

P := 200 lb Load Case 2 (Point Load)

 $L_{bp} := 21$ in Unbraced Length of Post

h:= 39.5 in Railing Height Above Base Flange

L := 72 in **6'-0" MAX POST SPACING**

Number of Railing Spans:

1 span

2 span

3 or more spans

Railing Section: Post Section:

1 1/4" Schd. 40

1 1/4" Schd. 40

1 1/4" Schd. 80

-1 1/4" Schd. 80

1 1/2" Schd. 40

1 1/2" Schd. 40

1 1/2" Schd. 80

 $I_{\text{xtotr}} = 0.31$ in⁴

 $I_{\text{ytotr}} = 0.31$ in⁴

 $I_{xtotr} := I_{xr}$

 $I_{\text{ytotr}} := I_{\text{yr}}$

1 1/2" Schd. 80

1 1/2" tube

1 1/2" tube

2" Schd. 40 2" Schd. 40 2" Schd. 80 2" Schd. 80 Railing Temper: Post Temper: 6063-T5 6063-T6 6063-T6 6005-T5 6061-T6 or 6105-T5 6061-T6 or 6105-T5 All calculations below Post Welded to Base Plate 4/3 increase allowed this line are automatic Railing Properties Post Properties **Computational Factors** kr= 0.31 kr= 0.31 $S_{R1} = 6.55$ lyr= 0.31 lyr= 0.31 $K_1 := (8 \cdot q_1) + (8 \cdot q_2) + (9.5 \cdot q_3)$ $K_1 = 8$ Sxr= 0.326 0.326 Sxr= $K_2 := (4 \cdot q1) + (5 \cdot q2) + (5 \cdot q3)$ $K_2 = 5$ Syr= 0.326 0.326 Syr= R= 0.95 R= 0.95 $K_3 := (48 \cdot q1) + (66 \cdot q2) + (87 \cdot q3)$ $S_{R3} = 6.55$ $K_3 = 66$ t= 0.145 t= 0.145 $E_T := 10100000$

RICE		105 School Creek Trail	Project Description:	Job No:		R11-02-15H	
	INEERING	Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	B1
ENG	INEERING		R0001 - RMR Standard Calcs	Date:	2/23/11	Rev:	
Template:	REI-MC-5707	www.rice-inc.com		Chk By:		Date:	-

 in^4

 $I_{\text{xtotp}} = 0.31$

 $I_{ytotp} = 0.31$

 $I_{xtotp} := I_{xp}$

 $I_{ytotp} := I_{yp}$

Railing Analysis:

$$W_h := \frac{F_H}{12} \qquad W_V := \frac{FV}{12}$$

$$W_{\mathbf{v}} := \frac{F_{\mathbf{v}}}{100}$$

Guardrail "B" Analysis

SHT B1 A

Case 1 Uniform Load:

$$\Delta_{yr1} \coloneqq \frac{5 \cdot W_h \cdot L^4}{384 \cdot E_r \, I_{ytotr}}$$

$$\Delta_{\rm Yr1} = 0.466$$

$$\Delta_{xr1} \coloneqq \frac{5 {\cdot} W_v {\cdot} L^4}{384 {\cdot} E_r I_{xtotr}}$$

$$\Delta_{xr1} = 0.47$$

$$\Delta_{allr} := \frac{L}{96}$$

$$\Delta_{allr} = 0.75$$

$$\mathbf{M}_{yrmax} := \frac{\mathbf{W}_h {\cdot} \mathbf{L}^2}{\kappa_1}$$

$$M_{yrmax} = 2700$$

$$M_{xrmax} := \frac{W_{V} \cdot L^{2}}{K_{1}}$$

$$M_{xrmax} = 2700$$

$f_{bry1} \coloneqq \frac{M_{yrmax}}{s_{yr}}$

)-

$$f_{bry1} = 8282$$

$$f_{brx1} \coloneqq \frac{M_{xrmax}}{S_{xr}}$$

$$f_{brx1} = 8282$$

Case 2 - Point Load:

$$\Delta_{yr2} \coloneqq \frac{P \cdot L^3}{K_3 \cdot E_{r'} I_{ytotr}}$$

$$\Delta_{yr2} = 0.361$$

$$M_{yrmax2} := \frac{P \cdot L}{K_2}$$

$$M_{yrmax2} = 2880$$

$$f_{bry2} := \frac{M_{yrmax2}}{S_{yr}}$$

$$f_{bry2} = 8834$$

$$F_{bry} := \begin{cases} \left(F_{bry1} \cdot 1.33\right) & \text{if } IBC = 1 \\ F_{bry1} & \text{otherwise} \end{cases}$$

$$F_{bry} = 25000$$

psi

Calculation Results:_

$$Int_{\Gamma 1} := \left(\frac{f_{brx1}}{F_{bry}}\right) + \left(\frac{f_{bry1}}{F_{bry}}\right)$$

$$Int_{r1} = 0.66$$

$$Int_{r2} := \frac{f_{bry2}}{F_{bry}}$$

$$Int_{r2} = 0.35$$

RAILS :=
$$|| \text{"OK"}| \quad \text{if} \quad \frac{\max\left(\Delta_{yr1}, \Delta_{xr1}, \Delta_{yr2}\right)}{\Delta_{allr}} \leq 1 \land \left(\frac{\text{fbrx1}}{F_{bry}}\right) + \left(\frac{\text{fbry1}}{F_{bry}}\right) \leq 1 \land \frac{\text{fbry2}}{F_{bry}} \leq 1$$

RAILS = "OK"

RICE ENGINEERING

REI-MC-5707

Template:

105 School Creek Trail Luxemburg, WI 54217 Phone: (920)845-1042 Fax: (920)845-1048

www.rice-inc.com

|--|

Project Description:

	Job No:		R11-02-15H	-
	Engineer:	JDB	Sheet No:	B1 A
lcs	Date:	2/23/11	Rev:	
	Chk By:		Date:	

Post Analysis:

 $E_p := E_r$

Guardrail "B" Analysis

SHT B1 B

$$\Delta_{xp1} \coloneqq \frac{W_h \cdot L \cdot \left(h - L_{st}\right)^3}{3 \cdot E_p \cdot \left(I_{xp}\right)}$$

$$\Delta_{xp1} = 0.664$$

$$\Delta_{xp2}\!:=\frac{P\!\cdot\!0.85\!\cdot\!\left(h-L_{st}\right)^3}{3\!\cdot\!\mathrm{E}_{p}\!\cdot\!\left(I_{xp}\right)}$$

$$\Delta_{xp2} = 0.376$$

Max Deflection:

$$\Delta_{tot} \coloneqq \frac{W_h \cdot L \cdot \left(h - L_{st}\right)^3}{3 \cdot E_p \cdot I_{XD}} + \frac{W_h \cdot L \left[h^3 - \left(h - L_{st}\right)^3\right]}{3 \cdot \left[\left(E_p \cdot I_{XD}\right) + \left(E_p \cdot I_{ST}\right)\right]}$$

$$\Delta_{\text{tot}} = 1.5$$

in

$$\Delta_{\text{allp}} := \frac{h}{12}$$

$$\Delta_{\text{allp}} = 3.29$$

Case 1 - Uniform Load:

$$\mathbf{M}_{xp} \coloneqq \left(\mathbf{W}_{h} \cdot \mathbf{L} \cdot \mathbf{h} \right) + \mathbf{W}_{v} \cdot \mathbf{L} \cdot \Delta_{tot}$$

$$M_{xpmax} := 0.5 \cdot M_{xp} \cdot q1 + M_{xp} \cdot q2 + M_{xp} \cdot q3$$

$$M_{xpmax} = 11850$$

$$M_{xp2}\!:=W_h\!\cdot\! L\!\cdot\! \left(h-L_{st}\right)+W_v\!\cdot\! L\!\cdot\! \Delta_{xp1}$$

$$M_{xpmax2} := 0.5 \cdot M_{xp2} \cdot q1 + M_{xp2}q2 + M_{xp2} \cdot q3$$

$$M_{xpmax2} = 8250$$

Case 2 - Point Load:

$M_{xpmax4} := P \cdot (h - L_{st}) \cdot 0.85$

$$M_{xpmax4} = 4675$$

$$M_{xpmax3} := (P \cdot h \cdot 0.85)$$

$$M_{xpmax3} = 6715$$

Max Post Stress:

$$f_{bpx} \coloneqq \frac{max(M_{xpmax2}, M_{xpmax4})}{S_{xp}}$$

$$f_{bpx} = 25307$$

psi

$$F_{bpx} := \begin{cases} (F_{bpx1} \cdot 1.33) & \text{if } IBC = 1 \\ F_{bpx1} & \text{otherwise} \end{cases}$$

$$F_{bpx} = 25000$$

Max Post/Stub Combined Stress:

$$f_{bpx2} := max(M_{xpmax}, M_{xpmax3}) \cdot \frac{I_{xp}}{(I_{xp} + I_{st}) \cdot S_{xp}}$$

$$f_{bpx2} = 23282$$

psi

psi

Max Stub Stress:

$$f_{bst} := max(M_{xpmax}, M_{xpmax3}) \cdot \frac{I_{st}}{(I_{xp} + I_{st}) \cdot S_{st}}$$

$$F_{bpx} = 25000$$

$$F_{bst} = 25000$$

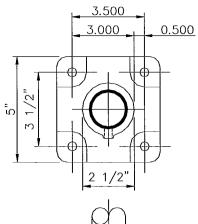
Calculation Results:

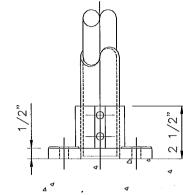
$$Int_{p1} := max \left(\frac{f_{bpx}}{F_{bpx}}, \frac{f_{bpx2}}{F_{bpx}}, \frac{f_{bst}}{F_{bst}} \right)$$

RICE ENGINEERING

REI-MC-5707

Template:


105 School Creek Trail
Luxemburg, WI 54217
Phone: (920)845-1042
Fax: (920)845-1048


www.rice-inc.com

D0001	DJ (D	G411	O-1
KUUUI	- KIVIK	Standard	Caics

Project Description:

	Job No:		R11-02-15H	
	Engineer:	JDB	Sheet No:	B1 B
lcs	Date:	2/23/11	Rev:	
	Chk By:		Date:	

Chk Anchor Bolts (assume f'c=4,000 psi conc.):

$$V_b := \frac{R_{max}}{4}$$

$$V_{b} = 75$$

$$T_b \coloneqq \frac{M_{max}}{(L1 - D2) \cdot 0.85 \cdot 2}$$

$$T_b = 1744$$

See Next Sheet for Calculation

Use (4) - 1/2" Dia. S.S. Threaded Rods W/ Hilti HIT-RE 500 Epoxy Adhesive

Embedment= 3-1/2" min. Edge Distance= 2-1/4" min. End Distance = 3"

Surface Mount Anchor	SHT
Analysis	В2

$$R_{\text{max}} := 300$$

$$M_{\text{max}} := 11850 + R_{\text{max}} \cdot 2.5 = 12600$$
 lb·in

lb

Chk shear on shoe wall:

$$P := \frac{M_{\text{max}}}{0.85 \cdot (2.375)}$$

$$f_V := \frac{(P + R_{max})}{2 \cdot (0.315) \cdot (2)}$$

$$f_v = 5192$$

$$F_{\mathbf{V}} := \frac{0.57 \cdot (18000)}{1.65}$$

$$F_{v} = 6218$$

$$I \coloneqq \frac{f_{\boldsymbol{v}}}{F_{\boldsymbol{v}}}$$

Chk Aluminum Base Plate:

$$D1 := 0.75$$
 in

$$L2 := 5$$
 in

$$D2 := 0.75$$
 in

$$L := L2 - (2 \cdot D2)$$

$$L = 3.5$$
 i

$$F_{y} := \frac{1.3 \cdot (18000)}{1.65}$$

$$F_V = 14182$$
 ps

$$P := \frac{M_{max}}{d{\cdot}2}$$

$$M_{pl} := \frac{P \cdot 0.5 \cdot 3^2}{3.5^2}$$

$$M_{pl} = 926$$
 in lb

$$t_{req} := \sqrt{\frac{M_{pl} \cdot 6}{F_{v} \cdot 5}}$$

$$t_{req} = 0.28$$
 i

$$I := \frac{t_{req}}{0.5}$$

I = 0.56 Bending Stress "OK"

Use Cast Aluminum Base, as shown 535 casting alloy, Fu= 35 ksi min.

RICE ENGINEERING

Template:

105 School Creek Trail Luxemburg, WI 54217 Phone: (920)845-1042 Fax: (920)845-1048 www.rice-inc.com

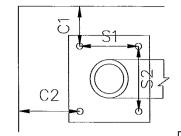
Project Description:

R0001 - RMR Standard Calcs

	Job No:		R11-02-15H		
	Engineer:	JDB	Sheet No:	B2	
5	Date:	2/23/11	Rev:		
	Chk By:		Date:		_

Hilti HIT-RE 500 Epoxy Adjustment for Embed Depth:

 $h_{ef} := 3.5$ embedment in


spacing 1 $s_1 := 3.5$ in in

edge distance 1 $c_1 := 2.25$ in

spacing 2

 $c_2 := 3$ edge distance 2

1b

SHT Hilti Adhesive **B3**

Reactions Per Bolt:

V := 75shear

T := 1744tension

From HILTI Design Guide:

Tupper := 5275

 $s_2 := 3.5$

 $h_{efu} := 4.5$

 $T_{lower} := 1965$

 $h_{efl} := 2.25$ in

 $V_{upper} := 7935$

 $h_{efu} = 4.5$

in

in

 $V_{lower} := 3550$

 $h_{efl} = 2.25$

Calculations below this line are automatic

Embedment= 3-1/2" min. Edge Distance= 2-1/4" min. End Distance = 3"

Т и :	$\frac{\left(T_{upper} - T_{lower}\right) \cdot \left(h_{efiu} - h_{ef}\right) - T_{upper} \cdot \left(h_{efiu} - h_{efl}\right)}{\left(h_{efiu} - h_{efl}\right)}$
rall .—	-(h _{efu} - h _{efl})

 $T_{all}=3804$

Interpolated Tension Value

$$V_{all} := \frac{\left(V_{upper} - V_{lower}\right) \cdot \left(h_{efu} - h_{ef}\right) - V_{upper}\left(h_{efu} - h_{efl}\right)}{-\left(h_{efu} - h_{efl}\right)}$$

 $V_{all} = 5986$ lb

Interpolated Shear Value

$$f_{AN1} := \begin{bmatrix} 1.00 & \text{if } s_1 \geq 1.5 \cdot h_{ef} \\ \\ 0.3 \cdot \left(\frac{s_1}{h_{ef}}\right) + 0.55 \end{bmatrix} & \text{if } 1.5 h_{ef} > s_1 > 0.5 \cdot h_{ef} \\ \\ \text{"Increase Spacing"} & \text{otherwise} \end{bmatrix}$$

 $f_{AN1} = 0.85$

Spacing (Tension and Shear)

$$f_{AN2} \coloneqq \begin{bmatrix} 1.00 & \text{if } s_2 \geq 1.5 \cdot h_{ef} \\ \\ \left[0.3 \cdot \left(\frac{s_2}{h_{ef}} \right) + 0.55 \right] & \text{if } 1.5 h_{ef} > s_2 > 0.5 \cdot h_{ef} \\ \\ \text{"Increase Spacing"} & \text{otherwise} \end{bmatrix}$$

 $f_{AN2} = 0.85$

Spacing (Tension and Shear)

$$\begin{split} f_{RN} := & \begin{bmatrix} 1.00 & \text{if} & c_1 \geq 1.5 \cdot h_{ef} \\ \\ & \left[0.3 \cdot \left(\frac{c_1}{h_{ef}} \right) + 0.55 \right] & \text{if} & 1.5 h_{ef} > c_1 > 0.5 \cdot h_{ef} \\ \\ \text{"Increase Edge Distance"} & \text{otherwise} \\ \end{split}$$

 $f_{RN} = 0.74$

Edge Distance (Tension)

$$\begin{split} f_{RV1} := & \begin{bmatrix} 1.00 & \text{if } c_1 \geq 1.5 \cdot h_{ef} \\ \\ 0.54 \cdot \left(\frac{c_1}{h_{ef}}\right) - 0.09 \end{bmatrix} & \text{if } 1.5 h_{ef} > c_1 > 0.5 \cdot h_{ef} \\ \\ \text{"Increase Edge Distance"} & \text{otherwise} \\ \end{split}$$

 $f_{RV1} = 0.26$

Edge Distance (Shear Perpendicular to Edge)

$$\begin{split} f_{RV2} := & \begin{bmatrix} 1.00 & \text{if } c_2 \geq 1.5 \cdot h_{ef} \\ \\ 0.36 \cdot \left(\frac{c_2}{h_{ef}}\right) + 0.28 \end{bmatrix} & \text{if } 1.5 h_{ef} > c_2 > 0.5 \cdot h_{ef} \\ \\ \text{"Increase Edge Distance"} & \text{otherwise} \\ \end{split}$$

 $f_{RV2} = 0.59$

Edge Distance (Shear Parallel or Away from Edge)

 $V_{ball} := V_{all} \cdot f_{AN1} \cdot f_{AN2} \cdot f_{RV1} \cdot f_{RV2}$

 $V_{ball} = 655$ lb

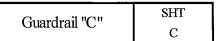
 $T_{ball} := T_{all} \cdot f_{AN1} \cdot f_{RN}$

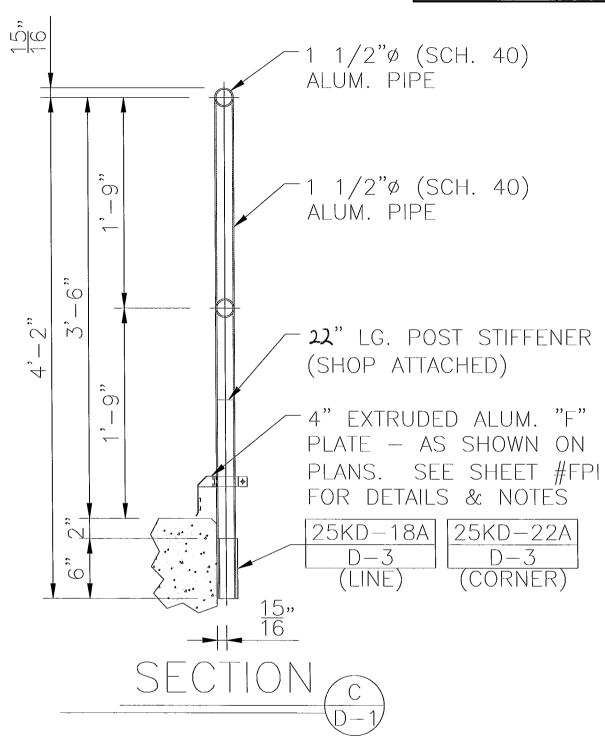
 $T_{ball} = 2402$ lb

$$I_b := \left(\frac{v}{v_{ball}}\right)^{1.67} + \left(\frac{T}{T_{ball}}\right)^{1.67}$$

< 1.00 $I_b = 0.61$

RICE **ENGINEERING**


Template:


105 School Creek Trail Luxemburg, WI 54217 Phone: (920)845-1042 Fax: (920)845-1048 www.rice-inc.com

Project Description:

R0001 - RMR Standard Calcs

Job No:	R11-02-15H		
Engineer:	JDB Sheet No: B3		
Date:	2/23/11 Rev:		
Chk By:		Date:	

Note: Structural steel, Concrete, CMU and all other anchorage substrates designed by others

ROCKY MOUNTAIN RAILINGS

RICE ENGINEERING

Template:

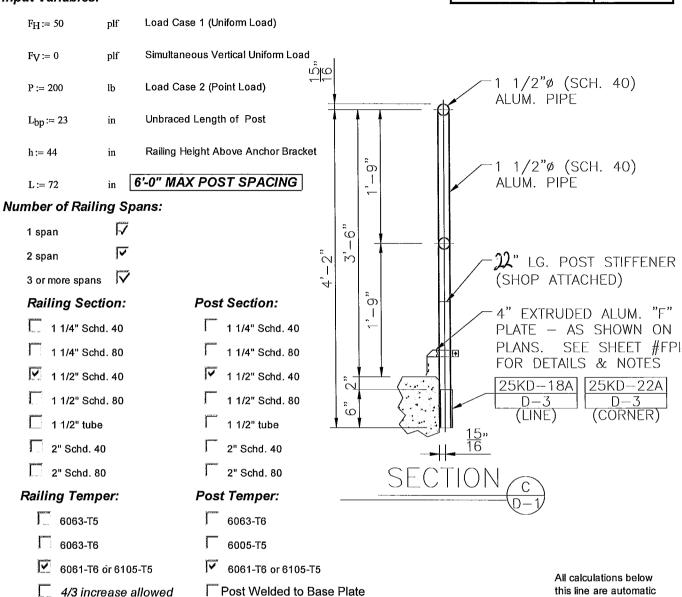
REI-MC-5707

105 School Creek Trail Luxemburg, WI 54217

Phone: (920)845-1042 Fax: (920)845-1048 www.rice-inc.com

Project Description:

R0001 - RMR Standard Calc


	Job No:	No: R11-02-15H			
	Engineer:	JDB	Sheet No:	С	
s	Date:	2/23/11	Rev:		
	Chk By:		Date:		

Pipe Railing & Post

These calculations are based on emperical test data performed by Julius Blum & Co., Inc.

SHT Guardrail "C" Analysis C1

Railing	Prope	rties
r=		<u> </u>

Railing Properties			
kr=	0.31		
lyr=	0.31		
Sxr=	0.326		
Syr=	0.326		
R=	0.95		
t=	0.145		

Post	Pron	ortio

		•	
kr=		- ;-	0.31
lyr=			0.31
Sxr=			0.326
Syr=			0.326
R=			0.95
t=			0.145
	* *		

		•	
			0.31
			0.31
:			0.326
=			0.326
			0.95
			0.145
	- "		

Computational Factors

K ₁	$:= (8 \cdot q1) + (8 \cdot q2) +$	(9.

$$(q2) + (9.5 \cdot q3)$$
 $K_1 = 8$

$$K_2 := (4 \cdot q1) + (5 \cdot q2) + (5 \cdot q3)$$

$$5 \cdot q^2 + (5 \cdot q^3)$$
 $K_2 = 5$

in

$$K_3 := (48 \cdot q1) + (66 \cdot q2) + (87 \cdot q3)$$
 $K_3 = 66$

$$E_r := 10100000$$
 psi

$$I_{xtotr} := I_{xr}$$

$$I_{\text{xtotr}} = 0.31$$
 in⁴

$$I_{xtotp} := I_{xp}$$

$$I_{\text{xtotp}} = 0.31$$

22" Min. Length AL. Ribbed Tube Stub

 $S_{R1} = 6.55$

$$I_{st} := 0.174 \qquad \text{in}^4$$

$$L_{st} := 16$$

$$I_{ytotr} := I_{yr}$$

$$I_{ytotr} = 0.31$$
 in⁴

$$I_{ytotp} := I_{yp}$$

$$I_{ytotp} = 0.31$$

Project Description:

in³ $S_{st} := 0.224$

ENGINEERING

Template: REI-MC-5707

105 School Creek Trail Luxemburg, WI 54217 Phone: (920)845-1042 Fax: (920)845-1048

www.rice-inc.com

R0001 - RMR Standard Calcs

Job No:	R11-02-15H		
Engineer:	JDB	Sheet No:	C1
Date:	2/23/11	Rev:	
Chk By:		Date:	

Railing Analysis:

$$W_h := \frac{F_H}{12}$$

$$W_{\mathbf{V}} := \frac{FV}{12}$$

Guardrail "C" Analysis

SHT Cl A

Case 1 Uniform Load:

$$\Delta_{yr1} := \frac{5 \cdot W_{h} \cdot L^4}{384 \cdot E_r \cdot I_{vtotr}}$$

$$\Delta_{V\Gamma 1} = 0.466$$

$$\Delta_{xr1} \coloneqq \frac{5 \cdot W_V \cdot L^4}{384 \cdot E_r I_{xtotr}}$$

$$\Delta_{X\Gamma 1} = 0$$

$$\Delta_{allr} := \frac{L}{96}$$

$$\Delta_{allr} = 0.75$$

$$M_{yrmax} := \frac{W_h \cdot L^2}{K_1}$$

$$M_{Vrmax} = 2700$$

$$\mathbf{M}_{xrmax} \coloneqq \frac{\mathbf{W}_{v} \cdot \mathbf{L}^2}{\mathbf{K}_1}$$

$$M_{Xrmax} = 0$$

Þ

$$f_{bry1} := \frac{M_{yrmax}}{s_{yr}}$$

$$f_{bry1} = 8282$$

$$f_{brx1} \coloneqq \frac{M_{xrmax}}{s_{xr}}$$

$$f_{brx1} = 0$$

Case 2 - Point Load:

$$\Delta_{yr2} := \frac{P \cdot L^3}{K_3 \cdot E_r I_{ytotr}}$$

$$\Delta_{\rm YI2}=0.361$$

$$M_{yrmax2} := \frac{P \cdot L}{K_2}$$

$$M_{yrmax2} = 2880$$

$$f_{bry2} := \frac{M_{yrmax2}}{S_{yr}}$$

$$f_{bry2} = 8834$$

$$F_{bry} := \begin{cases} (F_{bry1} \cdot 1.33) & \text{if } IBC = 1 \\ F_{bry1} & \text{otherwise} \end{cases}$$

$$F_{bry} = 25000$$

psi

Calculation Results:_

$$Int_{r1} := \left(\frac{f_{brx1}}{F_{bry}}\right) + \left(\frac{f_{bry1}}{F_{bry}}\right)$$

$$Int_{\Gamma 1}=0.33$$

$$\text{Int}_{r2} := \frac{f_{bry2}}{F_{bry}}$$

$$Int_{\Gamma 2}=0.35$$

$$\begin{aligned} \text{RAILS} := & \left| \text{"OK"} \quad \text{if} \quad \frac{\max\left(\Delta_{yr1}, \Delta_{xr1}, \Delta_{yr2}\right)}{\Delta_{allr}} \leq 1 \, \wedge \left(\frac{f_{brx1}}{F_{bry}}\right) + \left(\frac{f_{bry1}}{F_{bry}}\right) \leq 1 \, \wedge \, \frac{f_{bry2}}{F_{bry}} \leq 1 \\ \text{"FAIL"} \quad \text{otherwise} \end{aligned} \right.$$

Job No:

<u>RICE</u> ENGINEERING

REI-MC-5707

Template:

105 School Creek Trail Luxemburg, WI 54217 Phone: (920)845-1042 Fax: (920)845-1048 www.rice-inc.com

	Engineer:	
R0001 - RMR Standard Calcs	Date:	2/2
	Chk By:	

Project Description:

	Engineer:	JDB	Sheet No:	C1 A
	Date:	2/23/11	Rev:	
	Chk By:		Date:	

R11-02-15H

Post Analysis:

 $E_p := E_r$

Guardrail "C" Analysis

SHT C₁ B

$$\Delta_{xp1} \coloneqq \frac{W_h \cdot L \cdot \left(h - L_{st}\right)^3}{3 \cdot E_p \cdot \left(I_{xp}\right)}$$

$$\Delta_{xp1} = 0.701$$

$$\Delta_{xp2}\!:=\frac{P\!\cdot\!0.85\!\cdot\!\left(h-L_{st}\right)^3}{3\!\cdot\!E_{p}\!\cdot\!\left(I_{xp}\right)}$$

$$\Delta_{xp2} = 0.397$$

in

in

Max Deflection:

$$\Delta_{tot} \coloneqq \frac{w_h \cdot L \cdot \left(h - L_{st}\right)^3}{3 \cdot E_D \cdot I_{XD}} + \frac{w_h \cdot L \left[h^3 - \left(h - L_{st}\right)^3\right]}{3 \cdot \left[\left(E_D \cdot I_{XD}\right) + \left(E_D \cdot I_{St}\right)\right]}$$

$$\Delta_{\text{tot}} = 1.995$$

$$\Delta_{\text{allp}} := \frac{h}{12}$$

<u>-</u>

$$\Delta_{\text{allp}} = 3.67$$

Case 1 - Uniform Load:

$$M_{xp} := (W_h \cdot L \cdot h) + W_v \cdot L \cdot \Delta_{tot}$$

$$M_{xpmax} := 0.5 \cdot M_{xp} \cdot q1 + M_{xp} \cdot q2 + M_{xp} \cdot q3$$

$$M_{xpmax} = 13200$$

$$M_{xp2} := W_h \cdot L \cdot (h - L_{st}) + W_v \cdot L \cdot \Delta_{xp1}$$

$$M_{xpmax2} := 0.5 \cdot M_{xp2} \cdot q1 + M_{xp2}q2 + M_{xp2} \cdot q3$$

$$M_{xpmax2} = 8400$$

Case 2 - Point Load:

