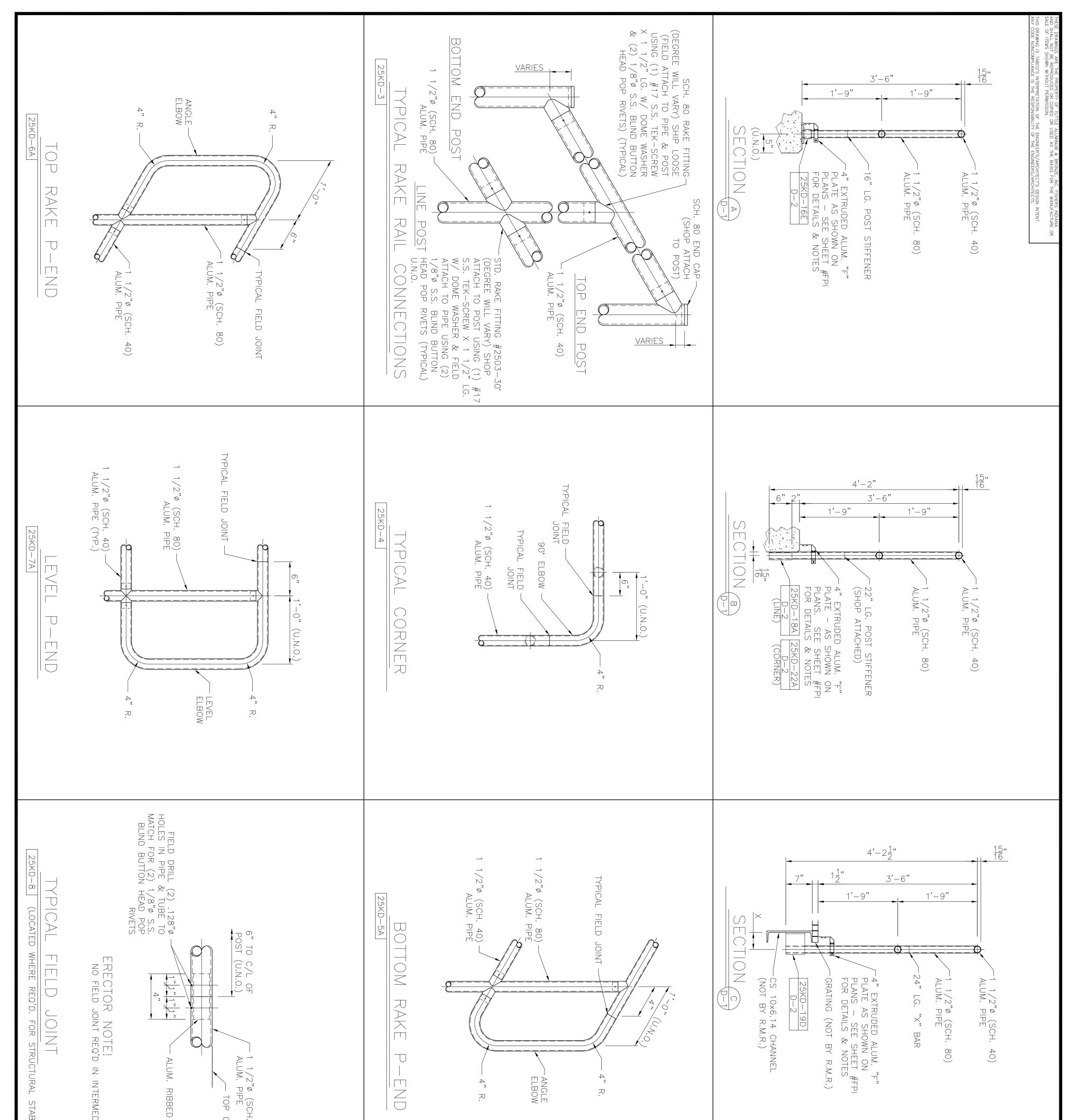
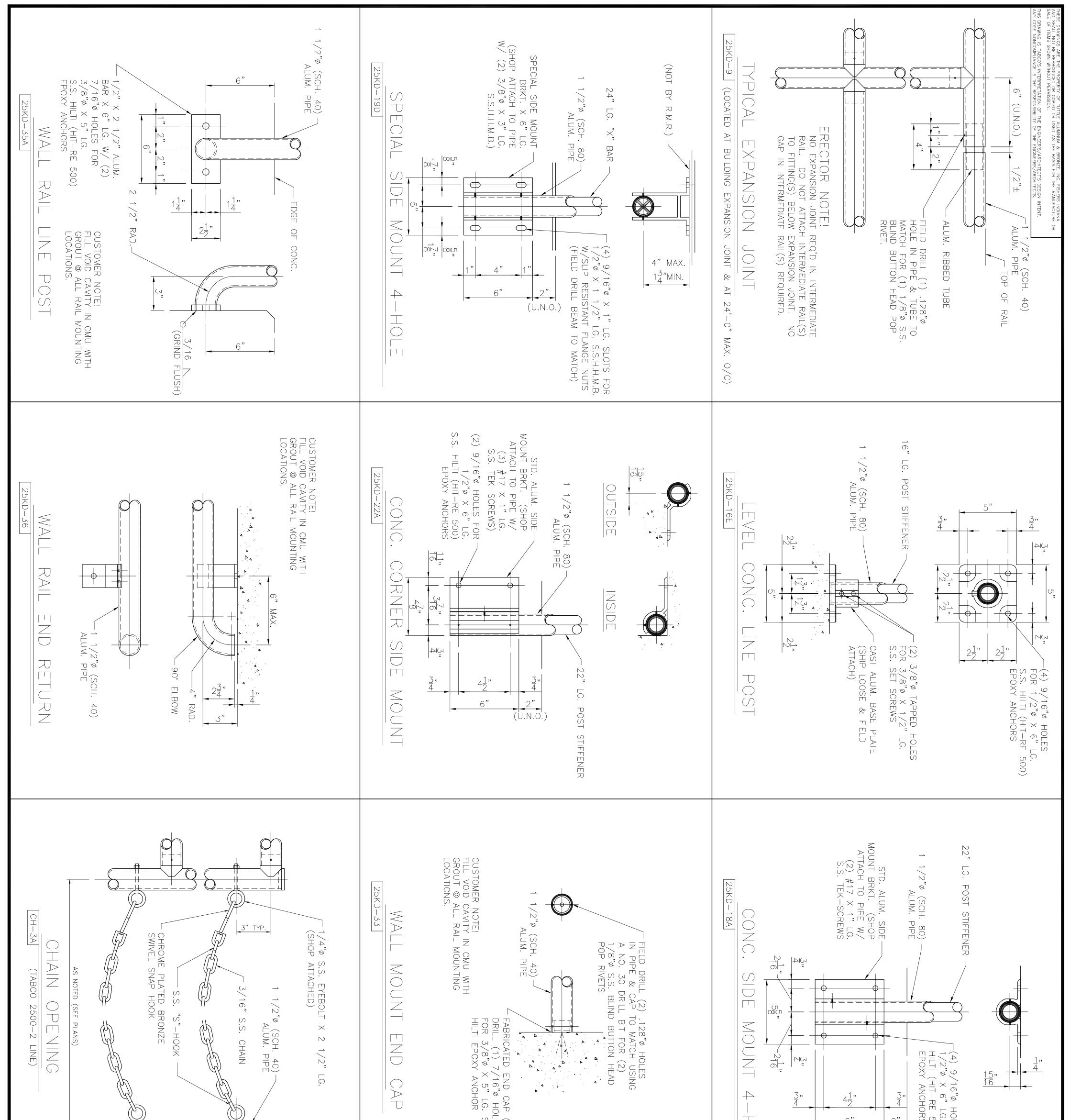


SUBMITTAL TRANSMITAL

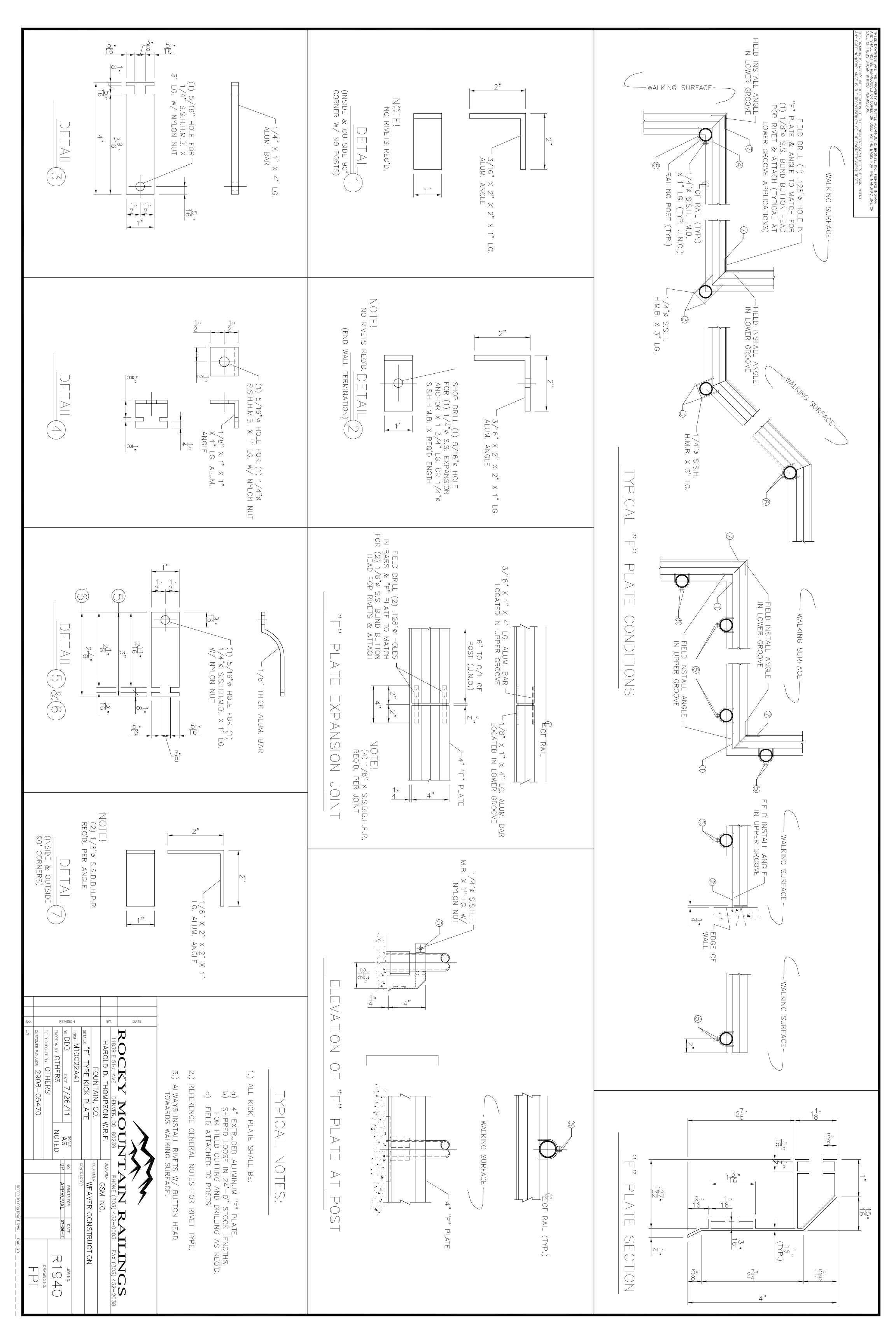
July 26, 2011 WCM Submittal No: 05500-001