$M_{xpmax4} := P \cdot (h - L_{st}) \cdot 0.85$

$$M_{xpmax4} = 4760$$

$$M_{xpmax3} := (P \cdot h \cdot 0.85)$$

$$M_{xpmax3} = 7480$$

Max Post Stress:

$$f_{bpx} := \frac{max \left(M_{xpmax2}, M_{xpmax4} \right)}{S_{xp}}$$

$$f_{bpx} = 25767$$

psi

psi

psi

$$F_{bpx} := \begin{pmatrix} (F_{bpx1} \cdot 1.33) & \text{if } IBC = 1 \\ F_{bpx1} & \text{otherwise} \end{pmatrix}$$

$$F_{bpx} = 25000$$

Max Post/Stub Combined Stress:

$$f_{bpx2} \coloneqq max \left(M_{xpmax}, M_{xpmax3} \right) \cdot \frac{I_{xp}}{\left(I_{xp} + I_{st} \right) \cdot S_{xp}}$$

$$f_{bpx2} = 25934$$

Max Stub Stress:

$$f_{bst} \coloneqq max \left(M_{xpmax}, M_{xpmax3} \right) \cdot \frac{I_{st}}{\left(I_{xp} + I_{st} \right) \cdot S_{st}}$$

$$F_{bpx} = 25000$$

$$f_{bst} = 21185$$
 psi

$$F_{bst} = 25000$$

Calculation Results:

$$Int_{p1} := max \left(\frac{f_{bpx}}{F_{bpx}}, \frac{f_{bpx2}}{F_{bpx}}, \frac{f_{bst}}{F_{bst}} \right)$$

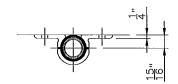
$$Int_{p1} = 1.04$$
 4% Over OK

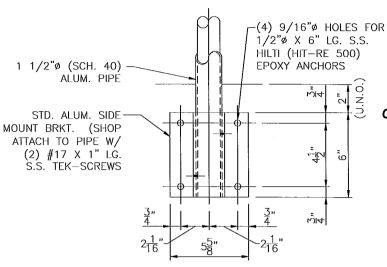
POSTS :=
$$| \text{"OK"} \quad \text{if } \text{Int}_{p1} \leq 1.04 \land \frac{\max\left(\Delta_{xp1}, \Delta_{xp2}, \Delta_{tot}\right)}{\Delta_{allp}} \leq 1$$

RICE **ENGINEERING**

Template:

REI-MC-5707


105 School Creek Trail Luxemburg, WI 54217 Phone: (920)845-1042 Fax: (920)845-1048


www.rice-inc.com

R0001 - RMR Standard Calcs Date:

Project Description:

Job No: R11-02-15H Engineer: Sheet No: **JDB** C₁ B Rev: 2/23/11 Chk By: Date:

Side Mount	SHT
Anchorage	C2

$$R_{\text{max}} := 300$$
 lb

$$M_{\text{max}} := 13200 + R_{\text{max}} \cdot 3 = 14100$$
 lb·in

$$L1 := 6$$
 in

$$L2 := 5.25$$
 in

Chk Extruded Aluminum Bracket:

$$P := \frac{M_{\text{max}}}{1} + R_{\text{max}}$$

$$M_{pl} := \frac{P}{2} \cdot 0.688$$

$$M_{pl} = 912$$
 in lb

$$t_{req} := \sqrt{\frac{6 \cdot M_{pl}}{28000 \cdot L1}}$$

$$t_{req} = 0.18$$
 i

$$I := \frac{t_{req}}{0.24}$$

$$I = 0.72$$

Use Side Mount Bracket, As Shown 6105-T5 alloy

Chk Anchor Bolts: (Assume f'c = 4000 psi Conc.)

CONC. SIDE

$$V_b := \frac{R_{max}}{4}$$

25KD-18A

$$V_{b} = 75$$

MOUNT

1b

$$T_b := \frac{M_{max}}{L2 \cdot 2 \cdot 0.85} + \frac{R_{max}}{4}$$
 $T_b = 1655$

Chk TEK Screws:

$$V := \frac{R_{\text{max}}}{(2)}$$

$$V = 150$$

$$V_{all} := 2148 \cdot 0.333$$

$$V_{all} = 715$$
 lb

$$I_2 := \left(\frac{V}{V_{\text{all}}}\right)$$

$$I_2 = 0.21 < 1.0$$

See Next Sheet for Calculation

Use (4) - 1/2" Dia. S.S. Threaded Rods With Hilti HIT-RE 500 Epoxy Adhesive

Embedment = 3-1/2" (min.) Edge = 2-3/4"End = 3"

Use (2) - #17 S.S. TEK Screws

300 Series S.S. ITW Buildex or Better

RICE **ENGINEERING**

Template:

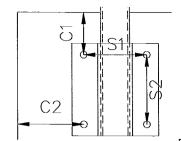
Luxemburg, WI 54217 Phone: (920)845-1042 Fax: (920)845-1048 www.rice-inc.com

105 School Creek Trail

Project Description:

R0001 - RMR Standard Calcs

	Job No:		R11-02-15H	
	Engineer:	JDB	Sheet No:	C2
s	Date:	2/23/11	Rev:	
	Chk By:		Date:	


Hilti HIT-RE 500 Epoxy Adjustment for Embed Depth:

 $h_{ef} := 3.5$ in embedment $s_1 := 4.125$ in spacing 1

 $s_2 := 4.5$ in spacing 2

 $c_1 := 2.75$ in edge distance 1

 $c_2 := 3$ in edge distance 2

Reactions Per Bolt:

Hilti Adhesive

V := 75 lb shear

SHT

C3

T := 1655 lb tension

From HILTI Design Guide:

$$T_{upper} := 5275$$
 lb $h_{efu} := 4.5$ in $T_{lower} := 1965$ lb $h_{efl} := 2.25$ in $V_{upper} := 7935$ lb $h_{efu} = 4.5$ in

 $V_{lower} := 3550$ lb $h_{efl} = 2.25$ in

<u>Use (4) - 1/2" Dia. S.S. Threaded Rods</u> W/ Hilti HIT-RE 500 Epoxy Adhesive

Embedment= 3-1/2" min. Edge Distance= 2-1/4" min. End Distance = 3"

Calculations below this line are automatic

$$T_{all} \coloneqq \frac{\left(T_{upper} - T_{lower}\right) \cdot \left(h_{efu} - h_{ef}\right) - T_{upper} \cdot \left(h_{efu} - h_{efl}\right)}{-\left(h_{efu} - h_{efl}\right)}$$

 $T_{all} = 3804$ lb Interpolated Tension Value

$$V_{all} \coloneqq \frac{\left(V_{upper} - V_{lower}\right) \cdot \left(h_{efu} - h_{ef}\right) - V_{upper} \cdot \left(h_{efu} - h_{efl}\right)}{-\left(h_{efu} - h_{efl}\right)}$$

Vall = 5986 lb Interpolated Shear Value

$$f_{AN1} := \begin{bmatrix} 1.00 & \text{if } s_1 \ge 1.5 \cdot h_{ef} \\ \\ 0.3 \cdot \left(\frac{s_1}{h_{ef}} \right) + 0.55 \end{bmatrix} & \text{if } 1.5 h_{ef} > s_1 > 0.5 \cdot h_{ef} \\ \\ \text{"Increase Spacing"} & \text{otherwise} \end{bmatrix}$$

 $f_{ANI} = 0.9$ Spacing (Tension and Shear)

$$f_{AN2} := \begin{bmatrix} 1.00 & \text{if } s_2 \geq 1.5 \cdot h_{ef} \\ \\ 0.3 \cdot \left(\frac{s_2}{h_{ef}}\right) + 0.55 \end{bmatrix} & \text{if } 1.5 h_{ef} > s_2 > 0.5 \cdot h_{ef} \\ \\ \text{"Increase Spacing"} & \text{otherwise} \end{cases}$$

 $f_{AN2} = 0.94$ Spacing (Tension and Shear)

$$\begin{split} f_{RN} := & \begin{bmatrix} 1.00 & \text{if } c_1 \geq 1.5 \cdot h_{ef} \\ \\ & \left[0.3 \cdot \left(\frac{c_1}{h_{ef}} \right) + 0.55 \right] & \text{if } 1.5 h_{ef} > c_1 > 0.5 \cdot h_{ef} \end{split}$$

 $f_{RN} = 0.79$ Edge Distance (Tension)

$$\begin{split} f_{RV1} := & \begin{bmatrix} 1.00 & \text{if } c_1 \geq 1.5 \cdot h_{ef} \\ \\ 0.54 \cdot \left(\frac{c_1}{h_{ef}}\right) - 0.09 \end{bmatrix} & \text{if } 1.5 h_{ef} > c_1 > 0.5 \cdot h_{ef} \\ \\ \text{"Increase Edge Distance"} & \text{otherwise} \\ \end{split}$$

 $f_{RV1} = 0.33$ Edge Distance (Shear Perpendicular to Edge)

$$f_{RV2} := \begin{bmatrix} 1.00 & \text{if } c_2 \ge 1.5 \cdot h_{ef} \\ 0.36 \cdot \left(\frac{c_2}{h_{ef}}\right) + 0.28 \end{bmatrix} & \text{if } 1.5 h_{ef} > c_2 > 0.5 \cdot h_{ef} \end{bmatrix}$$

 $f_{RV2} = 0.59$ Edge Distance (Shear Parallel or Away from Edge)

Vball := Vall·fAN1·fAN2·fRV1·fRV2

 $V_{ball} = 996$ lb

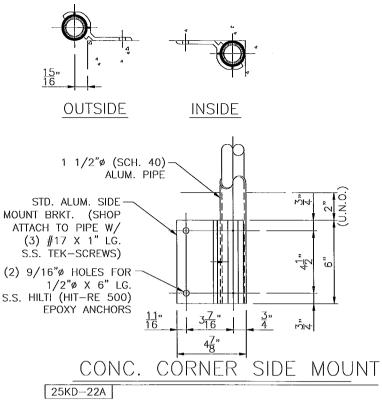
 $T_{ball} := T_{all} \cdot f_{AN1} \cdot f_{RN}$

 $T_{ball} = 2701$ lb

$$I_b := \left(\frac{V}{V_{ball}}\right)^{1.67} + \left(\frac{T}{T_{ball}}\right)^{1.67}$$

 $I_b = 0.45$ < 1.00

<u>RICE</u> ENGINEERING


Template:

105 School Creek Trail Luxemburg, WI 54217 Phone: (920)845-1042 Fax: (920)845-1048 www.rice-inc.com

R0001 - RMR Standard Calcs

Project Description:

Job No:		R11-02-15H	
Engineer:	JDB	Sheet No:	СЗ
Date:	2/23/11	Rev:	
Chk By:		Date:	

Corner Side Mount	SHT
Anchorage	C4

 $R_{max} := 97$ lb Reactions from RISA Model

 $M_{max} := 0$ lb·in (Comer Post Modeled as a Pin Connection)

L1 := 6 in

L2 := 5.25 in

Chk Extruded Aluminum Bracket:

$$P := \frac{M_{\text{max}}}{I_1} + R_{\text{max}} \qquad P = 97 \qquad \text{lb}$$

$$M_{pl} \coloneqq \frac{P}{2} \cdot 0.688 \qquad \qquad M_{pl} = 33 \qquad \quad \text{in-lb}$$

$$t_{req} := \sqrt{\frac{6 \cdot M_{pl}}{28000 \cdot L1}}$$
 $t_{req} = 0.03$ in

$$I := \frac{t_{req}}{0.25}$$

$$I = 0.14$$

<u>Use Side Mount Bracket, As Shown</u> 6105-T5 alloy

Chk Anchor Bolts: (Assume fc = 4000 psi Conc.)

$$V_b := \frac{R_{max}}{2} \qquad \qquad V_b = 49$$

$$T_b := \frac{M_{max}}{L2 \cdot 1 \cdot 0.85} + \frac{R_{max}}{2}$$
 $T_b = 49$ lb

See Next Sheet for Calculation

Use (2) - 1/2" Dia. S.S. Threaded Rods W/ Hilti HIT-RE 500 Epoxy Adhesive Embedment= 3-1/2" min.

Edge Distance = 2-3/4" min. End Distance = 2-1/2"

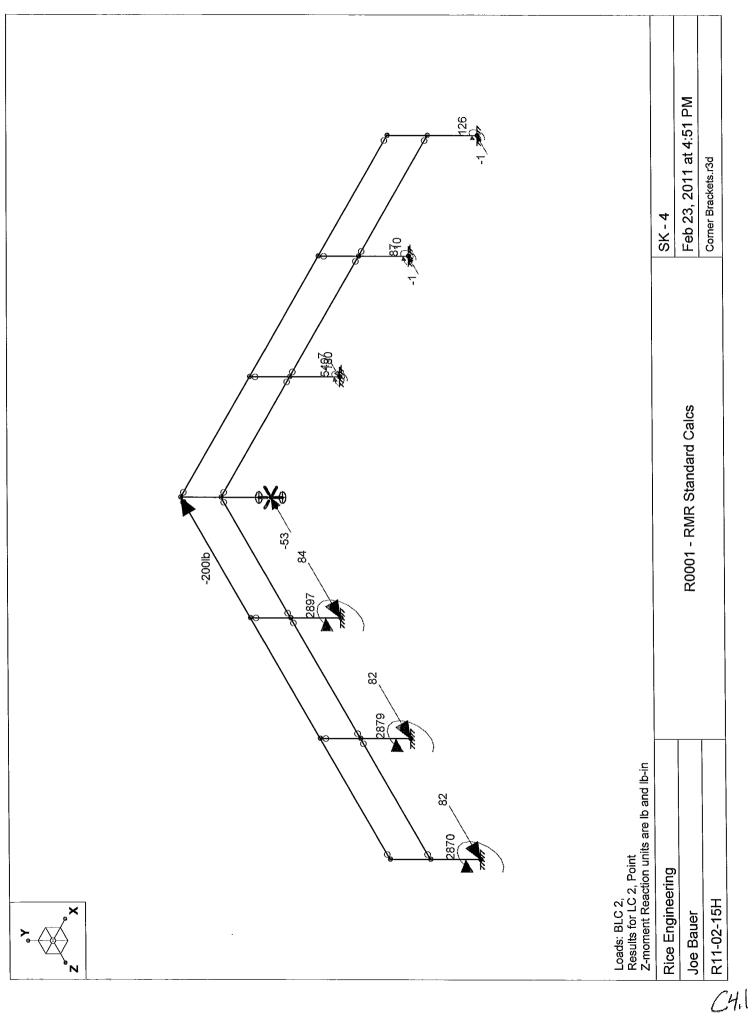
Chk TEK Screws:

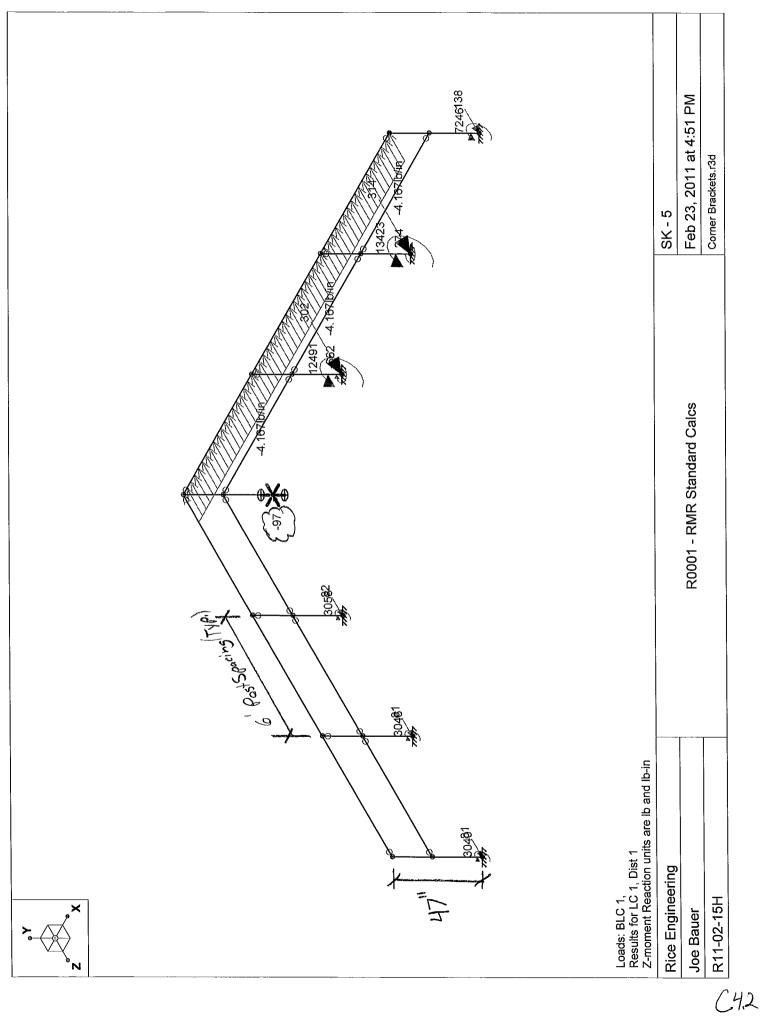
$$:= \frac{R_{\text{max}}}{(3)} \qquad \qquad V = 32 \qquad \qquad \text{lb}$$

$$V_{all} := 2148 \cdot 0.333 \hspace{1cm} V_{all} = 715 \hspace{1cm} lb$$

$$T := \frac{M_{\text{max}}}{L2} + \frac{R_{\text{max}}}{(2)}$$

$$T = 49$$
 lb


$$T_{all} := 2065 \cdot 0.33$$
 $T_{all} = 681$ lb


$$I_2 := \left(\frac{V}{V_{all}}\right)^2 + \left(\frac{T}{T_{all}}\right)^2$$
 $I_2 = 0.01 < 1.0$

Use (3) - #17 S.S. TEK Screws

300 Series S.S. ITW Buildex or Better

<u>RICE</u> ENGINEERING	105 School Creek Trail	Project Description:	Job No: R11-02-15H			
	Luxemburg, WI 54217 Phone: (920)845-1042	R0001 - RMR Standard Calcs	Engineer:	JDB	Sheet No:	C4
ENGINEERING			Date:	2/23/11	Rev:	
Template:	www.rice-inc.com		Chk By:		Date:	

Hilti HIT-RE 500 Epoxy Adjustment for Embed Depth:

 $h_{ef} := 3.5$ in embedment $s_2 := 4.5$ in spacing 2

 $c_1 := 2.75$ in edge distance 1

c2 := 2.5 in edge distance 2

Hilti Adhesive SHT C5

Reactions Per Bolt:

V := 49 lb shear

T:= 49 lb tension

From HILTI Design Guide:

 $T_{upper} \coloneqq 5275 \qquad lb \qquad \qquad h_{efu} \coloneqq 4.5 \qquad \text{ in }$

 $T_{lower} := 1965$ lb $h_{efl} := 2.25$ in

 $V_{upper} := 7935$ lb $h_{efu} = 4.5$ in

 $V_{lower} := 3550$ lb $h_{efl} = 2.25$

<u>Use (2) - 1/2" Dia. S.S. Threaded Rods</u> W/ Hilti HIT-RE 500 Epoxy Adhesive

Embedment= 3-1/2" min. Edge Distance= 2-3/4" min. End Distance = 2-1/2"

Calculations below this line are automatic

$$T_{all} \coloneqq \frac{\left(T_{upper} - T_{lower}\right) \cdot \left(h_{efu} - h_{ef}\right) - T_{upper}\left(h_{efu} - h_{efl}\right)}{-\left(h_{efu} - h_{efl}\right)}$$

in

 $V_{all} \coloneqq \frac{\left(V_{upper} - V_{lower}\right) \cdot \left(h_{efu} - h_{ef}\right) - V_{upper} \cdot \left(h_{efu} - h_{efl}\right)}{-\left(h_{efu} - h_{efl}\right)}$

 $T_{all} = 3804$ lb Interpolated Tension Value

V_{all} = 5986 1b Interpolated Shear Value

$$f_{AN1} := 1.0$$

 $f_{AN1} = 1$

Spacing (Tension and Shear)

$$f_{AN2} := \begin{bmatrix} 1.00 & \text{if } s_2 \geq 1.5 \cdot h_{ef} \\ \\ 0.3 \cdot \left(\frac{s_2}{h_{ef}}\right) + 0.55 \end{bmatrix} & \text{if } 1.5 h_{ef} > s_2 > 0.5 \cdot h_{ef} \\ \\ \text{"Increase Spacing"} & \text{otherwise} \end{bmatrix}$$

 $f_{AN2} = 0.94$

Spacing (Tension and Shear)

$$\begin{split} f_{RN} &:= \begin{bmatrix} 1.00 & \text{if } c_1 \geq 1.5 \cdot h_{ef} \\ \\ 0.3 \cdot \left(\frac{c_1}{h_{ef}}\right) + 0.55 \end{bmatrix} & \text{if } 1.5 h_{ef} > c_1 > 0.5 \cdot h_{ef} \\ \\ \text{"Increase Edge Distance"} & \text{otherwise} \end{split}$$

 $f_{RN} = 0.79$

Edge Distance (Tension)

$$\begin{split} f_{RV1} &:= \left[1.00 \ \text{if} \ c_1 \geq 1.5 \cdot h_{ef} \\ \\ \left[0.54 \cdot \left(\frac{c_1}{h_{ef}} \right) - 0.09 \right] \ \text{if} \ 1.5 h_{ef} > c_1 > 0.5 \cdot h_{ef} \end{split} \right. \end{split}$$

 $f_{RV1} = 0.33$

Edge Distance (Shear Perpendicular to Edge)

$$f_{RV2} := \begin{bmatrix} 1.00 & \text{if } c_2 \ge 1.5 \cdot h_{ef} \\ 0.36 \cdot \left(\frac{c_2}{h_{ef}}\right) + 0.28 \end{bmatrix} \text{ if } 1.5 h_{ef} > c_2 > 0.5 \cdot h_{ef}$$

 $f_{RV2} = 0.54$

Edge Distance (Shear Parallel or Away from Edge)

 $V_{ball} := V_{all} \cdot f_{AN1} \cdot f_{AN2} \cdot f_{RV1} \cdot f_{RV2}$

 $V_{ball} = 1006$ lb

 $T_{ball} := T_{all} \cdot f_{AN1} \cdot f_{RN}$

 $T_{ball} = 2989$ lb

$$I_b := \left(\frac{V}{V_{ball}}\right)^{1.67} + \left(\frac{T}{T_{ball}}\right)^{1.67}$$

 $I_b = 0.01$ < 1.00

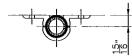
<u>RICE</u> ENGINEERING

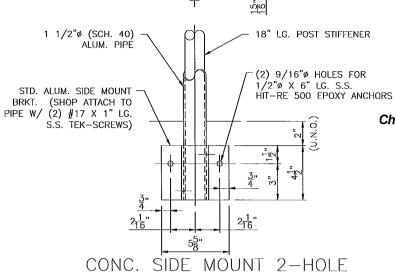
Template:

105 School Creek Trail Luxemburg, WI 54217 Phone: (920)845-1042 Fax: (920)845-1048

www.rice-inc.com

R0001 - RMR Standard Calcs


Project Description:


 Job No:
 R11-02-15H

 Engineer:
 JDB
 Sheet No:
 C5

 Date:
 2/23/11
 Rev:

 Chk By:
 Date:
 Date:

$R_{\text{max}} := 300$

$$M_{max} := 13200 + R_{max} \cdot 3 = 14100$$
 lb·in

$$L1 := 4.5$$

lb

$$L2 := 3$$

Chk Extruded Aluminum Bracket:

$$P := \frac{M_{\text{max}}}{I.1} + R_{\text{max}}$$

$$M_{pl} := \frac{P}{2} \cdot 0.688$$

$$M_{pl} = 1181$$

$$t_{\text{req}} := \sqrt{\frac{6 \cdot M_{\text{pl}}}{28000 \cdot L1}}$$

$$t_{reg} = 0.24$$

$$I := \frac{t_{\text{req}}}{0.25}$$

$$I = 0.95$$

Chk Anchor Bolts: (Assume f'c = 4000 psi Conc.)

Uniform Load

25KD-18E

$$V_b := \frac{R_{max}}{2}$$

$$V_b = 150$$

$$T_b := \frac{M_{max}}{1.2 \cdot 2 \cdot 0.85} + \frac{R_{max}}{2}$$

$$T_b = 2915$$
 lb

Chk TEK Screws:

6105-T5 alloy

$$V := \frac{R_{\text{max}}}{(2)}$$

1b

$$V_{all} := 2148.0.333$$

$$V_{all} = 715$$

$$I_2 := \left(\frac{V}{V_{all}}\right)$$

$$I_2 = 0.21 < 1.0$$

Concentrated Load

$$V_{b2} := \frac{200 \cdot 0.85}{2}$$

$$V_{b2} = 85$$

$$T_{b2} := \frac{200 \cdot 0.85 \cdot 47}{1.5 \cdot 2 \cdot 0.85} + \frac{200 \cdot 0.85}{2}$$
 $T_{b2} = 3218$

$$T_{b2} = 3218$$

lb

lb

Use (2) - #17 S.S. TEK Screws 300 Series S.S.

ITW Buildex or Better

Use Side Mount Bracket, As Shown

Use (1) - 1/2" Dia. S.S. Threaded Rods With Hilti HIT-RE 500 Epoxy Adhesive

See Next Sheet for Calculation

Embedment = 4-1/2" Edge = 3-1/2"End = 3"

RICE **ENGINEERING**

Template:

105 School Creek Trail Luxemburg, WI 54217 Phone: (920)845-1042 Fax: (920)845-1048

www.rice-inc.com

Project Description:

R0001 - RMR Standard Calcs

		_			
Job No:	R11-02-15H				
Engineer:	JDB	Sheet No:	C6		
Date:	2/23/11	Rev:			
Chk Bv:		Date:	_		

Hilti HIT-RE 500 Epoxy Adjustment for Embed Depth:

 $h_{ef} := 4.5$ in embedment $s_1 := 4.125$ in spacing 1

 $c_1 := 3.5$ in edge distance 1

 $c_2 := 3$ in edge distance 2

Hilti Adhesive SHT C7

Reactions Per Bolt:

V:= 85

lb shear

T := 3218

tension

From HILTI Design Guide:

 $T_{upper} := 5275$

 $h_{efu} := 4.5$

 $T_{lower} := 1965$

 $h_{efl} := 2.25$

 $V_{upper} := 7935$

 $h_{efii} = 4.5$

in

 $V_{lower} := 3550$

 $h_{efl} = 2.25$

Use (⊇) - 1/2" Dia. S.S. Threaded Rods W/ Hilti HIT-RE 500 Epoxy Adhesive

lb

Embedment= 3-1/2" min. Edge Distance= 2-1/4" min. End Distance = 3"

Calculations below this line are automatic

Interpolated Tension Value

Interpolated Shear Value

$$T_{all} \coloneqq \frac{\left(T_{upper} - T_{lower}\right) \cdot \left(h_{efu} - h_{ef}\right) - T_{upper} \cdot \left(h_{efu} - h_{efl}\right)}{-\left(h_{efu} - h_{efl}\right)}$$

 $V_{all} := \frac{\left(V_{upper} - V_{lower}\right) \cdot \left(h_{efu} - h_{ef}\right) - V_{upper} \cdot \left(h_{efu} - h_{efl}\right)}{-\left(h_{efu} - h_{efl}\right)}$

$$\begin{split} f_{AN1} := & \begin{bmatrix} 1.00 & \text{if } s_1 \geq 1.5 \cdot h_{ef} \\ \\ 0.3 \cdot \left(\frac{s_1}{h_{ef}} \right) + 0.55 \end{bmatrix} & \text{if } 1.5 h_{ef} > s_1 > 0.5 \cdot h_{ef} \end{split}$$

"Increase Spacing" otherwise

$$f_{AN1}=0.83$$

 $T_{all} = 5275$

 $V_{all} = 7935$

Spacing (Tension and Shear)

$$f_{AN2} := 1.0$$

 $f_{AN2} = 1$

Spacing (Tension and Shear)

$$f_{RN} := \begin{bmatrix} 1.00 & \text{if } c_1 \ge 1.5 \cdot h_{ef} \\ \\ 0.3 \cdot \left(\frac{c_1}{h_{ef}} \right) + 0.55 \end{bmatrix} & \text{if } 1.5 h_{ef} > c_1 > 0.5 \cdot h_{ef} \end{bmatrix}$$

"Increase Edge Distance" otherwise

 $f_{\hbox{\footnotesize RN}}=0.78$

Edge Distance (Tension)

$$\begin{split} f_{RV1} := & \begin{bmatrix} 1.00 & \text{if } c_1 \geq 1.5 \cdot h_{ef} \\ \\ 0.54 \cdot \left(\frac{c_1}{h_{ef}} \right) - 0.09 \end{bmatrix} & \text{if } 1.5 h_{ef} > c_1 > 0.5 \cdot h_{ef} \end{split}$$

"Increase Edge Distance" otherwise

 $f_{RV1} = 0.33$

Edge Distance (Shear Perpendicular to Edge)

$$\begin{split} f_{RV2} := & \begin{bmatrix} 1.00 & \text{if } c_2 \geq 1.5 \cdot h_{ef} \\ \\ 0.36 \cdot \left(\frac{c_2}{h_{ef}} \right) + 0.28 \end{bmatrix} & \text{if } 1.5 h_{ef} > c_2 > 0.5 \cdot h_{ef} \end{split}$$

"Increase Edge Distance" otherwise

 $f_{RV2} = 0.52$

Edge Distance (Shear Parallel or Away from Edge)

 $V_{ball} := V_{all} \cdot f_{AN1} \cdot f_{AN2} \cdot f_{RV1} \cdot f_{RV2}$

 $V_{ball} = 1123$ lb

 $T_{ball} := T_{all} \cdot f_{AN1} \cdot f_{RN}$

 $T_{ball} = 3409$ lb

$$I_b := \left(\frac{v}{v_{ball}}\right)^{1.67} + \left(\frac{T}{T_{ball}}\right)^{1.67}$$

 $I_b = 0.92$ < 1.00

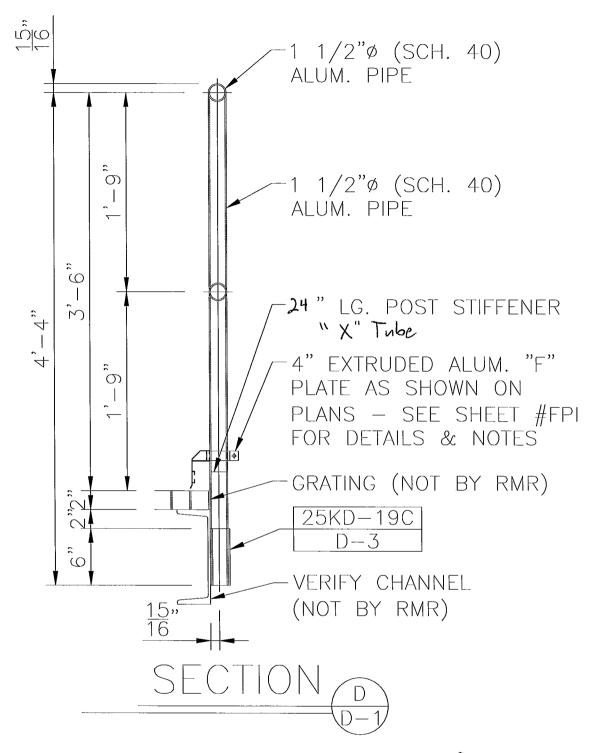
<u>RICE</u> ENGINEERING

Template:

105 School Creek Trail Luxemburg, WI 54217 Phone: (920)845-1042 Fax: (920)845-1048

www.rice-inc.com

R0001 - RMR Standard Calcs


Project Description:

 Job No:
 R11-02-15H

 Engineer:
 JDB
 Sheet No:
 C7

 Date:
 2/23/11
 Rev:

 Chk By:
 Date:

Note: Structural steel, Concrete, CMU and all other anchorage substrates designed by others

ROCKY MOUNTAIN RAILINGS

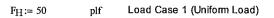
<u>RICE</u>		
ENGINEERING		
Template:	REI-MC-5707	

105 School Creek Trail Luxemburg, WI 54217 Phone: (920)845-1042 Fax: (920)845-1048

www.rice-inc.com

Project Description:

R0001 - RMR Standard C


	Job No:	R11-02-15H			
	Engineer:	JDB	Sheet No:	D	
alcs	Date:	2/23/11	Rev:		
	Chk By:		Date:		

Pipe Railing & Post

These calculations are based on emperical test data performed by Julius Blum & Co., Inc.

SHT Guardrail "D" Analysis D1

Input Variables:

Simultaneous Vertical Uniform Load Fv := 0plf

Load Case 2 (Point Load) P := 200 lb

Unbraced Length of Post $L_{bp} := 25$

Railing Height Above Anchor Bracket h := 46

6'-0" MAX POST SPACING L := 72

Number of Railing Spans:

3 or more spans

Railing Section: Post Section:

1 1/4" Schd. 40 1 1/4" Schd. 40

1 1/4" Schd. 80 1 1/4" Schd. 80

1 1/2" Schd. 40 1 1/2" Schd. 40

1 1/2" Schd. 80 1 1/2" Schd. 80

1 1/2" tube 1 1/2" tube 2" Schd, 40 2" Schd. 40

2" Schd. 80 2" Schd. 80

Railing Temper:

Post Temper:

6063-T5 6063-T6 6063-T6 6005-T5

6061-T6 or 6105-T5 6061-T6 or 6105-T5

Post Welded to Base Plate 4/3 increase allowed

က်ကြ 1/2"ø (SCH. 40) ALUM. PIPE , O 1 1/2"ø (SCH. 40) ALUM. PIPE <u>,</u> 24" LG. POST STIFFENER 'n "X" Tube 4" EXTRUDED ALUM. "F" ້ ດ PLATE AS SHOWN ON PLANS - SEE SHEET #FPI FOR DETAILS & NOTES GRATING (NOT BY RMR) 7,7 25KD-19C D-3စ် VERIFY CHANNEL (NOT BY RMR)

All calculations below this line are automatic

Railing Properties

kr= 0.31 0.31 lyr≖ Sxr= 0.326 Syr= 0.326 R= 0.95 0.145

 $I_{\text{ytotr}} = 0.31$ in⁴

Post Properties

kr=		0.31
lyr=	*****	0.31
Sxr=	* * * *	0.326
Syr=	1	0.326
R=		0.95
t=		0.145

$$S_{R1} := \frac{R_r}{t_r}$$
 $S_{R1} = 6.55$

$$SR_1 := \frac{}{t_r} \qquad SR_1 = 6.5$$

$$S_{R3} := \frac{R_p}{t_p}$$
 $S_{R3} = 6.55$

Computational Factors

$$K_1 := (8 \cdot q_1) + (8 \cdot q_2) + (9.5 \cdot q_3)$$
 $K_1 = 8$

$$K_2 := (4 \cdot q1) + (5 \cdot q2) + (5 \cdot q3)$$
 $K_2 = 5$

$$K_3 := (48 \cdot q1) + (66 \cdot q2) + (87 \cdot q3)$$
 $K_3 = 66$

 $E_r := 10100000$

 $I_{\text{xtotr}} = 0.31$ in⁴ $I_{xtotr} := I_{xr}$

 $I_{xtotp} := I_{xp}$

 $I_{ytotp} := I_{yp}$

 $I_{\text{xtotp}} = 0.31$

 $I_{ytotp} = 0.31$

in⁴

24" Min. Length AL. "X" Tube Stub

$$I_{st} := 0.249$$
 in⁴
 $S_{st} := 0.311$ in³

F_{bst} := 25000 psi

 $L_{st} := 18$

RICE **ENGINEERING**

 $I_{ytotr} := I_{yr}$

Template: **REI-MC-5707** 105 School Creek Trail Luxemburg, WI 54217 Phone: (920)845-1042 Fax: (920)845-1048

www.rice-inc.com

Project Description:

R0001 - RMR Standard Cales

Job No:	R11-02-15H		
Engineer:	JDB	Sheet No:	D1
Date:	2/23/11	Rev:	
Chk By:		Date:	

Railing Analysis:

$$W_h := \frac{F_H}{100}$$

$$W_h := \frac{F_H}{12} \qquad W_v := \frac{F_V}{12}$$

Guardrail 'D" Analysis

SHT D1 A

Case 1 Uniform Load:

$$\Delta_{yr1} \coloneqq \frac{5 \cdot W_h \cdot L^4}{384 \cdot E_r I_{ytotr}}$$

$$\Delta_{yr1} = 0.466$$

Modeled as a simple span

$$\Delta_{Xr1} := \frac{5 \cdot W_V \cdot L^4}{384 \cdot E_r I_{xtotr}}$$

$$\Delta_{X\Gamma 1} = 0$$

in

$$\Delta_{allr} := \frac{L}{96}$$

$$\Delta_{allr} = 0.75$$

Per ASTM Specification E985

$$\mathbf{M}_{yrmax} := \frac{\mathbf{W}_h \cdot \mathbf{L}^2}{\mathbf{K}_1}$$

$$M_{yrmax} = 2700$$

$$M_{xrmax} := \frac{W_{v} \cdot L^2}{K_1}$$

$$M_{Xrmax} = 0$$

$f_{bry1} \coloneqq \frac{M_{yrmax}}{S_{yr}}$

D

$$f_{bry1} = 8282$$

$$f_{brx1} \coloneqq \frac{M_{xrmax}}{S_{xr}}$$

$$f_{brx1} = 0$$

Case 2 - Point Load:

$$\Delta_{yr2} \coloneqq \frac{P \cdot L^3}{K_3 \cdot E_r \cdot I_{ytotr}}$$

$$\Delta_{yr2} = 0.361$$

$$M_{yrmax2} := \frac{P \cdot L}{K_2}$$

$$M_{yrmax2} = 2880$$

$$f_{bry2} \coloneqq \frac{M_{yrmax2}}{S_{yr}}$$

$$f_{bry2} = 8834$$

$$F_{bry} := \begin{cases} \left(F_{bry1} \cdot 1.33\right) & \text{if } IBC = 1 \\ F_{bry1} & \text{otherwise} \end{cases}$$

$$F_{bry} = 25000$$

psi

Calculation Results:_

$$Int_{r1} := \left(\frac{f_{brx1}}{F_{bry}}\right) + \left(\frac{f_{bry1}}{F_{bry}}\right)$$

$$Int_{\Gamma 1} = 0.33$$

$$Int_{r2} := \frac{f_{bry2}}{F_{bry}}$$

$$Int_{r2} = 0.35$$

$$\text{RAILS} := \left| \text{"OK"} \quad \text{if} \quad \frac{\text{max} \left(\Delta_{yr1}, \Delta_{xr1}, \Delta_{yr2} \right)}{\Delta_{allr}} \leq 1 \wedge \left(\frac{f_{brx1}}{F_{bry}} \right) + \left(\frac{f_{bry1}}{F_{bry}} \right) \leq 1 \wedge \frac{f_{bry2}}{F_{bry}} \leq 1$$

<u>RICE</u> **ENGINEERING**

Template:

"FAIL" otherwise

REI-MC-5707

105 School Creek Trail Luxemburg, WI 54217 Phone: (920)845-1042 Fax: (920)845-1048

www.rice-inc.com

R0001 - RMR Standard Cal

Project Description:

	Job No:	No: R11-02-15H		
	Engineer:	JDB	Sheet No:	D1 A
cs	Date:	2/23/11	Rev:	
	Chk By:		Date:	

Post Analysis:

 $E_{\mathbf{p}} := E_{\mathbf{r}}$

Guardrail "D" Analysis

SHT D1 B

$$\Delta_{xp1} \coloneqq \frac{W_h \cdot L \cdot \left(h - L_{st}\right)^3}{3 \cdot E_p \cdot \left(I_{xp}\right)}$$

$$\Delta_{XD1} = 0.701$$

$$\Delta_{xp2} \coloneqq \frac{\text{P-0.85-} \left(\text{h} - \text{L}_{st} \right)^3}{\text{3-Ep-} \left(\text{I}_{xp} \right)}$$

$$\Delta_{xp2} = 0.397$$

in

in

Max Deflection:

$$\Delta_{tot} \coloneqq \frac{W_h \cdot L \cdot \left(h - L_{st}\right)^3}{3 \cdot E_p \cdot I_{Xp}} + \frac{W_h \cdot L \left[h^3 - \left(h - L_{st}\right)^3\right]}{3 \cdot \left[\left(E_p \cdot I_{Xp}\right) + \left(E_p \cdot I_{st}\right)\right]}$$

$$\Delta_{\text{tot}} = 2.036$$

$$\Delta_{\text{allp}} := \frac{h}{12}$$

$$\Delta_{\text{allp}} = 3.83$$

Case 1 - Uniform Load:

$$M_{xp} := (W_h \cdot L \cdot h) + W_v \cdot L \cdot \Delta_{tot}$$

$$M_{xpmax} := 0.5 \cdot M_{xp} \cdot q1 + M_{xp} \cdot q2 + M_{xp} \cdot q3$$

$$M_{xpmax} = 13800$$

$$M_{xp2} := W_h \cdot L \cdot (h - L_{st}) + W_v \cdot L \cdot \Delta_{xp1}$$

$$M_{xpmax2} := 0.5 \cdot M_{xp2} \cdot q1 + M_{xp2} \cdot q2 + M_{xp2} \cdot q3$$

$$M_{xpmax2} = 8400$$

Case 2 - Point Load:

$M_{xpmax4} := P \cdot (h - L_{st}) \cdot 0.85$

$$M_{xpmax4} = 4760$$

$$M_{xpmax3} := (P \cdot h \cdot 0.85)$$

$$M_{xpmax3} = 7820$$

$$max3 = 7820$$
 lb·in

Max Post Stress:

$$f_{bpx} := \frac{\max(M_{xpmax2}, M_{xpmax4})}{S_{xp}}$$

$$f_{bpx} = 25767$$

psi

psi

psi

psi

$$F_{bpx} := \begin{cases} \left(F_{bpx1} \cdot 1.33\right) & \text{if } IBC = 1 \\ F_{bpx1} & \text{otherwise} \end{cases}$$

$$F_{bpx} = 25000$$

Max Post/Stub Combined Stress:

$$f_{bpx2} \coloneqq \max \left(M_{xpmax}, M_{xpmax3} \right) \cdot \frac{I_{xp}}{\left(I_{xp} + I_{st} \right) \cdot S_{xp}}$$

$$f_{bpx2} = 23475$$

Max Stub Stress:

$$F_{bpx} = 25000$$

$$f_{bst} := \max(M_{xpmax}, M_{xpmax3}) \cdot \frac{I_{st}}{(I_{xp} + I_{st}) \cdot S_{st}}$$

$$F_{bst} = 25000$$

Calculation Results:

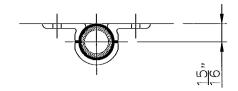
$$\text{Int}_{p1} \coloneqq \text{max}\!\!\left(\frac{f_{bpx}}{F_{bpx}}, \frac{f_{bpx2}}{F_{bpx}}, \frac{f_{bst}}{F_{bst}}\right)$$

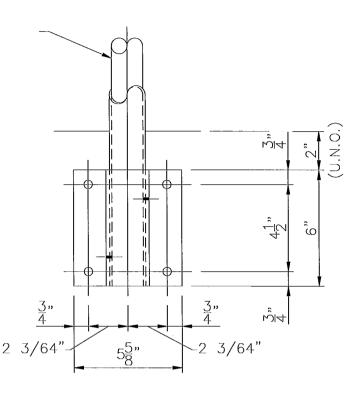
$$Int_{p1} = 1.03$$
 3% Over OK

$$\text{POSTS} := \begin{bmatrix} \text{"OK"} & \text{if } \operatorname{Int}_{p1} \leq 1.034 \land \frac{\max\left(\Delta_{xp1}, \Delta_{xp2}, \Delta_{tot}\right)}{\Delta_{allp}} \leq 1 \\ \text{"FAII."} & \text{otherwise} \end{bmatrix}$$

RICE **ENGINEERING**

Template:


REI-MC-5707


105 School Creek Trail Luxemburg, WI 54217 Phone: (920)845-1042 Fax: (920)845-1048 www.rice-inc.com

R0001 - RMR Standard Calcs Date:

Project Description:

Job No: R11-02-15H Engineer: Sheet No: **JDB** D1 B 2/23/11 Chk By: Date:

Side Mount	SHT
Anchorage	D2

$$R_{\text{max}} := 300$$
 lb

$$M_{max} := 13800 + R_{max} \cdot 3 = 14700$$
 lb·in

$$L1 := 6$$

in

$$L2 := 5.25$$

in

Chk Extruded Aluminum Bracket:

$$P := \frac{M_{\text{max}}}{L.1} + R_{\text{max}}$$

$$M_{pl} := \frac{P}{2} \cdot 0.688$$

$$M_{pl} = 946$$

$$t_{req} := \sqrt{\frac{6 \cdot M_{pl}}{28000 \cdot L1}}$$

$$t_{\rm req} = 0.18$$

$$I := \frac{t_{req}}{0.25}$$

$$I = 0.74$$

Use Side Mount Bracket, As Shown 6105-T5 alloy

Use (2) - #17 S.S. TEK Screws

300 Series S.S. ITW Buildex or Better

Chk Anchor Bolts:

$$V_b := \frac{R_{max}}{4}$$

$$V_b = 75$$

Chk TEK Screws:

V = 150

lb

lb

$$T_b := \frac{M_{max}}{L2 \cdot 2 \cdot 0.85} + \frac{R_{max}}{4}$$

$$T_b = 1722$$

 $V_{all} := 2148 \cdot 0.333$

 $V_{all} = 715$

$$V_{ball} := 0.196 \cdot 23000$$

$$V_{ball} = 4508$$
 lb

$$T_{ball} := 0.142 \cdot 40000 \cdot \frac{0.1875}{0.341}$$

 $I := \left(\frac{V_b}{V_{ball}}\right)^2 + \left(\frac{T_b}{T_{ball}}\right)^2$

$$T_{\rm ball} = 3123$$

I = 0.3 < 1.0

$$I_2 := \left(\frac{V}{V_{all}}\right)$$

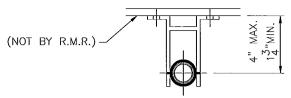
$$I_2 = 0.21 < 1.0$$

or 3/16" Min. Thread Engagement

Cond "CW", Fy= 65 ksi minimum Structural Steel Channel Designed By Others

Use (4) - 1/2" Dia. S.S. Thru Bolts

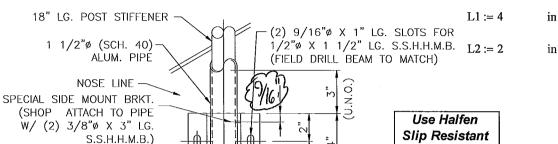
RICE ENGINEERING


Template: **REI-MC-5741**

105 School Creek Trail Luxemburg, WI 54217 Phone: (920)845-1042 Fax: (920)845-1048

www.rice-inc.com

Project Description:


	Job No:		R11-02-15H		
	Engineer:	JDB	Sheet No:	D2	_
3	Date:	2/23/11	Rev:		_
	Chk By:		Date:		_

Side Mount	SHT
Anchorage	D3

 $R_{\text{max}} := 300$ lb

$$M_{max} := R_{max} \cdot 39 = 11700$$
 lb·in

Flange Nuts or Equal

| 1/8 |

SPECIAL SIDE MOUNT 2-HOLE

5"

25KD-19E

Chk Post Attachment to Bracket:

$$V := \frac{M_{\text{max}}}{2.875 \cdot (1)} + \frac{R_{\text{max}}}{(2)}$$

$$V = 4220$$
 1

$$V_{all} := 0.110 \cdot 23000 \cdot (2)$$

$$V_{all} = 5060$$
 lb

<u>Use (2) - 3/8" Dia. S.S. Thru-Bolts @ 2-7/8" O.C.</u> 300 Series S.S.

Chk Extruded Aluminum Bracket:

$$P := \frac{M_{\text{max}}}{1.1} + R_{\text{max}}$$

$$P = 3225$$

$$M_{pl} := \frac{P}{2} \cdot 0.7$$

$$M_{\rm pl} = 1129$$
 in lb

$$t_{req} := \sqrt{\frac{6 \cdot M_{pl}}{28000 \cdot L1}}$$

$$t_{req} = 0.25$$
 in

$$I := \frac{t_{\text{req}}}{0.25}$$

$$I = 0.98$$

Use Side Mount Bracket, 4 ____Long 6105-T5 alloy

Chk Anchor Bolts:

$$V_b := \frac{R_{max}}{2}$$

$$V_b = 150$$

lb

$$T_b := \frac{M_{\text{max}}}{1.2 \cdot 2} + \frac{R_{\text{max}}}{2}$$

$$T_b = 3075$$

$$V_{all} := 0.196 \cdot 23000$$

$$V_{all} = 4508$$
 lb

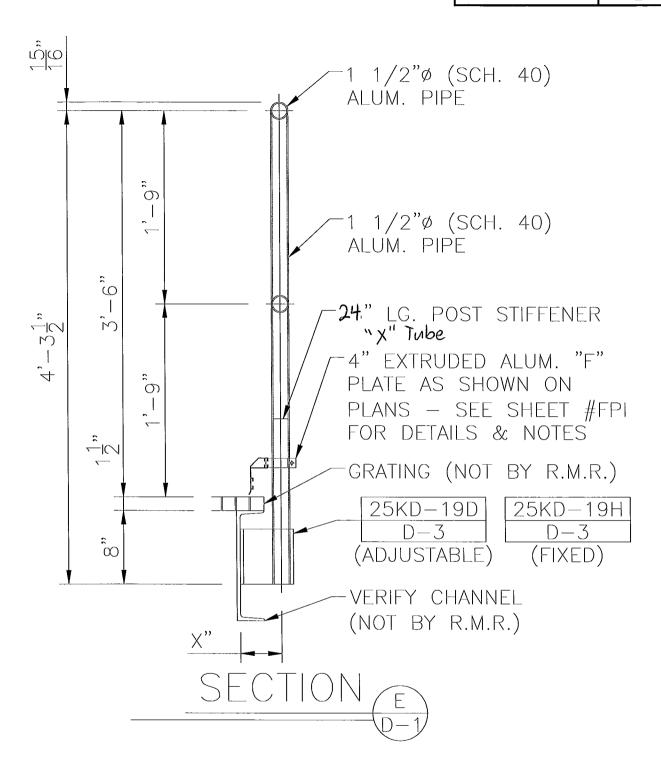
$$T_{\text{all}} := 0.142 \cdot 40000 \cdot \frac{0.25}{0.456}$$

$$T_{all} = 3114$$
 lb

$$I := \left(\frac{V_b}{V_{all}}\right)^2 + \left(\frac{T_b}{T_{all}}\right)^2$$

$$I = 0.98 < 1.0$$

<u>Use (4) - 1/2" Dia. S.S. Thru Bolts</u> (or Drill & Tap - 1/4" Min. Thread Engagement)


Cond "CW", Fy= 65 ksi minimum Steel Stringers Designed By Others

RICE ENG	INEERING
Template:	REI-MC-5741

105 School Creek Trail Luxemburg, WI 54217 Phone: (920)845-1042 Fax: (920)845-1048 www.rice-inc.com

Project Description:

Job No:	R11-02-15H		
Engineer:	JDB	Sheet No:	D3
Date:	2/23/11	Rev:	
Chk By:		Date:	

Note: Structural steel, Concrete, CMU and all other anchorage substrates designed by others

ROCKY MOUNTAIN RAILINGS

RICE ENG	INEERING
Template:	REI-MC-5707

105 School Creek Trail Luxemburg, WI 54217 Phone: (920)845-1042 Fax: (920)845-1048

www.rice-inc.com

Project Description:

Job No: R11-02-15H Engineer: Sheet No: JDB Ε R0001 - RMR Standard Calcs Date: 2/23/11 Rev: Chk By: Date:

Pipe Railing & Post

These calculations are based on emperical test data performed by Julius Blum & Co., Inc.

വ്യമ

ດ

ີ ດ

SECTION

3,-6"

<u>__</u>C

œ

SHT Guardrail "E" Analysis **E**1

1 1/2"ø (SCH. 40)

1/2"ø (SCH. 40)

"Tube

PLATE AS SHOWN ON

25KD-19D

D-3

(ADJUSTABLE)

VERIFY CHANNEL

(NOT BY R.M.R.)

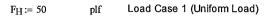
LG. POST STIFFENER

EXTRUDED ALUM. "F"

PLANS - SEE SHEET #FPI FOR DETAILS & NOTES

GRATING (NOT BY R.M.R.)