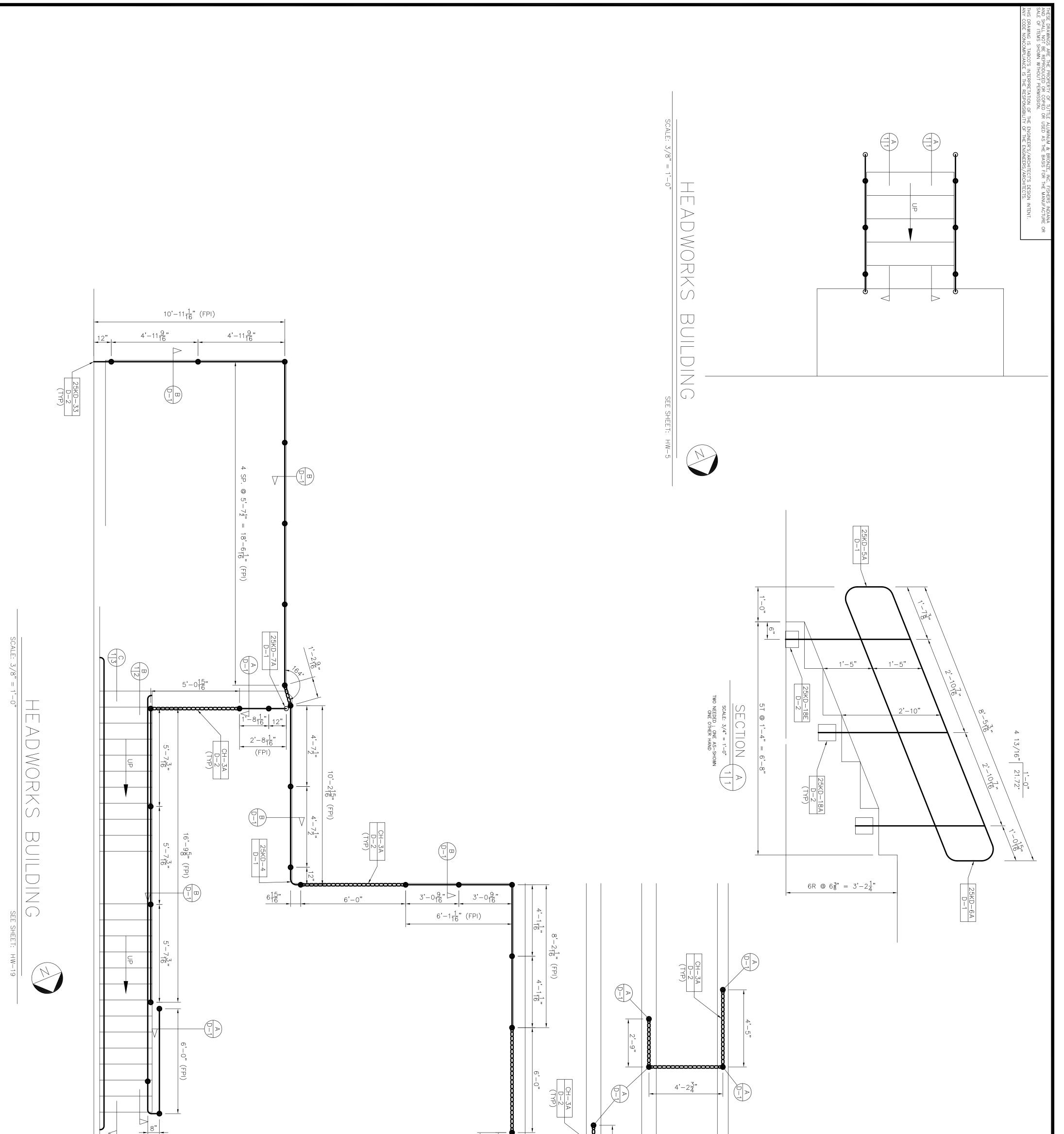

- PROJECT: Harold Thompson Regional WRF Birdsall Rd. Fountain, CO 80817 Job No. 2908
- ENGINEER: **GMS, Inc.** 611 No. Weber St., #300 Colorado Springs, CO 80903 719-475-2935 Roger Sams