25KD-19H


D-3

(FIXED)

ALUM. PIPE

ALUM. PIPE

Input Variables:

Simultaneous Vertical Uniform Load $F_{\mathbf{V}} := 0$ plf

Load Case 2 (Point Load) P := 200 lh

Unbraced Length of Post $L_{bp} := 24.5$

Railing Height Above Top Anchor Bolt h := 46.5

6'-0" MAX POST SPACING L := 72

Number of Railing Spans:

3 or more spans

Railing Section: Post Section:

1 1/4" Schd. 40

1 1/4" Schd. 40

1 1/4" Schd. 80

1 1/4" Schd. 80

1 1/2" Schd. 40

1 1/2" Schd. 40

1 1/2" Schd. 80

1 1/2" Schd. 80

1 1/2" tube

1 1/2" tube

2" Schd. 40

2" Schd. 40

2" Schd. 80

2" Schd. 80

Railing Temper:

Post Temper:

6063-T5

6063-T6

6063-T6

6005-T5

6061-T6 or 6105-T5

6061-T6 or 6105-T5

4/3 increase allowed

Post Welded to Base Plate

All calculations below this line are automatic

Railing Properties

kr=	0.31
lyr=	 0.31
Sxr=	 0.326
Syr=	 0.326
R≃	 0.95
t=	0.145

kr=	0.31
lyr=	0.31
Sxr=	0.326
Syr=	0.326
R=	0.95
t=	0.145

Post Properties

0.31	
0.31	s_{R1} :
0.326	
0.326	
0.95	SR3
145	

$$S_{R1} := \frac{R_r}{t_r}$$
 $S_{R1} = 6.55$

$$K_1 := (8 \cdot q1) + (8 \cdot q2) + (9.5 \cdot q3)$$

Computational Factors

$$K_1 = 8$$
 $K_2 = 5$

$$S_{R3} := \frac{R_p}{t_n}$$
 $S_{R3} = 6.55$

$$K_2 := (4 \cdot q1) + (5 \cdot q2) + (5 \cdot q3)$$

 $K_2 := (48 \cdot q1) + (66 \cdot q2) + (87 \cdot q3)$

$$K_3 := (48 \cdot q1) + (66 \cdot q2) + (87 \cdot q3)$$
 $K_3 = 66$

$$E_{\Gamma} := 10100000$$
 psi

 $I_{xtotr} := I_{xr}$

 $I_{\text{xtotr}} = 0.31$

 $I_{xtotp} := I_{xp}$

 $I_{\text{xtotp}} = 0.31$

in⁴

24" Min. Length AL. "X" Tube Stub

in³

 $I_{\text{vtotr}} = 0.31$ $I_{ytotr} := I_{yr}$

 $I_{ytotp} := I_{yp}$

 $I_{ytotp} = 0.31$

 in^4

 $I_{st} := 0.249$

in⁴

 $L_{st} := 19$

 $S_{st} := 0.311$

F_{bst} := 25000 psi

RICE **ENGINEERING**

Template: **REI-MC-5707**

105 School Creek Trail Luxemburg, WI 54217 Phone: (920)845-1042 Fax: (920)845-1048

www.rice-inc.com

Project Description:

Job No:	R11-02-15H		
Engineer:	JDB Sheet No: E1		
Date:	2/23/11	Rev:	
Chk By:	Date:		

Railing Analysis:

$$W_h := \frac{F_H}{12}$$

$$W_V := \frac{FV}{12}$$

Guardrail "E" Analysis

SHT El A

Case 1 Uniform Load:

$$\Delta_{yr1} \coloneqq \frac{5 \cdot W_h \cdot L^4}{384 \cdot E_r \, I_{ytotr}}$$

$$\Delta_{yr1} = 0.466$$

Modeled as a simple span

$$\Delta_{xr1} \coloneqq \frac{5 {\cdot} W_{v} {\cdot} L^4}{384 {\cdot} E_r I_{xtotr}}$$

$$\Delta_{xr1} = 0$$

$$\Delta_{allr} := \frac{L}{96}$$

$$\Delta_{allr} = 0.75$$

Per ASTM Specification E985

$$\mathbf{M}_{yrmax} \coloneqq \frac{\mathbf{W}_h \cdot \mathbf{L}^2}{K_1}$$

$$M_{yrmax} = 2700$$

in

$$M_{xrmax} := \frac{W_{v} \cdot L^2}{K_1}$$

$$M_{xrmax} = 0$$

D-

$$f_{bry1} \coloneqq \frac{M_{yrmax}}{S_{yr}}$$

$$f_{bry1} = 8282$$

$$f_{brx1} \coloneqq \frac{M_{xrmax}}{S_{xr}}$$

$$f_{DIX1} = 0$$

Case 2 - Point Load:

$$\Delta_{yr2} \coloneqq \frac{P \cdot L^3}{K_3 \cdot E_r \cdot I_{vtotr}}$$

$$\Delta_{\text{Yr2}} = 0.361$$

$$M_{yrmax2} := \frac{P \cdot L}{K_2}$$

$$M_{yrmax2} = 2880$$

$$f_{bry2} := \frac{M_{yrmax2}}{S_{yr}}$$

$$f_{bry2} = 8834$$

$$F_{bry} := \begin{pmatrix} F_{bry1} \cdot 1.33 \end{pmatrix}$$
 if IBC = 1
 F_{bry1} otherwise

$$F_{bry} = 25000$$

psi

Calculation Results:___

$$Int_{\Gamma 1} := \left(\frac{f_{brx1}}{F_{bry}}\right) + \left(\frac{f_{bry1}}{F_{bry}}\right) \qquad \qquad Int_{\Gamma 1} = 0.33$$

$$Int_{\Gamma 1} = 0.33$$

$$Int_{r2} := \frac{f_{bry2}}{F_{bry}}$$

$$Int_{r2} = 0.35$$

$$\text{RAILS} := \left| \text{"OK"} \quad \text{if} \quad \frac{\max\left(\Delta_{yr1}, \Delta_{xr1}, \Delta_{yr2}\right)}{\Delta_{allr}} \leq 1 \\ \wedge \left(\frac{f_{brx1}}{F_{bry}}\right) + \left(\frac{f_{bry1}}{F_{bry}}\right) \leq 1 \\ \wedge \left(\frac{f_{bry2}}{F_{bry}}\right) \leq 1 \\ \wedge \left(\frac{f_{bry2}}{F_{bry2}}\right) \leq 1 \\ \wedge \left(\frac{f_{bry2}$$

RICE ENGINEERING

Template:

REI-MC-5707

105 School Creek Trail Luxemburg, WI 54217 Phone: (920)845-1042 Fax: (920)845-1048

www.rice-inc.com

R0001 - RMR Standard Calcs

Project Description:

Job No: R11-02-15H Engineer: **JDB** Sheet No: E1 A Date: 2/23/11 Rev: Chk By: Date:

Post Analysis:

 $E_p := E_r$

Guardrail 'E" Analysis

SHT E₁ B

$$\Delta_{xp1} \coloneqq \frac{W_h \cdot L \cdot \left(h - L_{st}\right)^3}{3 \cdot E_p \cdot \left(I_{xp}\right)}$$

$$\Delta_{xp1} = 0.664$$

$$\Delta_{xp2}\!:=\frac{P\!\cdot\!0.85\!\cdot\!\left(h-L_{st}\right)^3}{3\!\cdot\!E_{p}\!\cdot\!\left(I_{xp}\right)}$$

$$\Delta_{\rm xp2} = 0.376$$

Max Deflection:

$$\Delta_{tot} \coloneqq \frac{W_h \cdot L \cdot \left(h - L_{st}\right)^3}{3 \cdot E_p \cdot I_{xp}} + \frac{W_h \cdot L \left[h^3 - \left(h - L_{st}\right)^3\right]}{3 \cdot \left[\left(E_p \cdot I_{xp}\right) + \left(E_p \cdot I_{st}\right)\right]}$$

$$\Delta_{\text{tot}} \approx 2.077$$

in

$$\Delta_{\text{allp}} := \frac{h}{12}$$

D-

$$\Delta_{\text{allp}} = 3.88$$

Case 1 - Uniform Load:

$$M_{xp} := (W_h \cdot L \cdot h) + W_v \cdot L \cdot \Delta_{tot}$$

$$M_{xpmax} := 0.5 \cdot M_{xp} \cdot q1 + M_{xp} \cdot q2 + M_{xp} \cdot q3$$

$$M_{xpmax} = 13950$$

$$M_{xp2} := W_h \cdot L \cdot (h - L_{st}) + W_v \cdot L \cdot \Delta_{xp1}$$

$$M_{xpmax2} := 0.5 \cdot M_{xp2} \cdot q1 + M_{xp2} \cdot q2 + M_{xp2} \cdot q3$$

$$M_{XDmax2} = 8250$$

$$g = 8250$$
 lb·in

Case 2 - Point Load:

$M_{xpmax4} := P \cdot (h - L_{st}) \cdot 0.85$

$$M_{xpmax4} = 4675$$

$$M_{xpmax3} := (P \cdot h \cdot 0.85)$$

$$M_{xpmax3} = 7905$$

$$a_{1}a_{1}x_{3} = 7905$$
 lb·in

Max Post Stress:

$$f_{bpx} := \frac{max \left(M_{xpmax2}, M_{xpmax4}\right)}{S_{xp}}$$

$$f_{bpx} = 25307$$

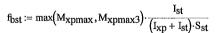
psi

psi

psi

$$F_{bpx} \coloneqq \begin{cases} \left(F_{bpx1} \cdot 1.33\right) & \text{if } IBC = 1 \\ F_{bpx1} & \text{otherwise} \end{cases}$$

$$F_{bpx} = 25000$$


Max Post/Stub Combined Stress:

$$f_{bpx2} \coloneqq \max \! \! \left(M_{xpmax}, M_{xpmax3} \right) \! \cdot \! \frac{I_{xp}}{\left(I_{xp} + I_{st} \right) \cdot S_{xp}}$$

$$f_{bpx2} = 23730$$

Max Stub Stress:

$$F_{bpx} = 25000$$

$$f_{bst} = 19980$$

Calculation Results:

$$F_{bst} = 25000$$

$$\text{Int}_{p1} := \text{max}\!\!\left(\!\frac{f_{bpx}}{F_{bpx}}, \frac{f_{bpx2}}{F_{bpx}}, \frac{f_{bst}}{F_{bst}}\!\right)$$

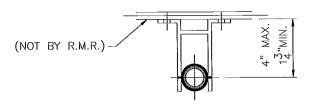
$$Int_{p1} = 1.01$$
 1% Over OK

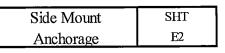
POSTS :=
$$\|\text{OK}\|$$
 if $\text{Int}_{\text{pl}} \le 1.014 \land \frac{\max(\Delta_{\text{xpl}}, \Delta_{\text{xp2}}, \Delta_{\text{tot}})}{\Delta_{\text{allp}}} \le 1$

RICE ENGINEERING

REI-MC-5707

Template:

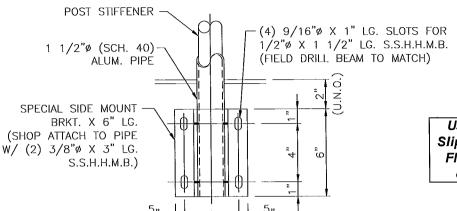

105 School Creek Trail Luxemburg, WI 54217 Phone: (920)845-1042 Fax: (920)845-1048


www.rice-inc.com

R0001 - RMR Standard Calcs

Project Description:

Job No: R11-02-15H Engineer: Sheet No: JDB E₁ B Date: 2/23/11 Rev: Chk By: Date:


 $R_{\text{max}} := 300$

lb

lb·in

L1 := 6

in

L2 := 5in

Use Halfen Slip Resistant Flange Nuts or Equal

Chk Post Attachment to Bracket:

SPECIAL

$$V := \frac{M_{\text{max}}}{4 \cdot (1)} + \frac{R_{\text{max}}}{(2)}$$

25KD-19D

SIDE

$$V_{all} := 0.110 \cdot 23000 \cdot (2)$$

$$V_{ali} = 5060$$
 lb

Use (2) - 3/8" Dia. S.S. Thru-Bolts @ 4" O.C. 300 Series S.S.

Chk Extruded Aluminum Bracket:

$$P := \frac{M_{max}}{I.1} + R_{max}$$

$$M_{pl} := \frac{P}{2} \cdot 0.8125$$

$$M_{pl} = 1127$$
 in lb

$$t_{req} := \sqrt{\frac{6 \cdot M_{pl}}{28000 \cdot L1}}$$

$$t_{req} = 0.2$$
 in

$$I := \frac{t_{\text{req}}}{0.25}$$

$$I = 0.8$$

Use Side Mount Bracket, As Shown 6105-T5 alloy

Chk Anchor Bolts:

$$V_b := \frac{R_{max}}{4}$$

$$V_b = 75$$

lb

lb

$$T_b := \frac{M_{\text{max}}}{1.2 \cdot 2} + \frac{R_{\text{max}}}{4}$$

$$T_b = 1560$$

$$V_{all} := 0.196 \cdot 23000$$

$$V_{all} = 4508$$
 lb

$$T_{\text{all}} := 0.142 \cdot 40000 \cdot \frac{0.1875}{0.456}$$

$$T_{all} = 2336$$
 lb

$$I := \left(\frac{V_b}{V_{all}}\right)^2 + \left(\frac{T_b}{T_{all}}\right)^2$$

$$I = 0.45 < 1.0$$

Use (4) - 1/2" Dia. S.S. Thru Bolts (or Drill & Tap - 3/16" Min. Thread Engagement)

Cond "CW", Fy= 65 ksi minimum Steel Stringers Designed By Others

RICE	
EN	GINEERING

Template: REI-MC-5741 105 School Creek Trail Luxemburg, WI 54217 Phone: (920)845-1042 Fax: (920)845-1048

www.rice-inc.com

Project Description:

MOUNT 4-HOLE

	Job No:	R11-02-15H		
	Engineer:	JDB	Sheet No:	E2
S	Date:	2/23/11	Rev:	_
	Chk By:		Date:	

 $R_{max} := 300$

L1 := 5

 $M_{\text{max}} := 13950 + R_{\text{max}} \cdot 3 = 14850$

lb·in

L2 := 4

Chk Extruded Aluminum Bracket:

$$P := \frac{M_{max}}{I.1} + R_{max}$$

$$M_{pl} := \frac{P \cdot 3}{4}$$

$$M_{pl} = 2453$$
 in·lb

$$t_{req} := \sqrt{\frac{6 \cdot M_{pl}}{28000 \cdot 0.85 \cdot L1}}$$

$$t_{req} = 0.35$$
 in

$$I := \frac{t_{\text{req}}}{0.375}$$

$$I = 0.94$$

Use Extruded Bracket as shown (6105-T5)

Chk Fasteners:

$$V := \frac{R_{max}}{2}$$

lb (upward)

V = 150 lb

Use (2) - 3/8" Dia. S.S. Set Screws **OK By Inspection**

SHT Side Mount Anchor E3

Chk Anchor Bolts (Structural Steel By Others):

$$V_b := \frac{R_{max}}{4}$$

$$V_b = 75$$

$$T_b \coloneqq \frac{M_{max}}{L2 \cdot 2} + \frac{R_{max}}{4}$$

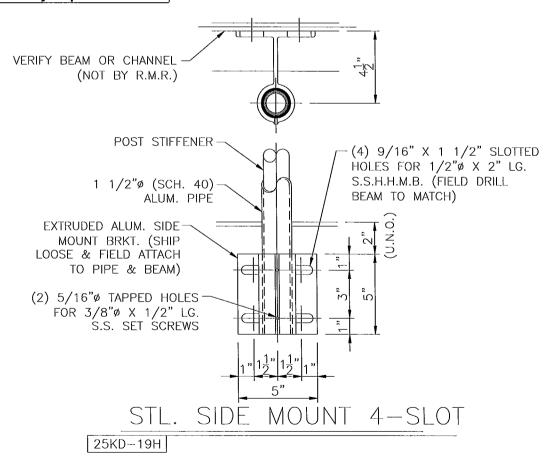
$$T_b = 1931$$

lb

$$V_{all} := 0.196 \cdot 23000$$

$$V_{all} = 4508$$

$$T_{all} = 2336$$


$$I := \left(\frac{V_b}{V_{all}}\right)^2 + \left(\frac{T_b}{T_{all}}\right)^2$$

 $T_{all} := 0.142 \cdot 40000 \cdot \frac{0.1875}{0.456}$

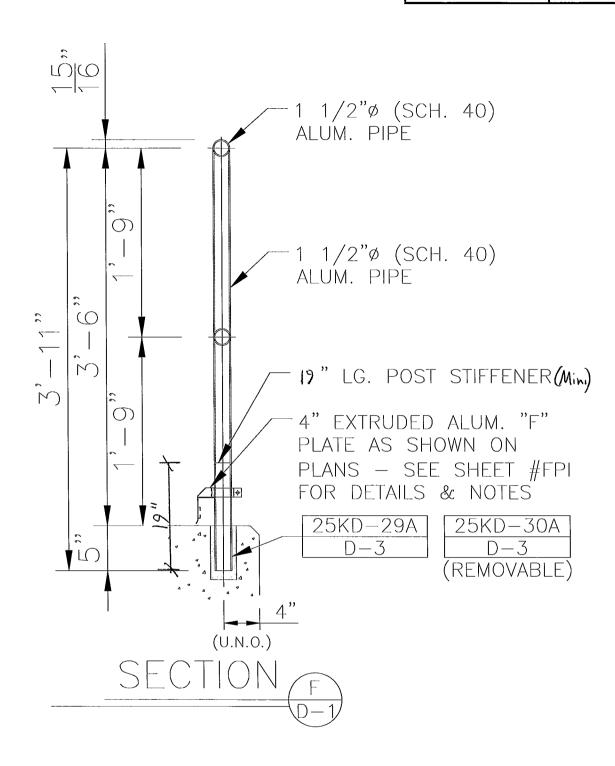
$$I = 0.68 < 1.0$$

Use (4) - 1/2-13 S.S. Bolts **Drill & Tap or Thru-Bolt**

Min. Thread Engagement = 3/16" (300 Series S.S., Cond. CW, Fy = 65 ksi)

RICE **ENGINEERING**

Template:


105 School Creek Trail Luxemburg, WI 54217 Phone: (920)845-1042 Fax: (920)845-1048

www.rice-inc.com

R0001 - RMR Standard Calcs Date:

Project Description:

Job No: R11-02-15H Engineer: JDB Sheet No: E3 2/23/11 Rev: Chk By: Date:

<u>Note:</u> Structural steel, Concrete, CMU and all other anchorage substrates designed by others

ROCKY MOUNTAIN RAILINGS

<u>RICE</u>	
ENG	INEERING
Template:	REI-MC-5707

105 School Creek Trail Luxemburg, WI 54217 Phone: (920)845-1042 Fax: (920)845-1048

www.rice-inc.com

R0001 - RMR Standar

Project Description:

	Job No: R		R11-02-15H	
	Engineer:	JDB	Sheet No:	F
rd Calcs	Date:	2/23/11	Rev:	
	Chk By:		Date:	

Pipe Railing & Post

These calculations are based on emperical test data performed by Julius Blum & Co., Inc.

SHT Guardrail "F" Analysis F1

Input Variables:

 $F_H := 50$

Load Case 1 (Uniform Load) plf

 $\mathbf{F}\mathbf{v} := \mathbf{0}$

plf

Simultaneous Vertical Uniform Load

P := 200

lb

Load Case 2 (Point Load)

 $L_{bp} := 21$

Unbraced Length of Post

h := 42

in

Railing Height

L := 72

6'-0" MAX POST SPACING

Number of Railing Spans:

1 span

17

2 span

V

3 or more spans

Railing Section:

Post Section:

. 1 1/4" Schd. 40

1 1/4" Schd. 40

1 1/4" Schd. 80

1 1/4" Schd. 80

1 1/2" Schd. 40

1 1/2" Schd. 40

1 1/2" Schd. 80

1 1/2" Schd. 80 1 1/2" tube

1 1/2" tube

2" Schd. 40

2" Schd. 40

2" Schd. 80

2" Schd. 80

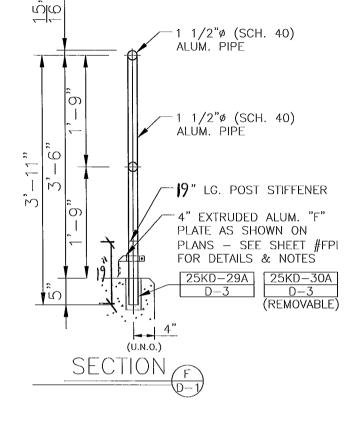
Railing Temper:

Post Temper:

6063-T5

6063-T6

6063-T6


6005-T5

6061-T6 or 6105-T5

6061-T6 or 6105-T5

4/3 increase allowed

Post Welded to Base Plate

Railing Properties

kr=	 0.31
lyr=	0.31
Sxr=	0.326
Syr=	 0.326
R=	 0.95
t=	0.145

Post Properties

kr=	0.31
lyr=	0.31
Sxr=	0.326
Syr=	0.326
R=	0.95
t=	0.145

kr=	0.31
lyr=	0.31
Sxr=	0.326
Syr=	0.326
R=	0.95
t=	0.145

Computational Factors

$S_{R1} := \frac{R_r}{t_r}$	$S_{R1} = 6.55$
-----------------------------	-----------------

$$K_1 := (8 \cdot q1) + (8 \cdot q2) + (9.5 \cdot q3)$$

$$K_2 := (4 \cdot q1) + (5 \cdot q2) + (5 \cdot q3)$$
 $K_2 = 5$

 $K_1 = 8$

$$S_{R3} := \frac{R_p}{t_m}$$
 $S_{R3} = 6.55$

$$K_3 := (48 \cdot q1) + (66 \cdot q2) + (87 \cdot q3)$$
 $K_3 = 66$

All calculations below

this line are automatic

$$E_{\Gamma} := 10100000$$
 psi

$$I_{xtotr} := I_{xr}$$

$$I_{\text{xtotr}} = 0.31$$

$$I_{xtotp} := I_{xp}$$

$$I_{\text{xtotp}} = 0.31$$

19" Min. Length AL. Ribbed Tube Stub

$$I_{ytotr} := I_{yr}$$

$$I_{ytotp} := I_{yp}$$

$$I_{ytotp} = 0.31$$

Project Description:

$$I_{st} := 0.174$$

$$L_{st} := 14$$
 in

 $I_{ytotr} := I_{yr}$

 $I_{\text{vtotr}} = 0.31$

 $I_{ytotp} := I_{yp}$

in³ $S_{st} := 0.224$

Fbst := 25000 psi

<u>RICE</u> **ENGINEERING**

Template:

REI-MC-5707

105 School Creek Trail Luxemburg, WI 54217 Phone: (920)845-1042 Fax: (920)845-1048

www.rice-inc.com

Job No:	R11-02-15H		
Engineer:	JDB	Sheet No:	F1
Date:	2/23/11	Rev:	
Chk By:		Date:	

Railing Analysis:

$$W_h := \frac{F_F}{100}$$

$$W_h := \frac{F_H}{12} \qquad W_V := \frac{F_V}{12}$$

Guardrail "F" Analysis

SHT F₁ A

Case 1 Uniform Load:

$$\Delta_{yr1} := \frac{5 \cdot W_h \cdot L^4}{384 \cdot E_r \, I_{vtotr}}$$

$$\Delta_{yr1} = 0.466$$

Modeled as a simple span

$$\Delta_{xr1} \coloneqq \frac{5 \cdot W_V \cdot L^4}{384 \cdot E_r I_{xtotr}}$$

$$\Delta_{xr1} = 0$$

in

$$\Delta_{allr} := \frac{L}{96}$$

$$\Delta_{allr} = 0.75$$

Per ASTM Specification E985

$$\mathbf{M}_{yrmax} \coloneqq \frac{\mathbf{W}_{h} \cdot \mathbf{L}^2}{K_1}$$

$$M_{yrmax} = 2700$$

lb-in

$$M_{xrmax} := \frac{W_{v} \cdot L^2}{K_1}$$

$$M_{xrmax} = 0$$

lb-in

D

$$f_{bry1} := \frac{M_{yrmax}}{S_{yr}}$$

$$f_{bry1} = 8282$$

$$f_{brx1} \coloneqq \frac{M_{xrmax}}{S_{xr}}$$

$$f_{brx1} = 0$$

Case 2 - Point Load:

$$\Delta_{yr2} \coloneqq \frac{P \cdot L^3}{K_3 \cdot E_r \cdot I_{ytotr}}$$

$$\Delta_{yr2} = 0.361$$

$$M_{yrmax2} := \frac{P \cdot L}{K_2}$$

$$M_{yrmax2} = 2880$$

$$f_{bry2} := \frac{M_{yrmax2}}{S_{yr}}$$

$$f_{bry2} = 8834$$

$$F_{bry} := \begin{cases} \left(F_{bry1} \cdot 1.33\right) & \text{if } IBC = 1 \\ F_{bry1} & \text{otherwise} \end{cases}$$

$$F_{bry} = 25000$$

psi

Calculation Results:___

$$Int_{r1} := \left(\frac{f_{brx1}}{F_{bry}}\right) + \left(\frac{f_{bry1}}{F_{bry}}\right)$$

$$Int_{r1} = 0.33$$

$$Int_{f2} := \frac{f_{bry2}}{F_{bry}}$$

$$Int_{r2} = 0.35$$

$$\text{RAILS} := \left| \begin{array}{ll} \text{"OK"} & \text{if} & \frac{\max\left(\Delta_{yr1}, \Delta_{xr1}, \Delta_{yr2}\right)}{\Delta_{allr}} \leq 1 \land \left(\frac{f_{brx1}}{F_{bry}}\right) + \left(\frac{f_{bry1}}{F_{bry}}\right) \leq 1 \land \frac{f_{bry2}}{F_{bry}} \leq 1 \\ \text{"FAIL"} & \text{otherwise} \end{array} \right|$$

RAILS = "OK"

RICE ENGINEERING

REI-MC-5707

Template:

105 School Creek Trail Luxemburg, WI 54217 Phone: (920)845-1042 Fax: (920)845-1048 www.rice-inc.com

Project Description:

	Job No:		R11-02-15H	
	Engineer:	JDB	Sheet No:	F1 A
S	Date:	2/23/11	Rev:	_
	Chk By:		Date:	_

Post Analysis:

 $E_D := E_\Gamma$

Cyandrail IIIII Amakraia	l
Guardrail "F" Analysis	ı

SHT F1 B

$$\Delta_{xp1} \coloneqq \frac{W_h \cdot L \cdot \left(h - L_{st}\right)^3}{3 \cdot E_p \cdot \left(I_{xp}\right)}$$

$$\Delta_{xp1} = 0.701$$

$$\Delta_{xp2}\!:=\frac{\text{P·0.85·}\left(\text{h}-\text{L}_{st}\right)^{3}}{3\cdot\text{E}_{\text{p·}}\!\left(\text{I}_{xp}\right)}$$

$$\Delta_{xp2} = 0.397$$

Max Deflection:

$$\Delta_{tot} \coloneqq \frac{W_h \cdot L \cdot \left(h - L_{st}\right)^3}{3 \cdot E_p \cdot I_{xp}} + \frac{W_h \cdot L \cdot \left[h^3 - \left(h - L_{st}\right)^3\right]}{3 \cdot \left[\left(E_p \cdot I_{xp}\right) + \left(E_p \cdot I_{st}\right)\right]}$$

$$\Delta_{\text{tot}} = 1.768$$

in

in

$$\Delta_{\text{allp}} := \frac{h}{12}$$

D-

$$\Delta_{\text{allp}} = 3.5$$

Per ASTM E985

Case 1 - Uniform Load:

$$M_{xp} := (W_h \cdot L \cdot h) + W_v \cdot L \cdot \Delta_{tot}$$

$$M_{xpmax} := 0.5 \cdot M_{xp} \cdot q1 + M_{xp} \cdot q2 + M_{xp} \cdot q3$$

$$M_{xpmax} = 12600$$

lb-in

$$M_{xp2} := W_h \cdot L \cdot \left(h - L_{st}\right) + W_v \cdot L \cdot \Delta_{xp1}$$

$$M_{xpmax2} := 0.5 \cdot M_{xp2} \cdot q1 + M_{xp2} \cdot q2 + M_{xp2} \cdot q3$$

$$M_{xpmax2} = 8400$$

lb∙in

Case 2 - Point Load:

$M_{XDMax4} := P \cdot (h - L_{st}) \cdot 0.85$

$$M_{xpmax4} = 4760$$

lb∙in

$$M_{xpmax3} := (P \cdot h \cdot 0.85)$$

$$M_{xpmax3} = 7140$$
 lb

lb·in

Max Post Stress:

$$f_{bpx} := \frac{max(M_{xpmax2}, M_{xpmax4})}{S_{xp}}$$

$$f_{bpx} = 25767$$

psi

psi

$$F_{bpx} := \begin{pmatrix} (F_{bpx1} \cdot 1.33) & \text{if } IBC = 1 \\ F_{bpx1} & \text{otherwise} \end{pmatrix}$$

$$F_{bpx} = 25000$$

psi

Max Post/Stub Combined Stress:

$$f_{bpx2} := max \left(M_{xpmax}, M_{xpmax3} \right) \cdot \frac{I_{xp}}{\left(I_{xp} + I_{st} \right) \cdot S_{xp}}$$

$$f_{bpx2} = 24755$$
 psi

Max Stub Stress:

$$f_{bst} := max \Big(M_{xpmax}, M_{xpmax3} \Big) \cdot \frac{I_{st}}{\Big(I_{xp} + I_{st} \Big) \cdot S_{st}}$$

$$F_{\text{bpx}} = 25000$$

$$f_{bst} = 20222$$
 psi

$$F_{bst} = 25000$$

Calculation Results:

$$Int_{p1} := max \left(\frac{f_{bpx}}{F_{bpx}}, \frac{f_{bpx2}}{F_{bpx}}, \frac{f_{bst}}{F_{bst}} \right)$$

$$Int_{p1} = 1.03$$
 3% Over OK

POSTS :=
$$\|\text{OK}\| \text{ if } \text{Int}_{p1} \le 1.034 \land \frac{\max(\Delta_{xp1}, \Delta_{xp2}, \Delta_{tot})}{\Delta_{allp}} \le 1$$

ENGINEERING

Template:

REI-MC-5707

105 School Creek Trail Luxemburg, WI 54217 Phone: (920)845-1042 Fax: (920)845-1048

www.rice-inc.com

R0001 - RMR Standard Calcs Date:

Project Description:

Job No: R11-02-15H Engineer: Sheet No: **JDB** F₁ B Rev: 2/23/11 Chk By: Date:

Chk conc. arout: $R_{\text{max}} := 300$

 $\phi := 0.65$

 $f_{c1} := 6000$ Grout Strength psi

M := 12600

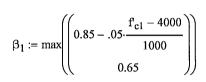
 $f_{c2} := 4000$

psi Conc. Strength

lb-in

LF := 1.6(Load Factor)

L := 5in


 $D_1 := 1.9$

(Post Width) in

 $D_2 := 3$

(Grout Pocket Width)

Assume Whitney stress block for bearing distribution:

$$\beta_1 = 0.75$$

 $\beta_1 = 0.75$ $a_1 := \beta_1 \cdot c$ $a_1 = 1.88$

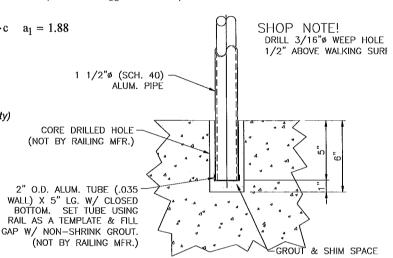
 $A_1 := a_1 \cdot D_1$

 $A_1 = 3.56$

in (Bearing Area)

 $E_1 := L - a_1$

 $E_1 = 3.13$


in (Load Eccentricity)

 $P_1 := \frac{M}{E_1} + \frac{R_{\text{max}}}{2}$ $P_1 = 4182$

(Bearing Load)

 $\varphi F_{p1} := \varphi \cdot 0.85 \cdot A_1 \cdot f_{c1} \qquad \varphi F_{p1} = 11810 \quad \text{lb (Allowable Bearing Load)}$

 $I_1 := \frac{LF \cdot P_1}{\Phi F_{P_1}}$ $I_1 = 0.57$

REMOVABLE SLEEVE

Post Embedment in

Grout

SHT

F2

3/16"ø WEEP HOLI

Chk concrete (for reference only):

$$\beta_2 := \max \left(\begin{pmatrix} 0.85 - .05 \cdot \frac{f_{c2} - 4000}{1000} \\ 0.65 \end{pmatrix} \right) \qquad \beta_2 = 0.85 \qquad a_2 := \beta_2 \cdot c \\ a_2 = 2.13$$

$$A_2 := a_2 \cdot D_2$$
 $A_2 = 6.38$

$$A_2 = 6.38$$

(Bearing Area)

$$E_2 := L - a_2$$

$$E_2 = 2.88$$

(Load Eccentricity) in

$$P_2 := \frac{M}{E_2} + \frac{R_{\text{max}}}{2}$$
 $P_2 = 4533$

$$P_2 = 4533$$

lb (Bearing Load)

$$\phi \mathbf{F}_{p2} := \phi \cdot 0.85 \cdot \mathbf{A}_2 \cdot \mathbf{f}_{c2}$$

$$\Phi F_{n2} = 14089 \text{ } 1$$

$$_2:=\varphi\cdot 0.85\cdot A_2\cdot f_{c2}$$
 $\qquad \varphi F_{p2}=14089 \quad \text{lb} \qquad \textit{(Allowable Bearing Load)}$

25KD-30A

METAL SLEEVE OR CORE DRILLED HOLE

FILL GAP W/ NON-SHRINK GROUT (NOT

BY RAILING MFG.)

GROUT & SHIM SPACE

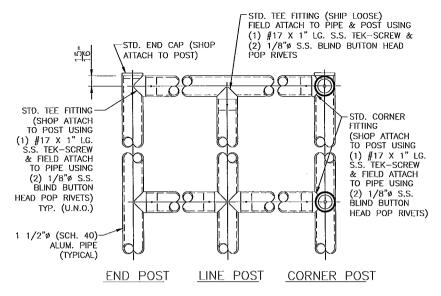
1 1/2"ø (SCH. 40)

ALUM. PIPÉ

$$I_2 := \frac{LF \cdot P_2}{\varphi F_{p2}}$$

$$I_2 = 0.51$$

Use 6,000 psi, non-shrink Grout Design of Bearing on Concrete by others -Design of Concrete Breakout and point loads By others

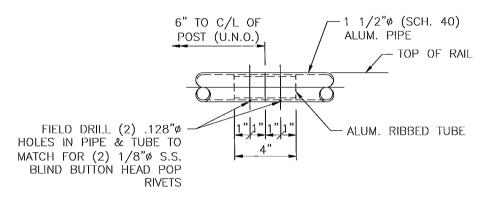

Project Description:

	FIXED	SLEEVE
25KD	-29A	

RICE ENGINEERING

Template: REI-MC-5740 105 School Creek Trail Luxemburg, WI 54217 Phone: (920)845-1042 Fax: (920)845-1048 www.rice-inc.com

	<u> </u>			
Job No: R11-02-15H				
	Engineer:	ЉВ	Sheet No:	F2
S	Date:	2/23/11	Rev:	
	Chk By:		Date:	



Miscellaneous SHT
Connections M1

 $R_{\text{max}} := 300$ lb

 $M_{\text{max}} := 1680$ lb·in

TYPICAL LEVEL RAIL CONNECTIONS

Chk 1/4-20 Screws @ Tee/Rail:

$$V := \frac{R_{max}}{2}$$

$$V = 150$$
 lb

$$V_{all} := 520 \cdot 0.33$$

$$V_{all} = 172$$
 lb

Chk Splice Piece:

$$S_x := 0.104 in^3$$

$$f_b := \frac{M_{max}}{S_x}$$

$$f_b = 16154$$
 psi

$$F_b := 21000$$
 psi

<u>Use (2) - 1/8 S.S. Blind Button Head Rivets</u> <u>(Pop Rivets)</u> (Safety Factor = 3)

<u>Use Ribbed Tube Aluminum Splice Piece</u> 6105-T5 Alloy

Chk #17 S.S. TEK Screw @ Tee/Post:

$$V_2 := R_{max}$$

$$V_2 = 300$$
 lb

$$V_{all2} := 2184 \cdot 0.33$$

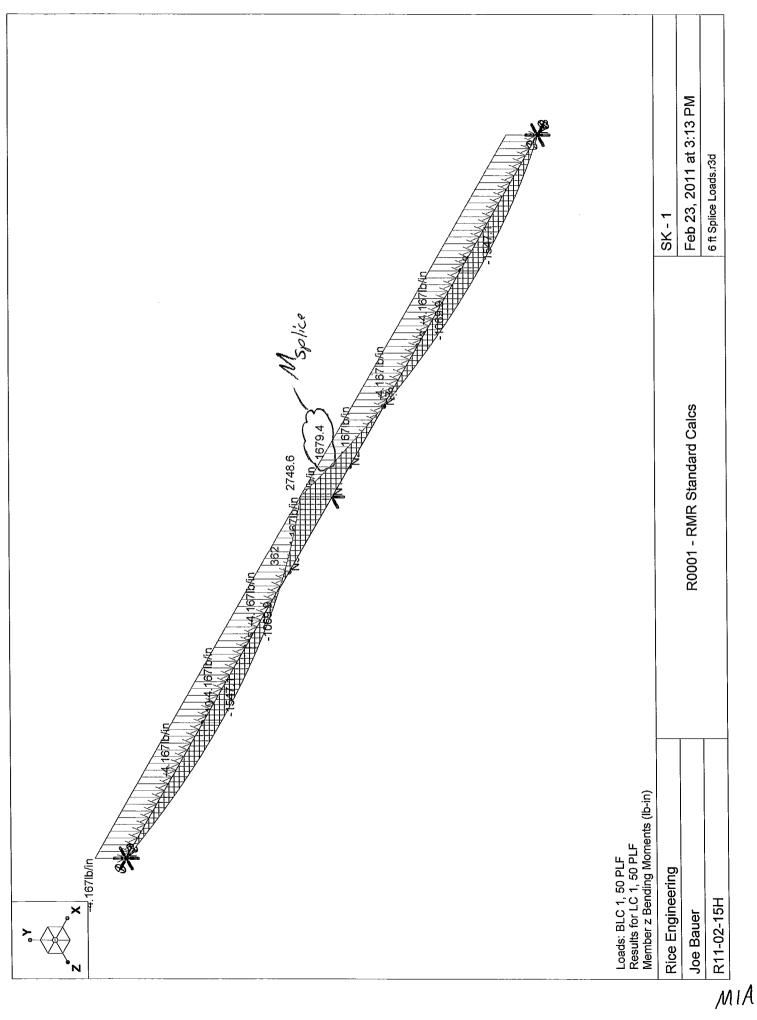
$$V_{all2} = 721$$
 lb

Use (1) #17 S.S. TEK Screw per "Tee" 300 Series S.S.

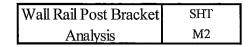
<u>RICE</u>
ENGINEERING

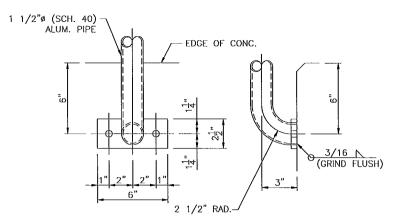
REI-MC-5741

Template:


105 School Creek Trail Luxemburg, WI 54217 Phone: (920)845-1042 Fax: (920)845-1048

www.rice-inc.com


R0001 - RMR Standard Calc


Project Description:

Job No:			R11-02-15H	
	Engineer:	JDB	Sheet No:	M1
s	Date:	2/23/11	Rev:	
	Chk By:		Date:	

ASSUME GROUT FILLED CMU **DESIGNED BY OTHERS**

(Reaction From RISA Model)

$$R_{\text{max}} := 113$$
 lb

CUSTOMER NOTE! FILL VOID CAVITY IN CMU WITH GROUT @ ALL RAIL MOUNTING LOCATIONS.

WALL RAIL LINE POST

25KD-35A

Chk weld to base plate:

in (thickness of weld) $t_{\mathbf{W}} := 0.1875$

in (stub depth) d := 1.9

$$A_{\mathbf{W}} := t_{\mathbf{W}} \cdot (\pi \cdot 0.5 \cdot \mathbf{d})$$

$$A_{W} = 0.56$$
 in²

$$T := \frac{M_{max}}{d}$$

$$T = 1204$$

$$f_W := \frac{T}{A_W}$$

$$f_W = 2151$$

psi

Chk Aluminum Base Plate:

$$L1 := 6$$

L2 := 2.5

$$D2 := 2.5$$

t := 0.5

$L := L1 - (2 \cdot D1)$

$$L = 4$$

M_{max}

$$P = 1204$$

$$M_{p1} := 0.5 \cdot P \cdot 1$$

$$M_{p1} = 602$$
 in-lb

lb

$$M_{pl2} := 0.5 \cdot P \cdot (1.05)$$

$$M_{\text{pl2}} = 632$$
 in·lb

$$t_{req1} := \sqrt{\frac{M_{p1} \cdot 6}{(12000) \cdot L^2}}$$

$$t_{req1} = 0.347$$
 in

$$t_{req2} := \sqrt{\frac{M_{pl2} \cdot 6}{(28000) \cdot L^2}}$$

$$t_{req2} = 0.233$$
 in

$$I_2 := \frac{\max(t_{req1}, t_{req2})}{t}$$

$$I_2 = 0.69$$

Chk Bolts to Grout Filled CMU:

Use 3/16" weld all around as noted

5356 filler alloy

$$V_b := \frac{R_{max}}{2}$$

$$V_{b} = 57$$

lb

$$T_b := \frac{M_{max}}{2 \cdot (0.5 \cdot D2)}$$

$$T_b = 915$$

$$T_{all} := min(1100, 1975 \cdot 0.5)$$

$$T_{all} = 988$$

$$V_{all} := \min(1419, 2756.0.5)$$

$$V_{all} = 1378$$

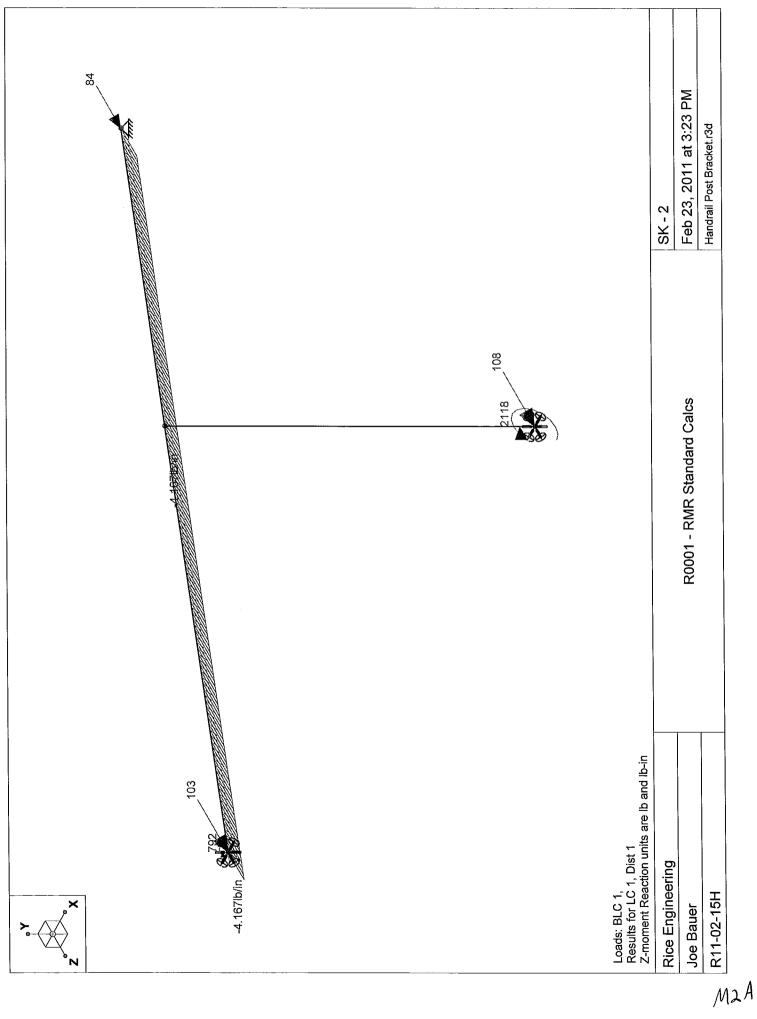
$$I_b := \left(\frac{T_b}{T_{all}}\right)^{1.67} + \left(\frac{V_b}{V_{all}}\right)^{1.67}$$

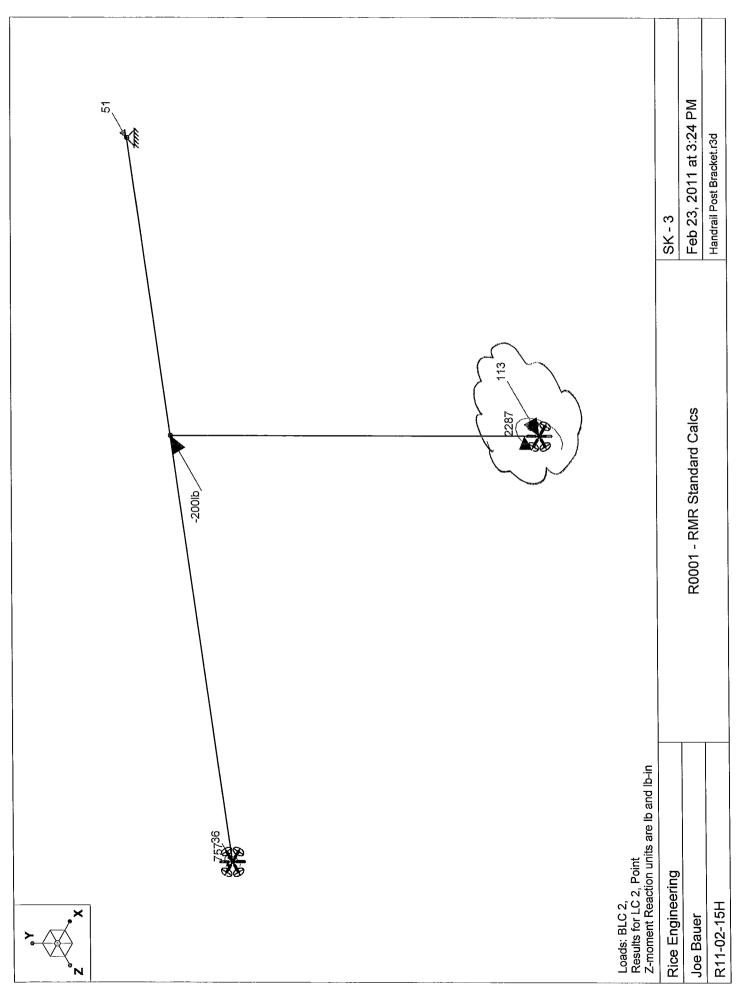
$$I_b = 0.88$$

Use 1/2" x 6" x 2-1/2" AL Plate 6061-T6 alloy

Use (2) - 3/8" Dia. S.S. Threaded Rods W/ Hilti HIT-HY 150 MAX Adhesive

Edge Distance: 4" End Distance: 4" Embedment: 3-3/8"


Template:


105 School Creek Trail Luxemburg, WI 54217 Phone: (920)845-1042 Fax: (920)845-1048

www.rice-inc.com

Project Description:

	Job No:		R11-02-15H	
	Engineer:	JDВ	Sheet No:	M2
S	Date:	2/23/11	Rev:	
	Chk By:		Date:	

Pipe Handrail

These calculations are based on emperical test data performed by Julius Blum & Co., Inc.

Wall or Grab Rail	SHT
Analysis	М3

Input Variables:

F _H := 50	<u>lb</u>	Loa
-11.	Ω	

 $\frac{\text{lb}}{\Phi}$ Load Case 1 (Uniform Load)

 $F_V := 0$ $\frac{lb}{ft}$

Simultaneous Vertical Uniform Load

P := 200

lb

Load Case 2 (Point Load)

L:= 60

in

MAX BRACKET SPACING (cl to cl)

Number of Railing Spans:

1 span

 ∇

2 span

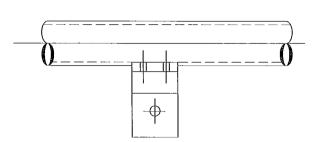
V

3 or more spans

Railing Section:

1 1/4" Schd. 40

1 1/4" Schd. 80


1 1/2" Schd. 40

1 1/2" Schd. 80

1 1/2" tube

2" Schd. 40

2" Schd. 80

Railing Temper:

6105-T5 or 6061-T6

6063-T5

4/3 increase allowed

All calculations below this line are automatic

 $K_1 = 8$

 $K_2 = 5$

 $K_3 = 66$

Computational Factors $K_1 := (8 \cdot q1) + (8 \cdot q2) + (9.5 \cdot q3)$

 $K_2 := (4 \cdot q1) + (5 \cdot q2) + (5 \cdot q3)$

 $K_3 := (48 \cdot q1) + (66 \cdot q2) + (87 \cdot q3)$

Railing Properties

kr=	:	0.31
lyr=		0.31
Sxr=		0.326
Syr=	ľ	0.326
R=		0.95
t=		0.145

 $E_r := 10100000$ psi

 $I_{xtotr} := I_{xr}$

 $I_{\text{xtotr}} = 0.31$

in⁴

 $I_{ytotr} := I_{yr}$

 $I_{ytotr} = 0.31$

Sp1 := -

 $S_{R1} = 6.55$

<u>RICE</u> ENGINEERING

Template: REI-MC-5702

105 School Creek Trail Luxemburg, WI 54217 Phone: (920)845-1042

Fax: (920)845-1048 R000 www.rice-inc.com

Project Description:

Job No:		R11-02-15H	
Engineer:	JDB	Sheet No:	М3
Date:	2/23/11	Rev:	
Chk By:		Date:	

Railing Analysis:

$$W_h := \frac{F_H}{12}$$

$$W_{\mathbf{V}} := \frac{F_{\mathbf{V}}}{12}$$

Wall or Grab Rail	SHT
Analysis	М3 А

Case 1 Uniform Load:

$$\Delta_{yr1} \coloneqq \frac{5 \cdot W_h \cdot L^4}{384 \cdot E_r I_{vtotr}}$$

$$\Delta_{vr1} = 0.225$$

Modeled as a simple span

$$\Delta_{xr1} \coloneqq \frac{5 \cdot W_v \cdot L^4}{384 \cdot E_r I_{xtotr}}$$

$$\Delta_{xr1} = 0$$

$$\Delta_{allr} := \frac{L}{96}$$

$$\Delta_{allr} = 0.63$$

$$M_{yrmax} := \frac{w_h \cdot L^2}{\kappa_1}$$

$$M_{yrmax} = 1875$$

$$\mathbf{M}_{xrmax} \coloneqq \frac{\mathbf{W}_v \cdot \mathbf{L}^2}{\mathbf{K}_1}$$

$$M_{xrmax} = 0$$

|

$$f_{bry1} := \frac{M_{yrmax}}{S_{yr}}$$

$$f_{bry1} = 5752$$

$$f_{brx1} \coloneqq \frac{M_{xrmax}}{S_{xr}}$$

$$f_{brx1} = 0$$

Case 1 Point Load:

$$\Delta_{yr2} \coloneqq \frac{P \cdot L^3}{K_3 \cdot E_r \cdot I_{ytotr}}$$

$$\Delta_{VI2} = 0.209$$

$$M_{yrmax2} := \frac{P \cdot L}{K_2}$$

$$M_{vrmax2} = 2400$$

$$f_{bry2} := \frac{M_{yrmax2}}{S_{yr}}$$

$$f_{bry2} = 7362$$

lb∙in

$$F_{bry} := \begin{pmatrix} (F_{bry1} \cdot 1.34) & \text{if } IBC = 1 \\ F_{bry1} & \text{otherwise} \end{pmatrix}$$

$$F_{bry} = 25000$$

psi

Calculation Results:___

$$Int_{r1} := \left(\frac{f_{brx1}}{F_{bry}}\right) + \left(\frac{f_{bry1}}{F_{bry}}\right)$$

$$Int_{\Gamma 1}=0.2$$

$$Int_{r2} := \frac{f_{bry2}}{F_{bry}} \hspace{1cm} Int_{r2} = 0.29 \label{eq:int_r2}$$

$$Int_{r2} = 0.29$$

$$\begin{aligned} \text{RAILS} := & \left| \text{"OK"} \quad \text{if} \quad \frac{\max\left(\Delta_{yr1}, \Delta_{xr1}, \Delta_{yr2}\right)}{\Delta_{allr}} \leq 1 \, \wedge \left(\frac{f_{brx1}}{F_{bry}}\right) + \left(\frac{f_{bry1}}{F_{bry}}\right) \leq 1 \, \wedge \, \frac{f_{bry2}}{F_{bry}} \leq 1 \end{aligned} \right. \end{aligned}$$

RICE ENGINEERING

REI-MC-5702

Template:

105 School Creek Trail Luxemburg, WI 54217 Phone: (920)845-1042 Fax: (920)845-1048 www.rice-inc.com

R0001	- RMR	Standard	Calc

Project Description:

	Job No:		R11-02-15H	
	Engineer:	JDB	Sheet No:	M3 A
alcs	Date:	2/23/11	Rev:	
	Chk By:		Date:	

Inputs:

$L_S := 60$	in	(bracket span)	A := 3.0	in
$w_h := 0$	plf	(horiz uniform load)	B := 2.125	in
$w_{V} := 50$	plf	(vert uniform load)	C := 2.5	in
P := 200	lb	(conc. load)	D := 1.0	in
$F_b := 28000$	psi	(Allowable Stress)	H:= 4.25	in
			L:= 2	in
4/3 Stress Increase Allowed			t:= 0.25	in

0 BRACKET DETAIL

Grab Rail Bracket

Analysis

SHT M4

5' 0" Max Bracket Spacing

Horizontal Uniform Loading:

$$R_1 \coloneqq \frac{w_h \cdot L_S}{12}$$

$$R_1 = 0$$
 lbs

$$\mathbf{M}_1 \coloneqq \mathbf{B} {\cdot} \mathbf{R}_1$$

$$M_1 = 0$$

Vertical Uniform Loading:

$$R_2 := \frac{w_v {\cdot} L_s}{12}$$

$$R_2 = 250$$

$$M_2 := C \cdot R_2$$

$$M_2 = 625$$

$$M_{b1} := M_1 + M_2$$

$$M_{b1} = 625$$

Concentrated Loading:

$$M_{b2} := P \cdot B$$

$$M_{b2} = 425$$

$$M_b := \max(M_{b1}, M_{b2})$$

$$M_b = 625$$

$$F_{b1} := \begin{pmatrix} F_b \cdot 1.34 \end{pmatrix}$$
 if IBC = 1

$$t_{req} := \sqrt{\frac{6M_b}{F_{b1} \cdot L}}$$

$$t_{req} = 0.26$$

Interaction:

$$I := \frac{t_{req}}{t}$$

Template:

Use Aluminum Rail Bracket, 6105-T5 or 6061-T6 Alloy, 2" Long

Anchorage to Post (Horizontal Load Case):

$$M_3 := H \cdot P$$

$$M_3 = 850$$

$$T_p := \frac{M_3}{0.85D} + P$$

$$T_p = 1200$$

lbs

lbs

$$V := \max(R_2, 200)$$

$$T_{all} := 3100 \cdot \frac{0.145}{0.341}$$

$$T_{all} = 1318$$
 lbs

$$I_b := \left(\frac{T_p}{T_{all}}\right)^2 + \left(\frac{V}{V_{all}}\right)^2$$

$$I_b = 0.85$$

Use (1) - 3/8" Dia. S.S. Thru Bolts Cond "CW", Fy= 65 ksi

Bracket to Grab Rail Screws:

Use (2) #1/4-20 S.S. Fasteners "OK" per inspection

<i>RICE</i>	
ENGINEERING	ï

Luxemburg, WI 54217 Phone: (920)845-1042 Fax: (920)845-1048 www.rice-inc.com

105 School Creek Trail

Project Description:

Job No:		R11-02-15H	
Engineer:	JDB	Sheet No:	M4
Date:	2/23/11	Rev:	
Chk By:		Date:	

Inputs:

$L_{S} := 60$	in	(bracket span)	A := 2.5	in
$w_h := 0$	plf	(horiz uniform load)	B := 2.125	in
$w_{V} := 50$	plf	(vert uniform load)	C := 2.5	in
P := 200	lb	(conc. load)	D:= 1.0	in
$F_b := 28000$	psi	(Allowable Stress)	H:= 4.313	in

4/3 Stress Increase Allowed

٠. تــا	- L	111
t :=	0.25	in

Horizontal Uniform Loading:

$$R_1 := \frac{w_h \cdot L_s}{12}$$

$$R_1 = 0$$
 lbs

 $M_1 := B \cdot R_1$

$$M_1 = 0$$

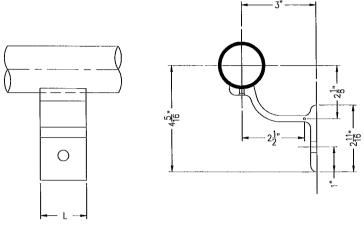
in-lb

Vertical Uniform Loading:

$$R_2 := \frac{w_v {\cdot} L_s}{12}$$

$$R_2 = 250$$

in-lb


$$M_2 := C \cdot R_2$$

$$M_2 = 625$$

Wall Rail Bracket Analysis

SHT M5

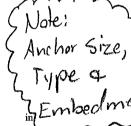
ASSUME GROUT FILLED CMU **DESIGNED BY OTHERS**

BRACKET DETAIL

5' 0" Max Bracket Spacing

Wall Anchorage (Horizontal Load Case):

Concentrated Loading:


$M_3 := P \cdot max(B, C)$

$$M_3 = 500$$

in-lb

$M_b := \max(M_1, M_2, M_3)$

$$M_b = 625$$

 $M_4 := \max(P \cdot H, R_1 \cdot H, R_2 \cdot A)$

 $M_4 = 863$

$$V := \max(R_2, 200)$$


 $T_p := \frac{M_4}{D_{10.0.85}} + P$

$$T_{all} := 1319$$
 lbs

in-lb

lbs

lbs

$$t_{req} := \sqrt{\frac{6 \cdot M_b}{F_{b1} \cdot L}}$$

Use (1) - 1/2" Dia. S.S. Threaded Rod W/ Hilti HIT-HY 150 MAX Adhesive

Edge Distance: 4" End Distance: 4" Embedment: 4-1/2"

Interaction:

$$I := \frac{t_{req}}{t}$$

Use Aluminum Wall Bracket, 6105-T5 or 6061-T6 Alloy, 2" Long

Bracket to Grab Rail Screws:

Use (2) #1/4-20 S.S. Fasteners "OK" per inspection

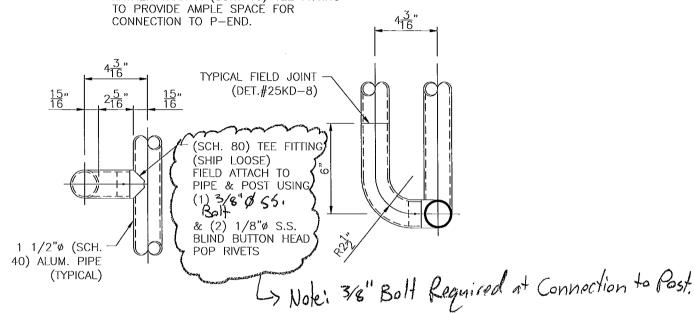
RICE **ENGINEERING**

Temp	late:
------	-------

105 School Creek Trail Luxemburg, WI 54217 Phone: (920)845-1042 Fax: (920)845-1048

www.rice-inc.com

Project Description:


	Job No:		R11-02-15H		
	Engineer:	JDB	Sheet No:	M5	
S	Date:	2/23/11	Rev:		
	Chk By:		Date:		

Offset Rail	SHT
Connections	M6

 $R_{\text{max}} := 200$ lb

ARCH/ENG NOTE:
HANG-OFF RAIL CORNER NEEDS TO BE
ATTACHED WITH A (SCH. 80) TEE FITTING
RATHER THAN A (SCH. 40) TEE FITTING

 $M_{max} := R_{max} \cdot 3.25 = 650$ lb·in

SPECIAL OFFSET RAIL CONNECTION

25KD-35E

Chk Thru-Bolts @ Tee:

$$T := \frac{M_{max}}{1.9 \cdot 0.5}$$

$$T = 684$$
 lb

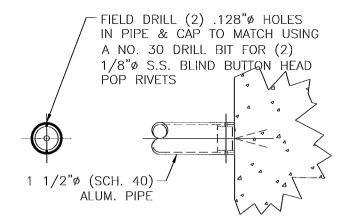
$$T_{all} := 3100 \cdot \frac{0.145}{0.553}$$

$$T_{all} = 813$$
 lb

Use (1) - 3/8" Dia. S.S. Bolt
Drill & Tap or Thru-Bolt
Cond "CW", Fy= 65 ksi

0.145" min. Thread Engagement

<u>RICE</u>	
ENGINEERING	


Template:

105 School Creek Trail
Luxemburg, WI 54217
Phone: (920)845-1042
Fax: (920)845-1048
www.rice-inc.com

1	R0001 - RMR Standard Calcs

Project Description:

	Job No:		R11-02-15H	
	Engineer:	JDB	Sheet No:	M6
S	Date:	2/23/11	Rev:	
	Chk By:		Date:	

SHT Wall Mount End Cap M7

CUSTOMER NOTE! FILL VOID CAVITY IN CMU WITH GROUT @ ALL RAIL MOUNTING LOCATIONS.

WALL MOUNT END CAP

25KD-33

Chk Fasteners:

Use (2) 1/8" Dia. S.S. Blind Buton Head Pop Rivets (OK By Inspection)

Chk End Cap:

Use End Cap as shown (OK By Inspection)

Chk Anchors: (Assume Grout Filled CMU)

$$R_{max} := 200$$
 lb

$$V := \frac{R_{\text{max}}}{1}$$

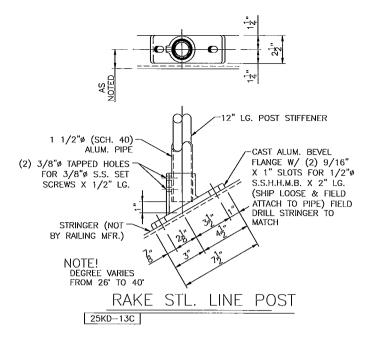
V = 200

$$V_{all} := 1419.0.5$$

 $V_{all} = 710$

 $V_{all2} := 380$ lb

Use (1) - 3/8" Dia. S.S. Threaded Rod w/ Hilti HIT-RE 500 MAX Adhesive 3-3/8" Min. Embedment 4" Min. Edge Distance


OR

Use (1) 1/4" Dia. S.S. Hilti Kwik Bolt 3 (300 Series S.S.) 1-1/8" Min. Embedment 4" Min. Edge Distance

Note: Values for HIT-RE 500 Epoxy Adhesive Based on HIT-HY 150 MAX Adhesive with a Safety Factor of 8

lb

DICE	105 School Creek Trail	Project Description:	Job No:		R11-02-15H	[
<u>RICE</u> ENGINEERING	Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	ЉВ	Sheet No:	M7
ENGINEERING		R0001 - RMR Standard Calcs	Date:	2/23/11	Rev:	3/4/11
Template:	www.rice-inc.com		Chk By:		Date:	

Note: Model based on 5'-0" max post spacing (measured along rail) and a post height of 3'-6" above bottom of base

Note: 6'-0" max post spacing (measured along rail) along rail and a post height of 2'-10" above bottom of base

$$\frac{M}{34} = 309$$
 lb > 4.167.72 = 300 lb

Chk Bolts to Steel Stringer:

$$\begin{split} V_b &\coloneqq \frac{R_{max}}{2} & V_b = 125 & lb \\ T_b &\coloneqq \frac{M_{max}}{2 \cdot 1.25} & T_b = 3562 & lb \\ V_{all} &\coloneqq 0.196 \cdot 23094 & V_{all} = 4526 & lb \\ T_{all} &\coloneqq 0.142 \cdot 40000 \cdot \frac{0.375}{0.456} & T_{all} = 4671 & lb \\ I_3 &\coloneqq \left(\frac{V_b}{V_{all}}\right)^2 + \left(\frac{T_b}{T_{all}}\right)^2 & I_3 = 0.58 \end{split}$$

Use (2) - 1/2" Dia. S.S. Thru-Bolts or Drill & Tap w/ 3/8" Min. Thread Engagement Condition "CW"

2-Bolt Raked	SHT
Base Plate	M8

$$R_{\text{max}} := 250$$
 lb

$$M := R_{max} \cdot 42 = 10500 \text{ lb} \cdot \text{in}$$

$$M_{\text{max}} := \cos(32\text{deg}) \cdot M = 8905$$
 lb·in

Chk shear on shoe wall:

$$P := \frac{M_{\text{max}}}{0.67 \cdot (2.375)}$$
 $P = 5596$ lb

$$f_{V} := \frac{(P + R_{max})}{2 \cdot (0.315) \cdot (2)}$$
 $f_{V} = 4640$ psi

$$F_{V} := \frac{0.57 \cdot (18000)}{1.65}$$
 $F_{V} = 6218$ psi

$$I := \frac{f_V}{F_U} \qquad \qquad I = 0.75 \quad \underline{Shear Stress "OK"}$$

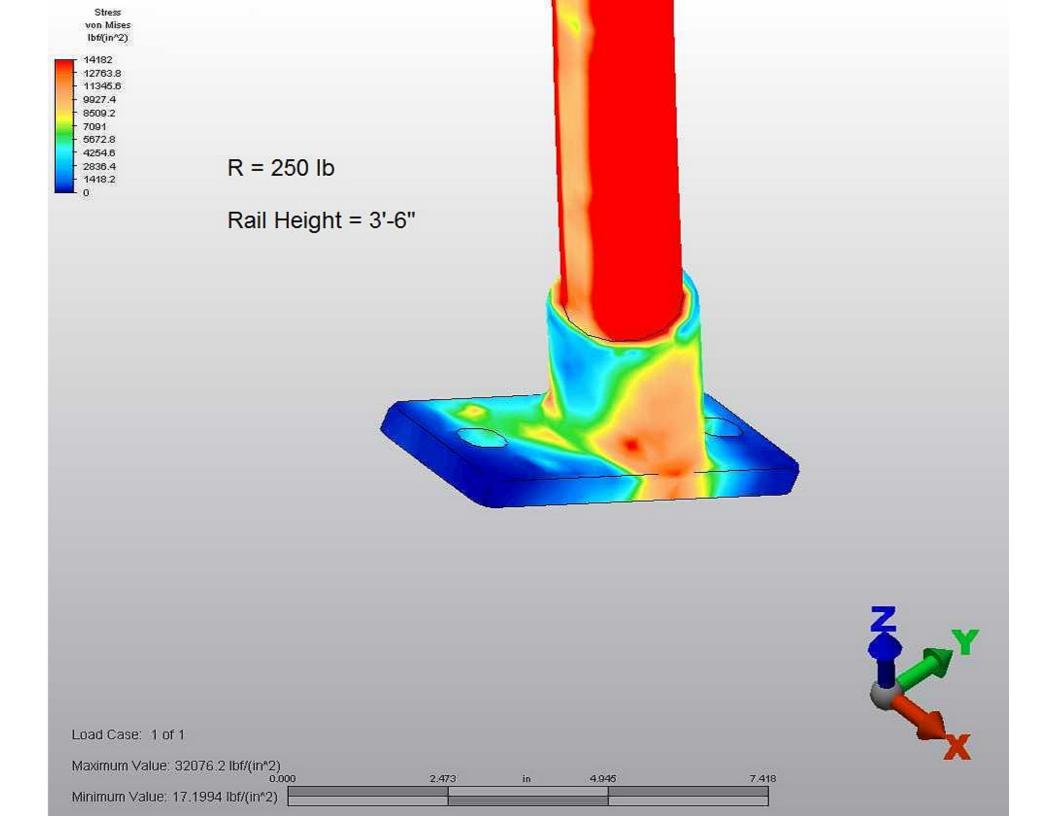
Chk Aluminum Base Plate:

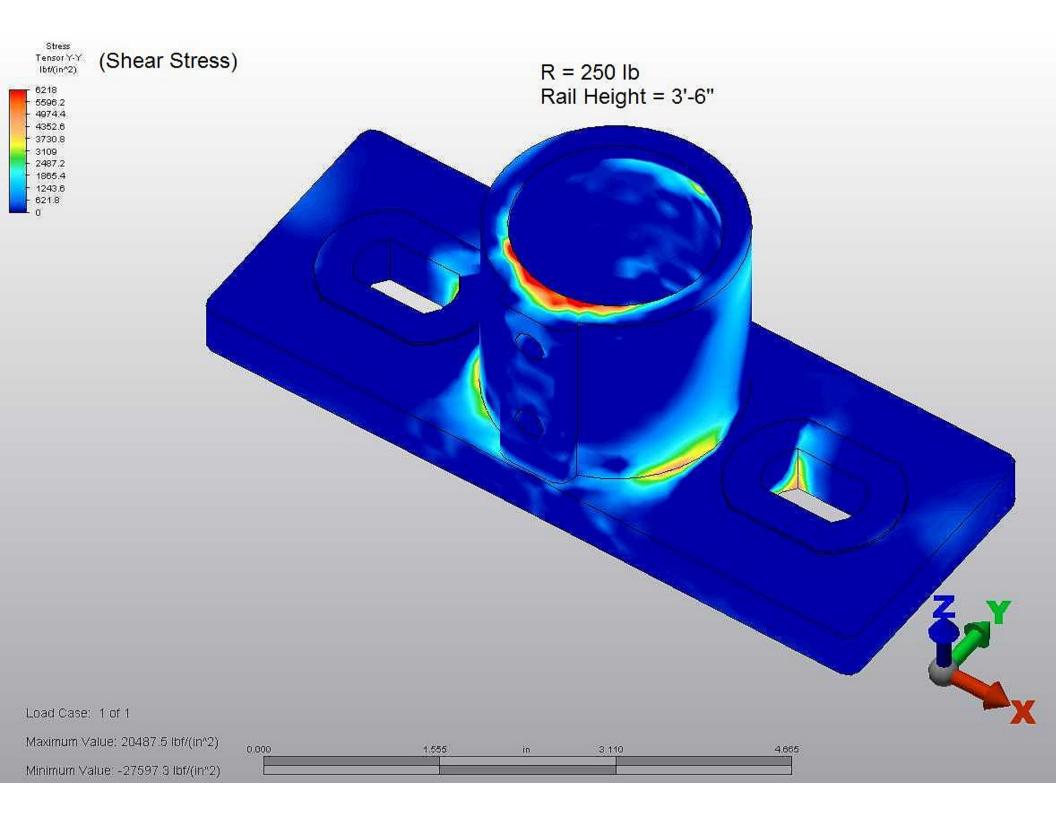
$$L1 := 7.5 \qquad \text{in} \qquad \qquad D1 := 1 \qquad \qquad \text{in}$$

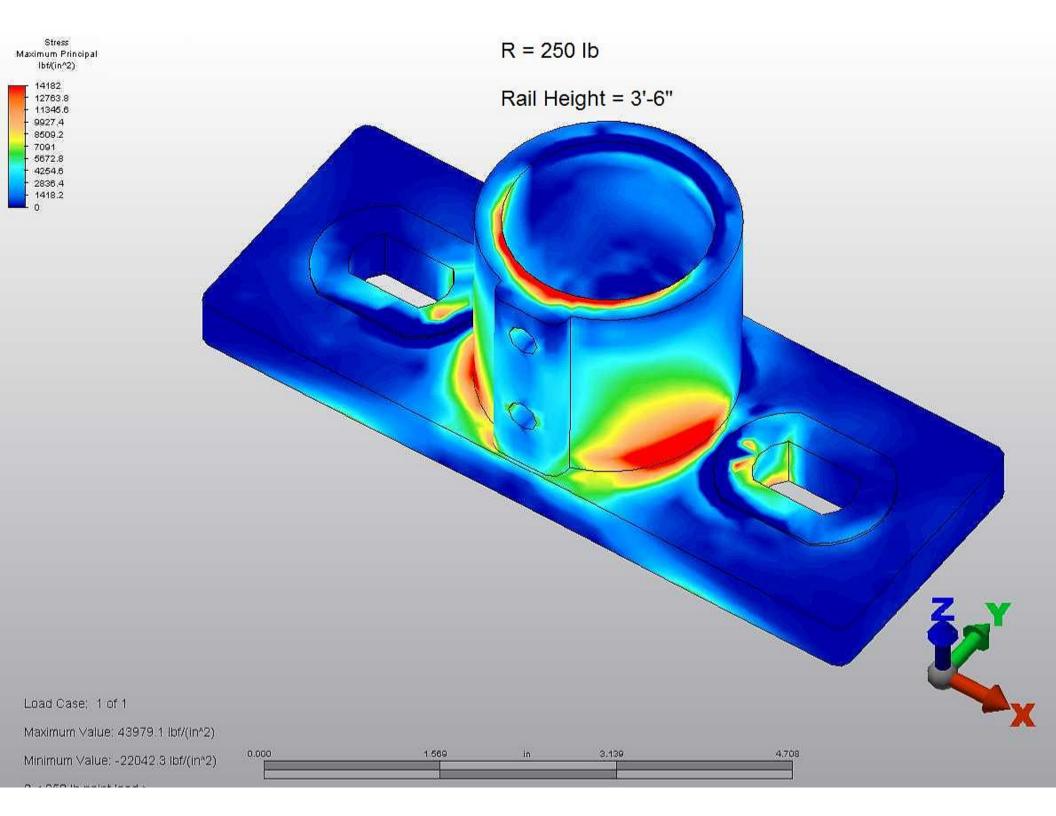
$$t := 0.5$$
 in

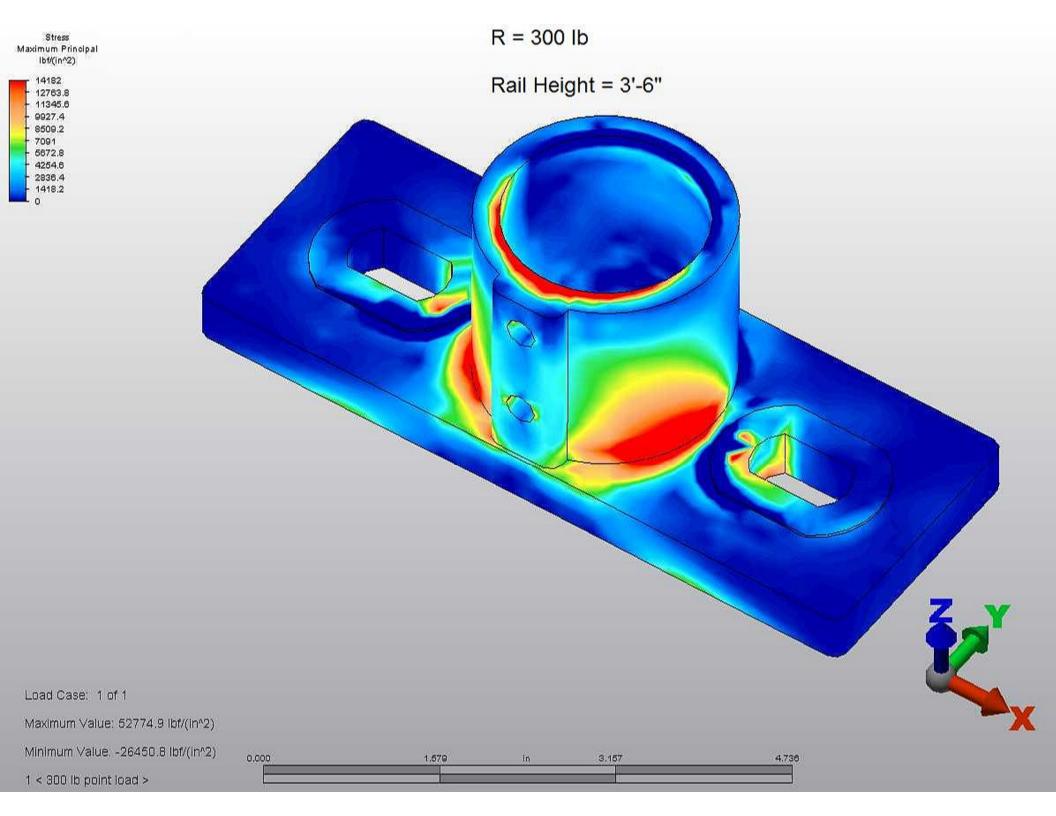
$$L := L1 - (2 \cdot D1)$$
 $L = 5.5$ in

$$P := \frac{M_{max}}{d} \qquad \qquad P = 3562 \qquad \qquad lb$$


$$\sigma_{\text{all}} := \frac{1.3 \cdot (18000)}{1.65}$$
 $\sigma_{\text{all}} = 14182$ ps


$$2 := \frac{\sigma_{\text{max}}}{\sigma_{\text{oil}}} \qquad I_2 = 1$$


Note: Model based on 5'-0" max post spacing measured along rail and a post height of 3'-6"


<u>Use Cast Aluminum Base, as shown</u> 535 casting alloy, Fu= 35 ksi min.

105 School Creek Trail Project Description: Job No: R11-02-15H *RICE* Luxemburg, WI 54217 Engineer: Sheet No: JDB M8 Phone: (920)845-1042 **ENGINEERING** R0001 - RMR Standard Calcs Date: 2/23/11 Rev: Fax: (920)845-1048 www.rice-inc.com Template: Chk By: Date:

Spec Sheet SHT S1

TABLE 11

			STAIN	less steel -	Alloy Groups	1, 2 and 3, C	endition C	w				
Nominal Thread	D Nominal Thread	A(S) Taksijo Stroso	A(FI) Thread	Allowable Tension	Allowabl			ring (Pav	· ·		Material Thic in Copecity o (is.)	
Diometer & Thread/inch	Diameter (inch)	Aren (Sq. In.)	Root Area (Sq. in.)	(Pounda)	Single (Pounde)	Double (Pounds)	1/8* \$1. A36	1/6" AL 6053-T5	1/8° Al. 6063-TG	A36	6063-75	6063-T6
#8-32 #9-32 #10-24 #12-24	0.1380 0.1640 0.1900 0.2160	0,0291 0,0140 0,0175 0,0242	0.0078 0.0124 0.0152 0.0214	064 560 700 068	100 286 851 494	360 573 702 988	1201 1427 1683 1679	276 328 300 432	414 492 570 648	0.126 0.162 0.170 0.200	0.274 0.368 0.372 0.450	0.198 0.291 0.287 0.321
1/4-20 5/16-18 0/0-16	0.2500 0.3125 0.3750	0,0318 0,0524 0,0775	0.0280 0.0469 0.0699	1272 2098 3100	647 1083 (1614	1293 2160 3229	2175 2719 3262	600 625 750	750 938 1125	0.226 0.204 0.341	0.041	0.360 0.459 0.553
7/18-14 1/2-13 9/18-12	0.4375 0,5000 0,5625	0,1063 9,1419 9,181,0 9,181,0	0.0061 0.1292 0.1664	4252 / 5676 / 7276	2219 2764 3843	4439 5967 7668	3506 4350 4594	675 1000 1125	1313 1509 1686	0,395 0.455 0.510	20 T T 20 20 T 20 40 E 20 40 E	0.642 0.745 0.838
되다 되4-0 7년년 1-8	0,6250 0,7509 0,8750 1,0000	0.2260 0,3946 0.4017 0,6057	0.2071 0.3091 0.4286 0.5630	9040 11289 16582 29442	4783 60 2 3 8352 10970	9568 12046 16703 21941	6437 6525 7612 8700	1250 1500 1750 2000	1875 2250 2625 3000	0.553 0.590 0.686 0.778	### 248 ### ###	0,923 8,963 1,123 1,276
		Vp.T	DIAME) hru 5/8° 3	TER V4° and Over	A(R)	= 0.7854(D ·	- <u>1.2269</u>)	2	For Dlàir	ietore 3/4° and	l Över;	
. F. (Min. T	litimato Terisile ensila Yeld Str ble Tensila Str	ongen) 65.0	коря 4	15,060 psi 5,060 psi 13,750 poi	A(5)	× 0,7654(D -	0.9743 N	E.	A	lloweb's tensil	F ₁ = 0.75F ₂ on = 0.76F ₂ [/	4(\$)]
	∟bla Shaar Sila		(M pri	9,496 pai			0.40F _e				F 0.75 /3	
					Allown	bio bonskon = F _v =	0.40F.JA() <u>0.40</u> F., /8	5)[Allowebi	e shear (Sing	ia) • <u>0.75</u> Fyl	A(FI)]
	Name and Address of the Address of t				Allowable ahs	sar (Singie) -	0.40 ys	(A)]				

In Tables 3 thru 15, for Group Type and Condition Definitions see pages 22 and 23.

TABLE 27 TEKS -

Nominal Thread	D Nominal Thread	K Basle Minor	A(R) Thread	Allowable Tension	Alloy Groups Allowabl			ring (Pou	nde)	Minimum Equal Tensi	Material Tide is Capacity o (in.)	kneos Io f Fasiener
Diameter & Thread/Inch	(Inch)	Diameter (Inch)	Root Area (Sq. in.)	(Pounds)	Single (Pounde)	Double (Pounde)	1/8° St. A38	1/8" AJ. 8063-75	1/8° Al. 6063-T6	A36	6093-TS	6063-T6
#6-20 #8-18 #10-16 #12-14	0.1380 0.1640 0.1900 0.2360	0.0997 0.1257 0.1309 0.1849	0.0078 0.0124 0.0152 0.0214	312 496 608 656	180 286 351 494	380 573 702 988	1201 1427 1653 1879	276 328 380 432	414 492 570 648	0.112 0.147 0.153 0.182	0.240 0.329 0.328 0.403	0,174 0,235 0,238 0,289
1/4-14 5/16-12 3/8-12	0.2500 0.3125 0.3750	0.1887 0.2443 0.2983	0.0280 0.0469 0.0689	1120 1876 2798	647 1083 1614	1293 2166 3229	2175 2719 3262	500 625 750	750 938 1125	0.205 0.260 0.313	0.449 0.527 0.763	0.323 0.416 0.505
r, (Masurar	n Tenalle Yield	elle Sirength) Sirength)	65)	XX1 pel	Where: A(H)	2 ≆ Thread Ro = Basic Mine	of Area, e or Diamete	Ļ in. r, in		ozenat eldewol	V = 0.40 F.	

RICE		105 School Creek Trail	Project Description:	Job No:		R11-02-15H	
	INTERDING	Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	S 1
E/VG.	INEERING		R0001 - RMR Standard Calcs	Date:	2/23/11	Rev:	
Template:	REI-MC-5200	www.rice-inc.com		Chk By:		Date:	

Selector Guide

Carbon Steel Electro Zinc Part#	i 304 Series Electro Zinc Part #	Description 198	Carbon Steel Box Oty	304SS Box Qty
1874200 1875200 1877200 1879200 1880200 1881200 1886200 1887200	1863000 1864000 1866000 	14 x 3/4" HWH W/ BD Type A Tappers 14 x 1" HWH W/ BD Type A Tappers 14 x 1-1/2" HWH W/ BD Type A Tappers 14 x 2" HWH W/ BD Type A Tappers 14 x 2-1/2" HWH W/ BD Type A Tappers 14 x 3" HWH W/ BD Type A Tappers 17 x 3/4" HWH W/ BD Type A Tappers 17 x 1" HWH W/ BD Type A Tappers	2,500 2,500 2,000 1,500 1,000 1,000 2,500	2,500 2,500 2,000 1,500 1,000 750 2,000 2,000

Performance Data

with E	Bonded *		PUL	LOUT-V	ALUES	(avg. lbs	ultimal	e) - (
	sher		26	24	22	20	18	16	14
Fas	tener	Thickness	0.018	0.024	0.030	0.036	0.048	0.060	0.075
4.4	Time A	Drill Size	1/8"	5/32"	5/32"	3/16"	3/16"	#7	#7
14	Type A		191	252	336	371	545	694	884
Fac		Gauge	26	24	22	20	18	16	14
Fas	tener	Thickness	0.018	0.024	0.030	0.036	0.048	0.060	0.075
17	Turn A	Drill Size	1/8"	5/32"	5/32"	3/16"	#2	#2	1/4"
17	Type A	387.00	263	307	425	475	559	791	

with B	onded		PUL	OVERA	ALUES	(avg/ilb	s ultima	te)	
Was	her	Gauge	26	24	22	20	18	16	14
Fast	ener	Thickness	0.018	0.024	0.030	0.036	0.048	0.060	0.075
14	Type A	Drill Size	1/8"	5/32"	5/32"	3/16"	3/16"	#7	#7
17	135011		595	827	1093	1341	1931	2229	2696
East	0801	Gauge	26	24	22	20	18	16	14
rasi	ener	Thickness	0.018	0.024	0.030	0.036	0.048	0.060	0.075
17	Type A	Drill Size	1/8"	5/32"	5/32"	3/16*	#2	#2	1/4"
17	Type A		565	792	970	1100	1556	1813	(2065)

130000000000000000000000000000000000000	onded sher	SH	EAR VA	LUESit	vg. lbs	ultimate): E
Fast	tener	Gauge	26-14	24-14	22-14	20-14	18-14
14	Tuno A	Drill Size	#7	#5	#2	#2	0.234"
14	Type A		534	704	863	1245	2120
Fast	tener	Gauge	26-18	24-18	22-14	20-14	18-14
17	Time A	Drill Size	#2	1/4"	1/4"	1/4"	1/4"
	Туре А		454	1013	1264	1544	1294

304.55	FASTENERVA	UES (avg Ibs ult	imate)
Fastener	Tensile	Shear	Torque
(dia-tpi)	(lbs min.)	(avg. lbs ult.)	(min. in lbs)
14-10	2684	(2148)	127
17-9	N/A	NITA	229

A CARBON S	TEEL!FASTENE	R'VALUES (avgil)	is ultimate)
Fastener (dia-tpi)	Tensile (ibs min.)	Shear (avg. lbs ult.)	Torque (min. in lbs)
14-10	4060	2600	150
17-9	5000	2750	173

Tools and Techniques

A standard screwgun with a depth sensitive nosepiece should be used to install Tappers. For optimal fastener performance, the screwgun should be a minimum of 6 amps and have an RPM range of 0-2500.

Adjust the screwgun nosepiece to properly seat the fastener.

New magnetic sockets must be correctly set before use. Remove chip build-up as needed.

The fastener is fully seated when the head is flush with the work surface.

Overdriving may result in torsional failure of the fastener or stripout of the substrate.

The fastener must penetrate beyond the metal structure a minimum of 3 pitches of thread.

1349 West Bryn Mawr Avenue Itasca, Illinois 60143 630-595-3500 Fax: 630-595-3549 www.itwbuildex.com

LOADS TESTINGS AND STRUCTURAL CALCULATIONS

FOR

GUARD RAILINGS

W.P.C.P. PHASE II DIGESTERS 12 13 14 15 & 16 SAN JOSE, CALIFORNIA

ROCKY MOUNTAIN RAILINGS 11939 EAST 51ST AVENUE DENVER, COLORADO 80239

> PROJECT NUMBER R1376

ROY E. WOOTEN and ASSOCIATES
• CONSULTING ENGINEERS •

ROY E. WOOTEN and ASSOCIATES

• Consulting Engineers • wootenrp@aol.com 7585 West Arkansas Avenue, Suite 206, Lakewood, CO 80232, Ph. (303)980-8603 Fax (303)980-8647

August 12, 2009

Mr. Scot Hooper Rocky Mountain Railings 11939 East 51st Avenue Denver, Colorado 80239

REFERENCE:

RMR NO. R1376

SAN JOSE, CALIFORNIA

Dear Mr. Hooper,

At your request, full size tests were conducted on August 7, 2009 as required by the City of San Jose, California. The purpose of the tests is to verify the adequacy of rails, posts, fittings and bases associated with the subject project. The tests were conducted at the facilities of Reliance Industries, LLC, 10790 W. 50th Avenue, Wheat Ridge, Colorado 80033, specifically, lead engineer Daniel Adam in conjunction with you and me as coordinates and observers. The following tests were conducted with results tabulated:

- 1. Post and Base Connections 1-1/2" Ø schedule 40, 6005-T5 with 12" standard stiffeners in 16E 5"x 5", four (4) hole base mounts with ½" Ø T 316 stainless steel machine bolts anchored to a W10 x 33 steel beam. Posts were spaced 12'-0 apart and loads applied with a calibrated hydraulic ram system. Ram was supported on a pipe to minimize the dead load influence to the system. Deflections were measured to the nearest 1/16" and compared with calculated deflections assuming a fixed base condition. Measure deflections at all loads, i.e., 200 lb., 250 lb., and 300 lb. were 2 + times greater than calculated loads as would be expected due to minor looseness in pipe-to-base mount fitting. Also some rotation of the fitting occurs as load is applied and the base collar and ½" plate deflects due to bolt spacing, 3-1/2" x 3-1/2". See 16E drawing sketches.
- 2. Post and Base Connections West post is 1-1/2" Ø schedule 80 in 16 H 5" x 8" four (4) bolt base; East post is unstiffened 1-1/2"Ø schedule 40 in 2-5/8" x 7" 2-bolt 11C base. Posts are spaced 12'-6 o.c. and bases anchored to the W10 x 33 beam with 1/2" Ø T 316 stainless steel machine bolts. Anchor bolt spacing of 16H base is 6-1/4" x 3-1/2"; Bolt spacing of 11C base is 4-3/8". Hydraulic ram is supported on pipe to negate dead load influence. Loads of 200 lbs, 250 lbs, and 300 lbs. were applied and overall lengths of deflected posts measured and individual post deflection calculated by inverse I ratio. These proportioned measured deflections were compared to fixed base calculated deflections. Measured proportioned deflections were 2-3/4 + times calculated deflection for Schedule 80 posts, all loads and 2-

3/4 +/- for 200 lb. and 250 lb. load on Schedule 40 post. At 300 lbs., Schedule 40 post measured deflection jumped to 3-3/8 times calculated. The 11C base fitting went from elastic stress range into plastic and ¼" measured permanent base plate deformation was measured. The increased measured deflection of both posts and bases is probably due to the winder bolt spacing allowing more rotation of the ½" thick base plate/collar sections as compared to Test 1.

3. Continuous Top Rail Splice/Expansion Joint Connection – Top rail is 1-1/2" Ø Sch 40, 6005 TS connected to four 1-1/2" Ø posts, 3 spaces at 6'-0 o.c. and 8" overhang each end. West rail length is 12"-2 and east rail length is 7'-2. Splice/expansion joint is standard 6" from east mid post. Test loads of 300 plus pounds are applied to middle 6'-0 span at 6", 1'-6, 2'-6, 3'-6, 4'-6 and 5'-6 from west mid post. Center deflection was measured to nearest 1/16" as each load was recorded and visual inspection of the splice/expansion joint to check for displacement. Only visual displacement was observed at 340 lb. load applied just west of joint, i.e., 5'- 5-7/8". Splice joint flat head #20 screws removed from west side to form expansion joint condition then reloaded to 340 lb. Maximum vertical displacement was less than 1/64" visually, approximately the fit differential between the ID of the rail and the OD of the fitting, i.e., 1.610" vs 1.596".

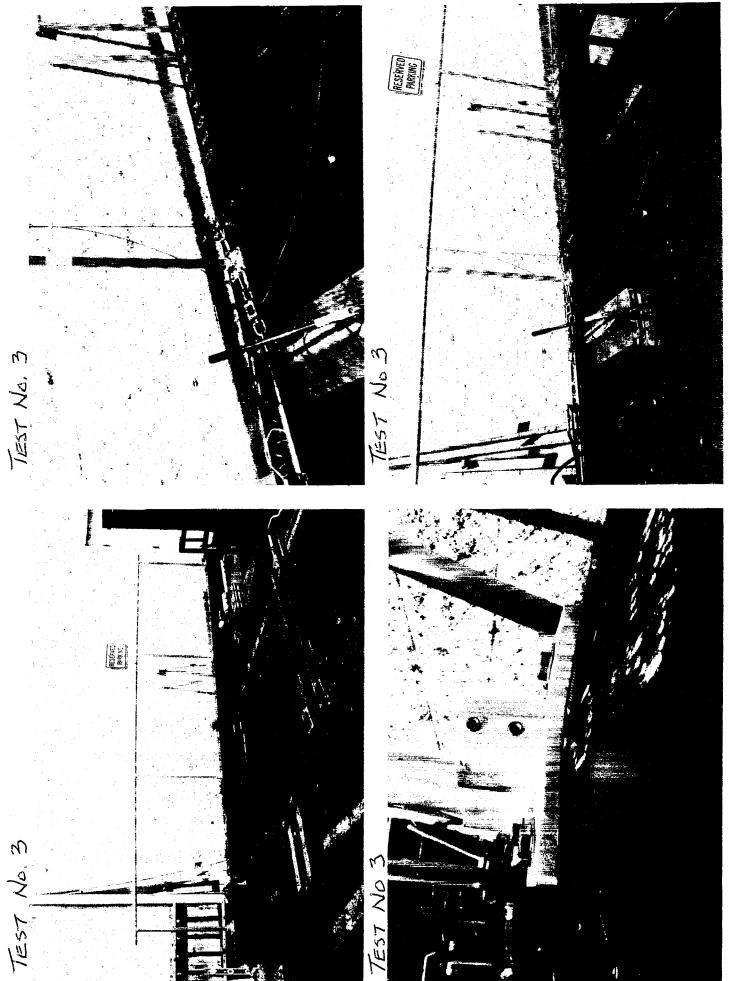
In summary, the results of the tests substantiate the calculated performance of the products, rails, posts, fittings, anchorages, connectors, etc., of the Rocky Mountain Railing System for the San Jose, California W.P.C.P., Phase II Project, Job No. R1376. We did not test post installed concrete anchors since these are special proprietary products requiring ICC testing and approval for each Supplier's systems. Base mount 11C is not part of the San Jose package but was tested to check the calculated performance.

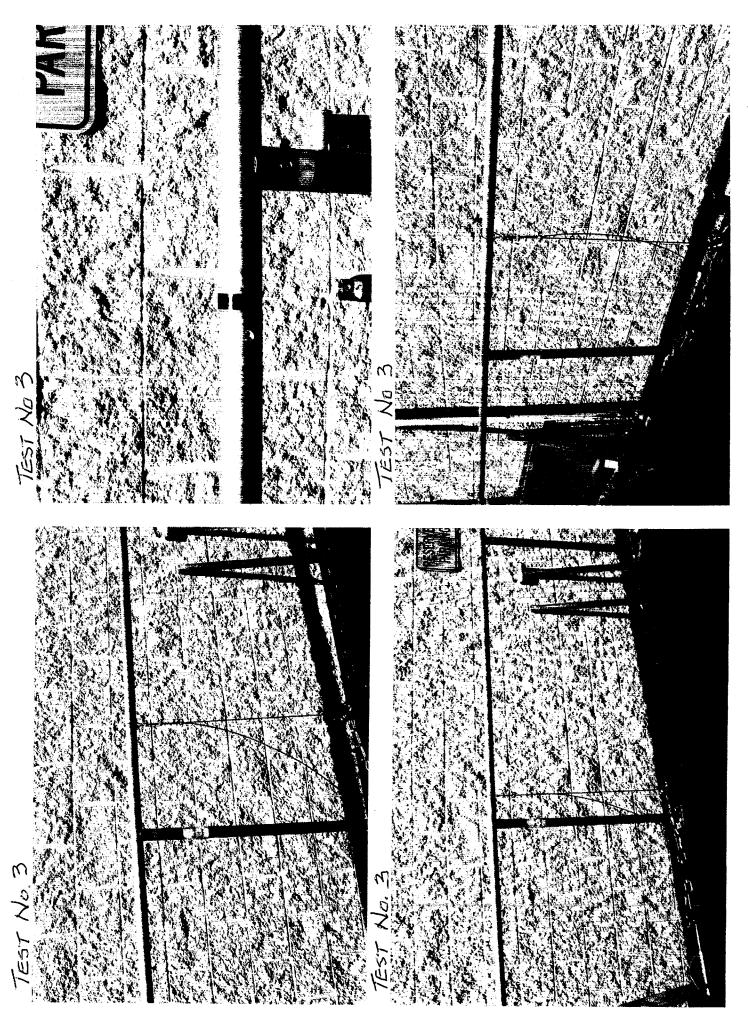
Since both, 16E and 16H, four (4) bolts base mount fittings are being considered for the project and both previously submitted for review and comment, the final acceptance will be by the City of San Jose personnel individual preference. Both are adequate. Actual field deflections will be less than those measured since global geometry, i.e., used on circular tanks, will allow deflections to be resisted by axial tension or compression of the top rail system.

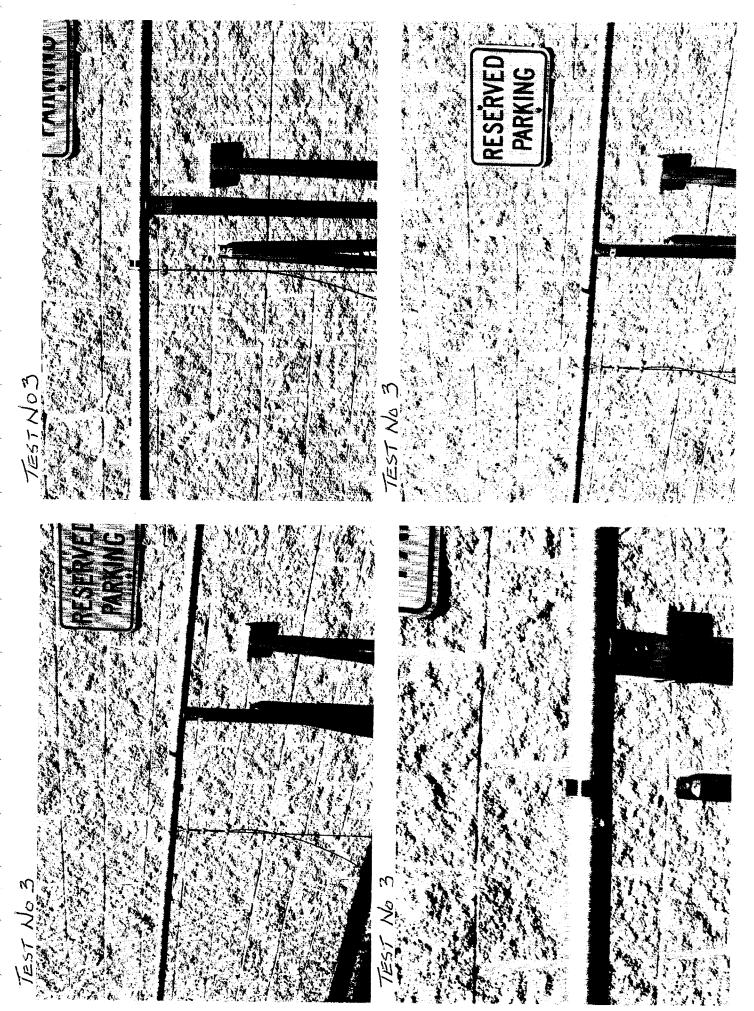
Let me know if any clarification or additional backup data is requested.

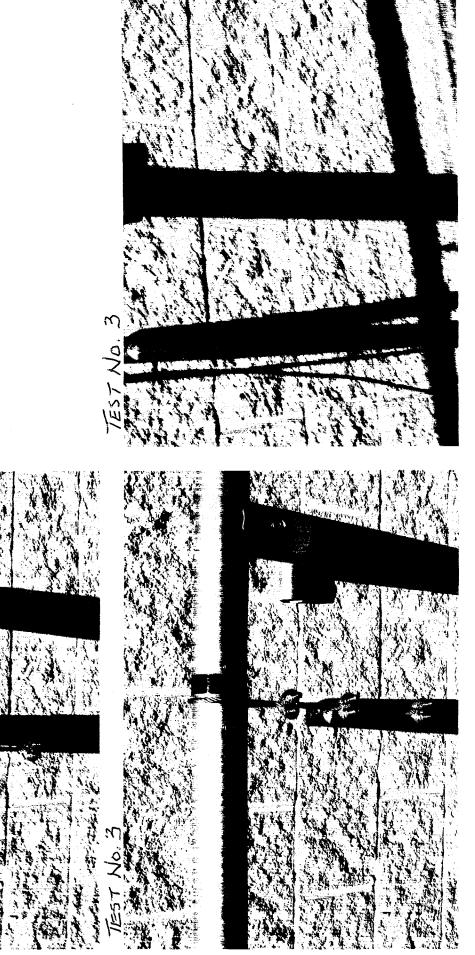
Very truly yours,

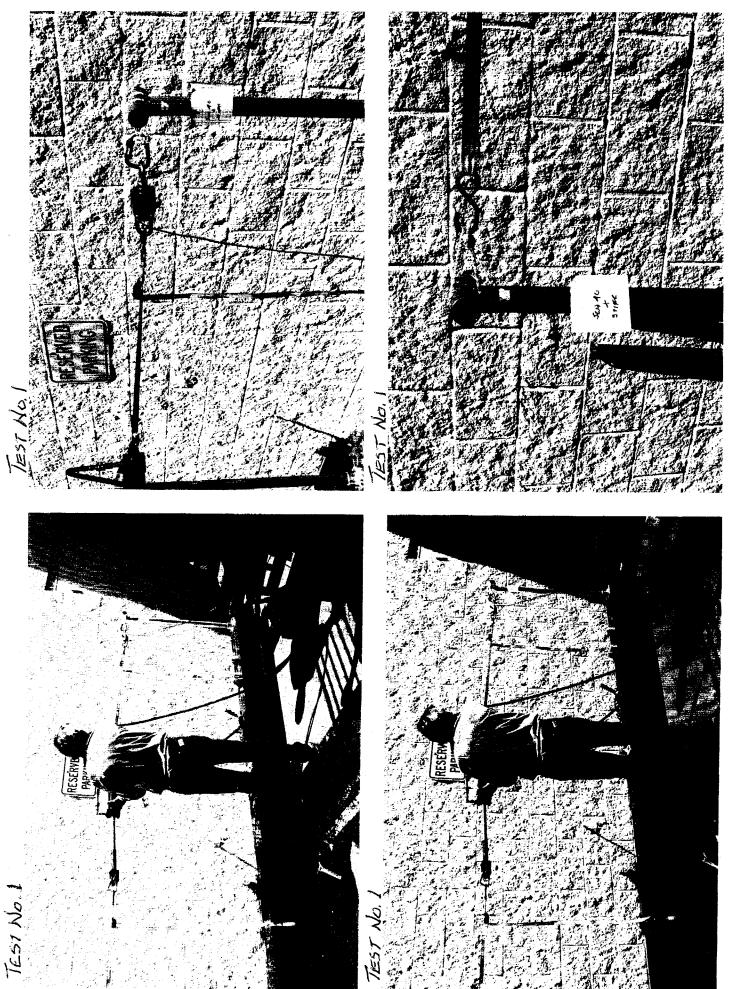
Roy E. Wooten, P.E.

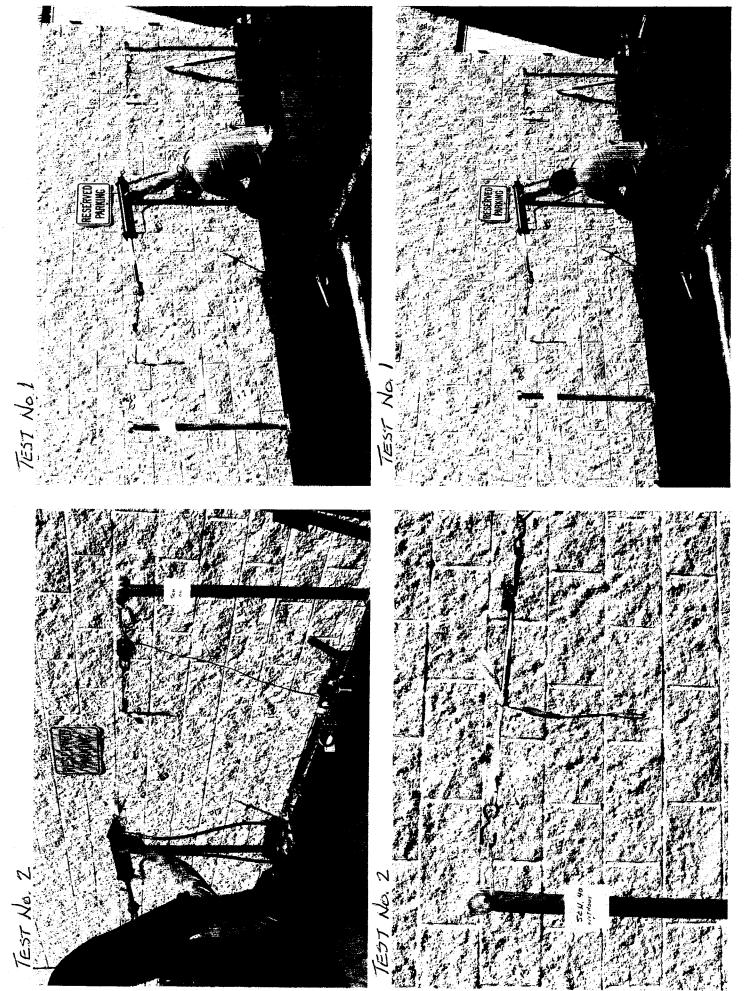

Attachments

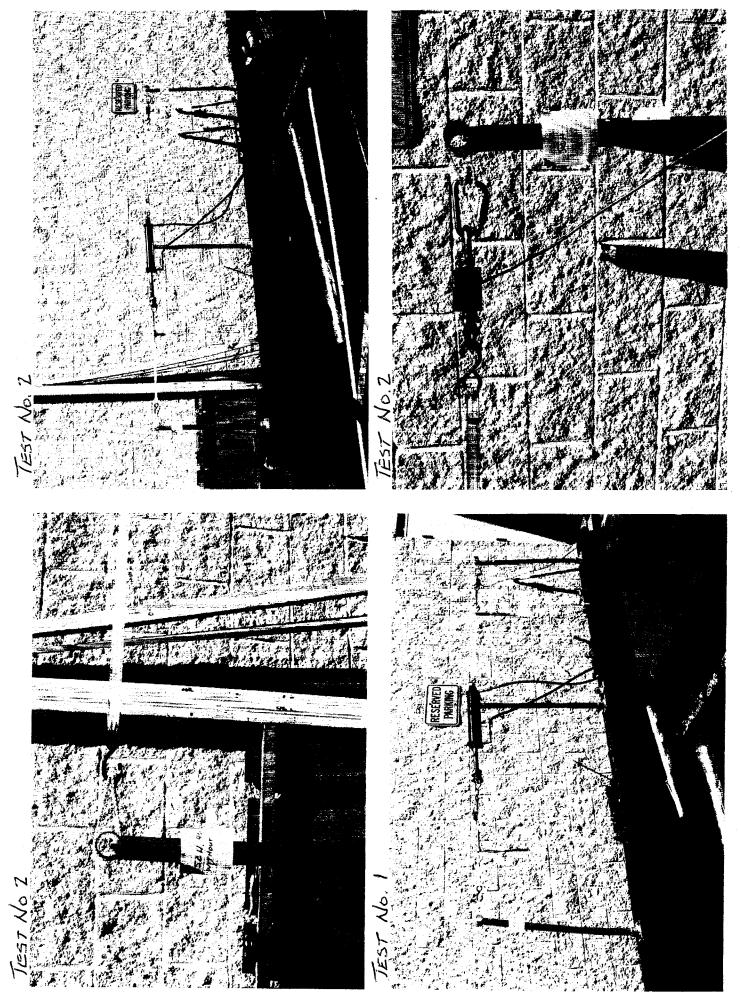

ROY E. WOOTEN AND ASSOCIATES

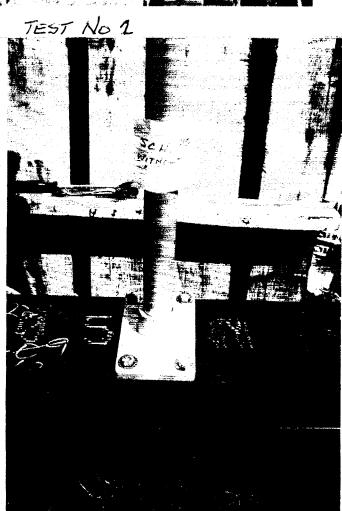

Consulting Engineers 7585 W. Arkansas Ave., #206 Lakewood, Colorado 80232 (303) 980-8603

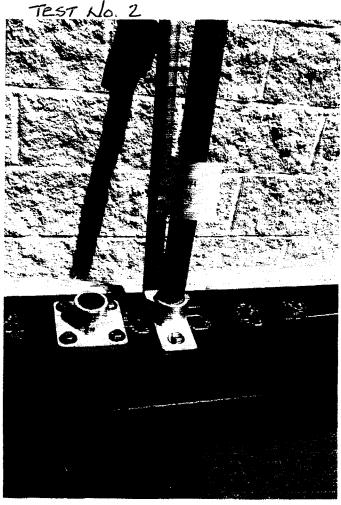

SHEET NO.		OF /	
CALCULATED BY	REWI	0 DATE08	111/09

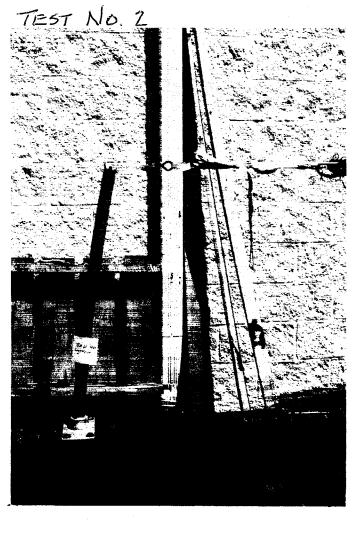

W10 x 33 X Za2-0 6-0 (0-0 6-0 1-0 16 H 8"x5" 16 E 5"×5" VIEW 12-0 TEST Na PA PA PH DEFLA CALC A 21/21 1.22" 200/6 W. 3/8 25016 1.53" 16 E 5"x5" 16 E 5"X 5" 334" 1.83" 30016 24 ELEVATION 12-6 TEST NO. 2 _ PH PH CALC A 37/4" 200/6 1.251 3,0 434" 1.563 250H 54" 554 40 476" 164 11 C 25/8" X 7 11 1.876" 300B B" X5" 50+40 1.6250 SCH 40 20010 <u></u>2 5%" ELEVATION 2501b 2.030" 81/4" 300 lb 2.437" 6'-0 O.K. 33 = 18'-0 TEST No 3 1126 6-6 SPLICE ZO DEFL, E. R Lono 3401b 0 0 1/4" 1 m 32016 3/811 3 32016 16 H 16 E 14E-3/8" 3201 <u>"</u>Q 3/1/2 5 350B EVATION 340B 6 0 SPLICE 340/3 EXP. JONE 0

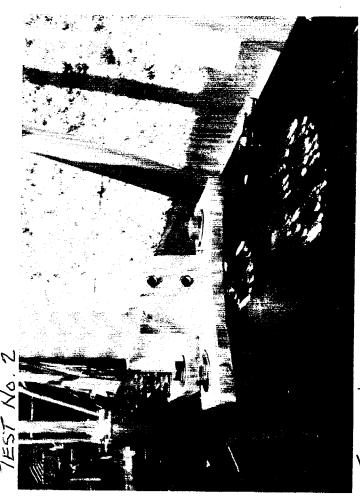












JOBRAR No. 1376, SAN JOSE.			20941		
SHEET NO.	•	OF			
CALCULATED BY	REW	DATE_	3/12/09		

	CHECKED BY DATE
W. P.C. P. PHASE I DIGESTERS	SCALE
DESIGN CRITERIA	MID RAILS
CODES - IBC 2006/2003. 05HA	1/2" 0 SCH + 0 - PRAX = 6'-0
ASCE 7-05/02 \$ CALIFORNIA	P= 200/b Mp= 1/4 (200/b)60=30094
BUILD CODE	FL= 300Fx 10 x/2"/1 /0,=261U3
	= 11,043 PSL & 24000POL VOX
LOADS	
1. TOP RAILS - 50 PLF OR 200 LB.	
2. MID RAILS - 200 LB.	COENER RAILS
3. CORNER RAILS - 200 lb	1/2" & SCH 40 SEE STANDARDS 25-KD-4
4. POSTS - MAX. OF 1.	
	POSTS I
MATERIALS SPECIFICATIONS	1/2" \$ SCH BO 6-0 MAX SPAENIG
1. RAILS, POSTS & FITTING 5 + 6005-75	WW = 50 PLF X6'0 = 300/6 4
2. CONNECTORS & ANCHORS - 7316 55	P = 200/B
3. CONCRETE - FE 4000 PSI	$h = 2.5'' - 2.2'' = 2.212'' \circ 2.202''$
	Mw= 300/8 x 26/2" = 7950 W.16
	F6= 7950 IN-16/0,412 M3
MATERIALS PROPERTIES	= 19296 PSL < 24000 PSL VER
SEE ATTACHED SHEETS	ANCHORAGE - 16H 8'X5" 4-12" & TO RODS
	TREAD = 300/6 XZ-5 X/2"/418"
	= 2110/b DR /055/b/TR, ROD
DESIGN - PER 2005/2000 ALLUMINIUM	SME ATTACHEN PREVIOUS JUSMITTALS
DESICN MANUALS - ALLOWARIE	1/2" \$ x 6" = MBGO TALLOW = 2633 /8/12 ROS
STRESS METHOD	FC = 3000PX TALLOW = 2505 /6/TA ROD
	Fic= Zucasos Tausa = 2428 1/1/TR. Ros
	ALSO 17-28-09 FZ 3000 ASI FOR 41/2" \$5" GYACO
TOP RAILS	- 16E 5"x5" 4-1/2" TR Roos
1/2" 0 SCH 40 RMAX = 6-0	TREOD = 300/b x 2 5 x 12 1/4"
W = 50ALF NW= 1/8 (SURLE) 6-0= 225 MB	= 2175 /b or 1088 lb/TR ROD
P = 200 16 Mp = 1/4 (200 16) 6-0 = 300 = 1/4	SEE ATTACHED PREVIOUS SURMITTALS
fb: MS = 500F1 12 x 121/ 0.324 IN3	FIC = 3000mi 1/2" \$ X4" SUBED- TALL = 1897 11/72/201
= 11043 ASI < 24000 ASI VOX	1/2" d x 5" EDITSEN - TALL = 1955 18/20 RA
- 20 보는 14 보다 되었다	幸卒,其人, 【2012】 [1] [1] [2] [2] [2] [2] [3] [4] [4] [4] [4] [4] [4] [4] [4] [4] [4

JOB BMR	# R1	376. 5	SAN JO	55E	(A)	2094	11
SHEET NO.		/		OF	1		
CALCULATED BY		REW		DATE_	7-	17-09	
				DATE			

(303) 980-8603	CHECKED BY DATE SCALE $1^{1/2}$ " = 1^{2} -0 1 7-28-09
SECONDARY CALCS FOR BASE MOUNT	SCALE
	T= C= 14-3/2
FITTING 16E 5"X5" W 4-12" X	= /2600 = 3.79"
CHEM BOND ANCHORS - NW- SONH X6'-0	= 3158 出
F'C = 3000 ASC = 300 Jb	
EMBED 1. 4"1 M= 300) 6×42"	D: 3/58/6.45 X5
ENBED 2, 5" = 12600 W.16	J-9= 44-0.52
	1 0-9= 47 2 -3.9911 T
1 WC - 200 - 1/2	
1. 4" EMBED - TBASIC = 380016	$T_{\Delta} = c = \frac{m}{d-a_{12}}$
Spacial 3/2" 4 0.78	[1] 마마마마마마마마마마마마마마마마마마마마마마마마마마마마마마마마마마마마
Eage Dist 24" - 0.64	72/4010/4/10
764 = 3000 B/MOX 78 X 645	= 2024/b
= 1897 16/Rdo	2= 2024 / 45 x320x 755
	= 0,20" d-ar 4.15"
TAG = 12600/6.W = 3.99"= 3158/b/	
DR 1579 16)+RDD OF	
	1M. 4/2"EMBED TBASIC= 4235 1/72.RXD
	500000 6147 - 0.881
	EXCE AST 249 0,589
2. 5" EMBED - TBASIC = 4495 B	TALL = 4235 X D. 951 X D. 589 = 2199 / 120
Sport 12 3/2" - 6.75	They = 2024:2- 1012 16/ TE ROD
EX= 057 24" - 0.58	5,F = 2198 1/200 = 1812 1/20 = 2.172
TALL = 4495 x.75 x 0.58 = 1955 10/2010	
VOK	
TACT = 1260010115 = 3.99 = 3158 16	2A. 5" EMPED TEASIC = 4495 15/7. RSD
OR 1579 16/ TZUR	SPACING 64" 0,362
	Eage D137 24" 0,539
	Tau, = 4495 x 0.862 x 0.537 = 2033 /20
DFOR FITTING 16H 8"X5" W4-2"0	TACT: 2024+ == 1012 10/20
CHEM BOND ANCHORES - A = ZOO16	S.F. 2088 + 1012 = 2,069 /ac
1. EMBED 4"Z"	
2. EMBED 5"	
ANCHORAGE BASED DW FOUDUACIOO	
PLUS OR POWER AC 100+13000 EPONT	
ACTES IVE SYSTEM.	

JOB RMR NO.	R1376	SAN	LOSE, CA.	
SHEET NO.			OF/	
CALCULATED BY	REW		DATE 7/2	7/09
AUFAUFA EN				

(303) 980-8603		DATE
	SCALE 34"= 1-0	
80-16 H TURNED 900		
FE = 3000psi		
1. 1/2" & X 4 1/2" LEMBED		
2.12" & X 5' EMBET =		
Tours p: 42" × 300 % + 7" = 1800 %		
DR 900 16/ T. ROD		
1. TEASIC= 4235/b/TEDO		
Sprack 31/2" - 0.74		
# 78'		
TAIL- 4235 X 0.74 X 0 41 4		
Not ACIONED		
2, TANSIC = 4495 16/TROD		
Sprenta = 3 2" 0:70		
ERIEDIST=1/8" - NOVERIFE		
Tacl= 4495 x 0.70 x 0.00 = 0		
NOT ACCOUNTED		
NOTE * WEDS TO BE MIN OF 2/8"		
TO GET ISLID CALCULABLE		
Loads_		
[22] [23] [24] [25] [25] [25] [25] [25] [25] [25] [25		

JOB ROCKY N	10UNTAIN RA	LINES STANDARDS
SHEET NO.		OF
CALCULATED BY	REW	DATE JULY 2008
CHECKED BY	R.B	DATE_ LIVLY 2008 DATE_ JAN.26, 2009

	(303) 980-8603	CHECKED BY R.B.	DATE _JAN. 26, 2009
16 E		SCALE 1/4" = 131	
FOUR (4) HOL	E BASE MOUNT 6105-T	5"	2.11
		34" - 134" of	134"
A PROPERTIE	5		
	5" = 2.50 M2		4.3
	1/z')3 = 0.05208 M4		
5 = 1/2 (5)	2")2 = 0. 20833,N3	(A) (A)	1 5
M: 0.20833	3 m3 x 24000 psi . 5000 M. 16		
Re: 5000	÷ 15/6 = 5333 (b)		
P= W=533	30x4/10/4z1 = 516/b = 30x	μ	Ψ
	OR 6'-0 D'SOPIF	300/b 2.50	. 2
(B) PROPERTIE		2.4	
	2.45 - 1.92) = 1.6286 M2	1,92	
	2.40 - 192) · 0.9615,N+		
3 = 7/rus 0	96/5: 1.2" . 0.803/13		
		(B)	TI F F
M= 0.80131A	J3 x 24000: 19,230 , N.16		
P=W= 192	30/(42-12)= 487/6 > 20	/b C	
	OR GOXSO	1t	
(C) PROPERTIE			
		SPECIAL ANCHORAGE FOR	
	2.54-1.92) 2.0135,12	4-12" d x G" EMBED TH	1 . 1
1 = 767 (2 4 I) 1/2	50-1.92) = 1.2504,N+	EPCXY BOND - POWED	
7/2 2	//.25" = /, 0000 /N	OR POWERS AC 100 + C	
Ma 1.000 /74	cero) = 2 4000 /4·/6	TBASIC = 5167 16 /1800	
		Spacine - 31/2" 0.7 EDGE DIST 214" 0.6	0 (=0.42 (5167)h)
7 = W : 274	42 - 3/8') . 580 / 7 zoo	EDGE (215), * 2'4" 0.6	$D \int \frac{1}{2} \frac{2170}{Rc0}$
	62.6.0x 50		
STANDALD L	1	TACT = 300 16 X42"+4	
	x 334 "BUERS" WEDGE ANCH	OR 1551 15/Rep.	2)70'"/Roo
	L-ES ESR-1532	SO REGIO	- VOX
		OSE WOO	
		AS E WOOD	
		Warman C.	

JOB ROCK MO	UNTAIN	RA	ILIN	45 5	TANDI	V205
SHEET NO.			_ OF			
CALCULATED BY	REW		_ DATE_	JUNE	23 / 2	.000)
CHECKED BY	RGB			JUN:		
1/4" - 11		1, 12				/

8c-16H	SCALE 1/4" = 1"
FOUR (4) HOLE BASE MOUNT	8"
	78 378 378 76
(A) PROPERTIES	
AREA = 1/2" x 8" = 4.001N2	
I=/12(8)(/2")3 = 0.083314	**Z
5 = 16 (87(1/2")2 = 0.3333 M3	
M= 0.3353 x Z400072 = 8000 W.14	
RIMAX = 800014.16 + 15/1 = 853314 16	
Prof of 42" Post = 85 3316 × 416" = 42"-82516	▗▗ ▗ ॗ
(B) FROPERTIES	2.50
ARZA = T/4(2.387-1.92) = 1.5535 N2	238
I = 7/24 (2.39 - 192) = 0.9079 W+	1.92"
5 = Z/roo = 0.9079:1.19" = 0.7630113	
M= 0.7630N3 x 24000PSi = 18,310 N.16	
B= WH = 18310/(42'-24") = 464 16	
(C) A20PEZTIES	
AREA = T/4 (2.50-1.92) = 2.0135,N4	
I = 7/6+ (2.50 -1.92) = 1.2501 W4	RMR NO 1376
3 = F/rax = 1.2504/1,25" = 1.00031N3	@ PROPERTIES SAN JOSC. CA.
M= 1/2003,N3 x 24000 = 24,008,N.16	
PH = WH = 24003/42-12") - 519/6	$AREA = \frac{12^{2} \times 5}{12^{2}} = \frac{200 \text{m}^{2}}{200 \text{m}^{2}}$ $T = \frac{1}{12} \left(\frac{5}{12} \right) \frac{12^{2}}{12^{2}} = \frac{200 \text{m}^{2}}{12^{2}} = \frac{200 \text{m}^{2}}{12^{2}}$ $5 = \frac{1}{12} \left(\frac{5}{12} \right) \left(\frac{12^{2}}{12^{2}} \right) = \frac{200 \text{m}^{2}}{12^{2}}$
	5= 1/4(5)(1/2) = 2002213
	M= 0.2083 X 24000, = 5000 /W//b
STANDARD ANCHORS	Read = 50000 11 12 12 12 7000 11
4- 1/2" 0 x 374" "POWERS" WEDGE ANCHOR	= Pr/WH = 2000/b x 6.98" = 42" = 332 //
Psh Icc - =5 - ESR - 1532	- (11/10/4 - 1000/13 % E.70 - 42 - 372 / 1
	PROBABLY SHOULD BY LOAD
	TESTED FOR VERIFICATION OF
	CALCEN VACUES,
	CACICA VACUES

JOB ROCK	MOUNTAIN	RAI	LIN	<u>05</u> 5	STAL	DARDS
SHEET NO.	*		OF		/	
CALCULATED BY_	REW	<u> </u>	DATE	JUNE	23	12009

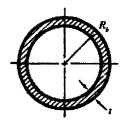

(303) 980-8803	CHECKED BY DATE
80-16H	SCALE 1/4 = 1/1
FOUR (4) HOLE BASE MOUNT	8"
	_ 78 3 8 38 78
(A) PROPERTIES	
AREA = 1/2" x 8" = 4.00, NZ	
I=1/12 (8"(1/2")3 = 0.0833 N4	
5 = 1/2 (8) (1/2")2 = 0.3333 N3	
M= 0.3553 x Z4000PE = 8000 IN 1/4	
Runax = 820011.1/6 x4/3 + 176" = 8982 K	
Prop o= 42" Po= = 8000 m lb x43 = 42" = 254 b	
	<u> </u>
(E) FROPERTIES	2.50
FREA = 17/4 (2.38 - 1.92) = 1,5535 W	2.38
I = 7/64 (2.35 - 1.92) + 0.9079 W+	1.92"
5 = I/roo = 0.9079 : 1.19" = 0.7630 M3	
M. 0.7630W' x 24000PSi = 18,310 N.16	
R. = WA = 18310/4=1-242) = 464 b	(8)
(C) FLOPERT / ES	
AZEA = 1/4 (2.50-1.92) = 2.0135 M2	
I = 17/6+ (2.50 - 1.92) = 1.2501 IN4	
5 = 7/run = 1.2504/1,25" = 1.00031N3	SPECIAL ANCHORAGE FOR RMR # R 1376
M= 1.203/1)3 x 2+000 = 24,008/10/16	4-1/2" 0 × 6" ENDED THREMOEN RODS
PH = WH = 24008 (42-12") - 579/6	EPOXY BOND - POWER AC 100 PLUS
	OR POWERS AC 100 + GOLD; FE = 4000
	TANSIE = 5270 16/ROD
STANDARD ANCHORS	SARWE 6/4" 0.8157 . April (627)
+- 1/2" \$ X 334" FOWERS " WEDGE ANDE	
PS2 ICC- == - ESR-1532	$C = E \propto P_{152} 24 \circ (613) = 2433 b \rangle$
5 9 9 5	TACT= 300/6×42"-4"8"
Chi Wood Chi	= 3054 16 OR 1527 18/200 < 263
	La
7237/si51	
SOUNT ENDER	
173700	

Table 3.3-1 MINIMUM MECHANICAL PROPERTIES FOR ALUMINUM ALLOYS

ALLOY AND TEMPER	PRODUCT	THICKNESS RANGE In,	F _{tu} ksi	F _{ty} ksi	F _{ey} kai	F _m kai	COMPRESSIVE MODULUS OF ELASTICITY ² E (ksi)
052-O	Sheet & Plate	0.006 to 3.000	25	9.5	9.5	16	10,200
-H32	Sheet & Plate	All	31	23	21	19	10,200
-H34	Cold Fin. Rod & Bar	All	34	26	24	20	10,200
-H36	Drawn Tube	7 5.11					
-nao	Sheet	0.006 to 0.162	37	29	26	22	10,200
83-O	Extrusions	up thru 5.000	39	16	16	24	10,400
-H111	Extrusions	up thru 0.500	40	24	21	24	10,400
-H111	Extrusions	0.501 to 5.000	40	24	21	23	10,400
-0	Sheet & Plate	0.051 to 1.500	40	18	18	25	10,400
-H116	Sheet & Plate	0.188 to 1.500	44	31	26	26	10,400
-H32, H321	Sheet & Plate	0.188 to 1.500	44	31	26	26	10,400
-H116	Plate	1.501 to 3.000	41	29	24	24	10,400
-H32, H321	Plate	1.501 to 3.000	41	29	24	24	10,400
86-O	Extrusions	up thru 5.000	35	14	14	21	10,400
-H111	Extrusions	up thru 0.500	36	21	18	21	10,400
-H111	Extrusions	0.501 to 5.000	36	21	18	21	10,400
-0	Sheet & Plate	0.020 to 2.000	35	14	14	21	10,400
-H112	Plate	0.025 to 0.499	36	18	17	22	10,400
-H112	Plate	0.500 to 1.000	35	16	16	21	10,400
-H112	Plate	1.001 to 2.000	35	14	15	21	10,400
-H112	Plate	2.001 to 3.000	34	14	15	21	10,400
-H116	Sheet & Plate	Ali	40	28	26	24	10,400
-H32	Sheet & Plate	Ali	40	28	26	24	10,400
-1132	Drawn Tube	710	40				.0, .00
-H34	Sheet & Plate	All	44	34	32	26	10,400
-1134	Drawn Tube	e-str					
54-H38	Sheet	0.006 to 0.128	45	35	33	24	10,300
54-O	Extrusions	up thru 5.000	31	12	12	19	10,400
-H111	Extrusions	up thru 0.500	33	19	16	20	10,400
-H111	Extrusions	0,501 to 5.000	33	19	16	19	10,400
-H112	Extrusions	up thru 5.000	31	12	13	19	10,400
-0	Sheet & Plate	0.020 to 3.000	31	12	12	19	10,400
-H32	Sheet & Plate	0.020 to 2.000	36	26	24	21	10,400
-H34	Sheet & Plate	0.020 to 1.000	39	29	27	23	10,400
-1134 56-O	Sheet & Plate	0.051 to 1.500	42	19	19	26	10,400
-H116	Sheet & Plate	0.188 to 1.250	46	33	27	27	10,400
-H32, H321	Sheet & Plate	0.168 to 1.250	46	33	27	27	10,400
-H116	Plate	1.251 to 1.500	44	31	25	25	10,400
-H32, H321	Plate	1.251 to 1.500	44	31	25	25	10,400
-H116	Plate	1.501 to 3.000	41	29	25	25	10,400
-H32, H321	Plate	1.501 to 3.000	41	29	25	25	10,400
05-T5	Extrusions	up thru 1.000	38	35	35	24	10.100
61-T6, T651	Sheet & Plate	0.010 to 4.000	42	35	35	27	10,100
-T6, T6510, T6511	Extrusions	All	38	35	35	24	10,100
-T6, T651	Cold Fin. Rod & Bar	up thru 8.000	42	35	35	25	10,100
-76, 1651 -76	Drawn Tube	0.025 to 0.500	42	35	35	27	10,100
-T6	Pipe	All	38	35	35	24	10,100
63-T5,	Extrusions	up thru 0.500	22	16	16	13	10,100
∞-15, -T52	Extrusions	up thru 1.000	22	16	16	13	10,100
-T52 -T5	Extrusions	0.500 to 1.000	21	15	15	12	10,100
-T6	Extrusions & Pipe	All	30	25	25	19	10,100
66-T6, T6510, T6511	Extrusions	All	50	45	45	27	10,100
70-T6, T62	Extrusions	up thru 2.999	48	45	45	29	10,100
05-T5	Extrusions	up thru 0.500	38	35	35	24	10,100
51-T5	Extrusions	up thru 1.000	38	35	35	24	10,100
51-T6	Extrusions	up thru 0.750	42	37	37	27	10,100
63-T6	Extrusions	up thru 0.500	30	25	25	19	10,100
WW : W	FULL MINISTER					28	

F_{ix} and F_{iy} are minimum specified values (except F_{iy} for 1100-H12, H14 Cold Finished Rod and Bar and Drawn Tube, Alciad 3003-H18 Sheet and 5050-H32, H34 Cold Finished Rod and Bar which are minimum expected values); other strength properties are corresponding minimum expected values.

^{2.} Typical values. For deflection calculations an average modulus of elasticity is used; this is 100 ksi lower than values in this column.

TABLE 22 - PIPES

Nominal		Outside Diameter	Inside Diameter	Wall Thickness		Area				
Pipe	Schedule	OD	ID	t	Weight ²	A	,	s	ř	
Size	No.	in.	in.	in.	lb/ft	in²	in ⁴	in³	in.	R _b /
1 1/2	5	1.900	1.770	0.065	0.441	0.375	0.158		0.649	14.1
	10	1.900	1.682	0.109	0.721	0.613	0.247		0.634	8.2
	40	1.900	1.610	0.145	0.940	0.799	0.310		0.623	6.1
	80	1.900	1.500	0.200	1.26	1.07	0.391		0.605	4.3
	160	1.900	1.338	0.281	1.68	1.43	0.482		0.581	2.9
2	5	2.375	2.245	0.065	0.555	0,472	0.315	· · · · · · · · · · · · · · · · · · ·	0.817	17.8
	10	2.375	2.157	0.109	0.913	0.776	0.499		0.802	10.4
	40	2.375	2.067	0.154	1.26	1.07	0.666		0.787	7.2
	80	2.375	1.939	0.218	1.74	1.48	0.868		0.766	4.9
	160	2.375	1.687	0.344	2.58	2.19	1.16	0.980	0.728	3.0
2 1/2	5	2.875	2.709	0.083	0.856	0.728	0.710		0.988	16,6
	10	2.875	2.635	0.120	1.22	1.04	0.987		0.975	11.5
	40	2.875	2.469	0.203	2.00	1.70	1.53	1.06	0.947	6.6
	80	2.875	2.323	0.276	2.65	2.25	1.92	1.34	0.924	4.7
	160	2.875	2.125	0.375	3.46	2.95	2.35	1.64	0.894	3.3
3	5	3.500	3.334	0.083	1.05	0.891	1.30	0.744	1.21	20.6
	10	3.500	3,260	0.120	1.50	1.27	1.82	1.04		
	40	3.500	3.068	0.216	2.62	2.23			1.20	14,1
	80	3.500	2.900	0.300	3.55		3.02	1.72	1.16	7.6
	160	3.500	2.624	0.438	3.55 4.95	3.02 4.21	3.89 5.04	2.23 2.88	1.14 1.09	5.3 3 .5
3 1/2	5	4.000	3.834	0.083	1.20	1.02	1.96	0.98		
	10	4.000	3.760	0.120	1.72	1.46			1.39	23.6
	40	4.000	3.548	0.226	3.15		2.76	1.38	1.37	16.2
	80	4.000	3.364	0.318	4.33	2.68 3.68	4.79 6.28	2.39 3.14	1.34 1.31	8.3 5.8
4	5	4.500	4.334	0.083	1.35	1.15	2.81	1.25		
	10	4.500	4.260	0.120	1.94	1.65			1.56	26.6
	40	4.500	4.026	0.237	3.73	3.17	3.96	1.76	1.55	18.3
	80	4.500	3.826	0.337	5.18		7.23	3.21	1.51	9.0
	120	4.500	3.624	0.438	6.57	4.41 5.59	9.61 11.7	4.27 5.18	1.48 1.44	6.2
, j	160	4.500	3.438	0.531	7.79	6.62		5.18 5.90	1.42	4.6 3.7
5	5	5.563	5.345	0.109	2.20	1.87	6.95	2.50	1.93	
	10	5.563	5.295	0.134	2.69	2.29	8.43	3.03	1.92	25.0
	40	5.563	5.047	0.258	5.06	4.30	15.2	5.45		20.3
	80	5.563	4.813	0.375	7.19	6.11	20.7	7.43	1.88	10.3
	120	5.563	4.563	0.500	9.35	7.95	25.7 25.7	7.43 9.25	1.84	6.9
	160	5.563	4.313	0.625	11.4	9.70	30.0	9.25 10.8	1.80 1.76	5.1 4.0
6	5	6.625	6.407	0.109	2.62	2.23	11.8	3.58	2.30	
	10	6.625	6.357	0.134	3.21	2.73	14.4			29.9
	40	6.625	6.065	0.280	6.56	5.58	14.4 28.1	4.35	2.30	24.2
	80	6.625	5.761	0.432	9.88	8.4D	40.5	8.50	2.25	11.3
	120	6.625	5.501	0.562	12.6			12.2	2.19	7.2
	160	6.625	5.187	0.719	15.7	10.7 13.3	49.6	15.0	2.15	5.4
			41.41	U., 10	lid. (13.3	59.0	17.8	2.10	4.1

Type of Stress	Time of Manufacture at Class		Sec.				Table 2-20	
			3.4.	Allowable Stress	Stress	ALLOWARI 6	ALLOWARI E STRESSES FOR	-
TENSION, axial	Any tension member	gross section net section	-	21 19	12.5	BUILDING TY	BUILDING TYPE STRUCTURES	. <i>(</i>)
TENSION	Flat elements in uniform tension		2	19	8	6005-T5 Extrusions	Extrusions up through 1.000 in. thick	1. thick
IN BEAMS, extreme fiber,	Round or oval tubes	- ⊘() ⊙	3	54	6	6105-T5 Extrusions up through 0.500 in. thick	up through 0.500 i	. thick
net section	Flat elements in bending in their own plane, symmetric shapes		4	88	5	White bars apply to unwelded metal	d metal	
() () () () () () () () () ()	On rivets and bolts		2	39	25	Shaded bars apply to weld-affected metal	iffected metal	
BEATING	On flat surfaces and pins and on botts in slotted holes	otted holes	9	26	9	For tubes with circumferential welds, Sections 3.4.10, 3.4.12, and 3.4.16.1 apply for $R_b/t < 20$	welds, Sections 3.4.10,	.4.12, and
Type of Stress	Type of Member or Elen	lement	Sec. 3.4.	Allowable Stress, S & S,	'n	Allowable Stress, S ₁ < S < S ₂	S ₂ Allowable Stress, S ₂ S ₂	tress,
COMPRESSION IN COLUMNS,	All columns		•	ŧ	0	20.2 - 0.126 kUr	66 51100 /(kL/r)P	
axlal				ı	0	7.4 - 0.034 KLIT	144 51100 /(kL/r)²	
Whee was to be	Flat elements supported on one edge	11:1:1:	a	21	2.4	23.1 0.787 b/t	10 154 /(b/r)	
	Columis bucking about a symmetry axis		•	6 0	3.8	8.7 - 0.224 bit	(1/0)/ 58 61	
	Flat elements supported on one edge -	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	, a	21	2.4	23.1 - 0.787 b/t	12 1970 /(b/t)²	
	countris not oucking about a symmetry axis	İ	5	80	3.8	8.7 - 0.224 bit	26 1970 /(5/1)	
	Fiat elements supported on both edness	i I	d	2	9.2	23.1 – 0.247 b/t	33 491 /(b/t)	
COMPRESSION IN COLUMN		· · ·	b	80	5	8.7 - 0.070 b/t	62 271 /(b/t)	
ELEMENTS, gross saction	Flat elements supported on one edge and with stiffener on other edge	1[]	9.1			see Part IA Section 3,4.9.1	4.9.1	
	Flat elements supported on both edges and with an intermediate stiffener		9.2		,	see Part IA Section 3.4.9.2	4.9.2	
	Curved elements supported on both edges	£ £	Ş	77	1.4	22.1 - 0.799 \Aji	141 3190 (34)	$1+\frac{\sqrt{R_0/t}}{35}\Big ^2$
)	2	60	9.6	8.6 - 0.275 4Rvit	450 3190 (Pp) 1 + JR/1	+ (/R _V /t)

		2 111 1		21	24	23.9 - 0.124 Loff,	62	87000 /(L _b /r _p /²
	Single web shapes	11.1.	<u></u>	60	+	8.8 -0.034 LVr.	2	87000 /(LJ/r,)*
		Ray AR. P.		25	8	39.3 - 2.70 (RJI	81	Same as
	Round or oval tubes	100 P	면 -	<u>,</u>	8	15.2-0.764 (PL)	184	Section 3.4.10
IN BEAMS,	1	t	,	28	4	$40.5 - 0.927 \frac{d}{t} \sqrt{\frac{L_b}{d}}$	53	11400 $\sqrt{\frac{d}{4}} > \frac{L_b}{d}$
gross section	Solid rectangular and round sections	• p	2		61	137-0.182 4/5	8	11400 /(4) ² / ₂
				24	窓	23.9 - 0.238 (21.5°	1680	23600 / ^{2L₂S_c}
	Tubular shapes		<u> </u>		§	8.8 - 0.065 (21.5.	8070	23600 /21.5.
		1 1 1		21	6.5	27.3 - 0.930 bit	40	182 /(b/t)
	Flat elements supported on one edge		2	8 3.	G	10.3 - 0.265 b/t	**	to the state of th
		10-10-10-10-10-10-10-10-10-10-10-10-10-1	,	12	23	27.3 - 0.292 bit	æ	580 /(b/f)
NOMBBERGION	rial elements supported on boin edges	>	L	8	8	10.3 - 0.083 bit	88	320 ((5/4)
IN BEAM ELEMENTS,	I	œĴ		153	23	26.2 - 0.944 JAJI	141	3780 $\sqrt{\frac{R_0}{t}} / (1 + \frac{4R_0 H}{35})^4$
(alement in uniform	Curved elements supported on both edges	6	9	0.	80 C/J	10.1 - 0.325 4AJI	95	3780 (P.)(1+ (R.))
compression), gross section	Flat elements supported on one edge and with stiffener on other edge	<u>-[</u>	16.2			see Parl IA Section 3.4.16.2	1,4.16.2	
	Flat elements supported on both edges and with an intermediate stiffener	4	16.3			see Part IA Section 3.4.16.3	3.4.16.3	
			#	88	1.0	1 1.	1	4930 I(bil)*
IN BEAM	pall after three interesting	- - -		2 8	7 8 E	13.7 = 0.270 ht	\$ K	1520 /(htf)
(element in	Flat elements supported on both edges	\{\frac{1}{2}}	e	0	65	19.7 - 0.059 hit	128	881 (fht)
plane), gross	Flat elements supported on both edges	T T 4,	:	28	110	40.5-0.117 hit	173	3500 ((1/1/)
	and with a longitudinal stiffener		2	Q	061	18,7 × 0.023 ht	8	2040 /(h/f)
SUEAD IN	Unstiffened flat elements supported		20	12	8	15.8 - 0.101 h/t	3	38700 /(h/t)²
ELEMENTS,	on both edges	114		ت	8	6.0 - 0.029 Mr	8 8	38/00 /(mt)*
gross section	Stiffened flat elements supported on both edges	I THE THE	2	- S	- 86	8.2 - 0.039 ast	8 8	53200 /(a _p /t)*