- OWNER: Lower Fountain Metropolitan Sewage Disposal District 901 S. Santa Fe Ave. Fountain, CO 80817 719-382-5303 James Heckman
- CONTRACTOR: Rocky Mountain Railings 11839 E. 51st Ave. Denver, CO 80239
- SUBJECT: Handrail Submittal
- SPEC SECTION: 05500 Metal Fabrications

PREVIOUS SUBMISSION DATES: None


DEVIATIONS FROM SPEC: ____ YES X__ NO

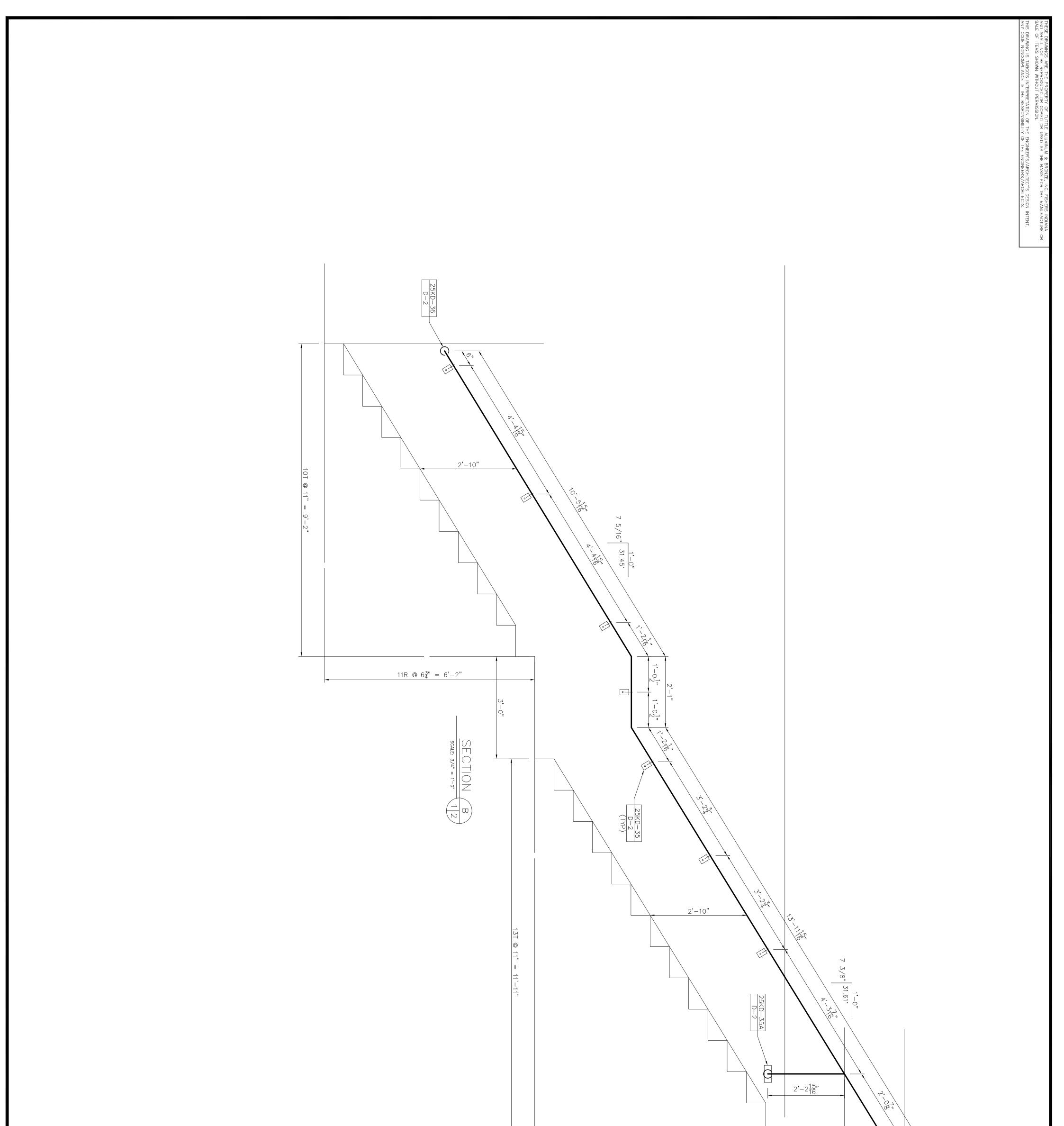
CONTRACTOR'S STAMP: This submittal has been reviewed by Weaver General Construction and approved with respect to the means, methods, techniques, & safety precautions & programs incidental thereto. Weaver General Construction also warrants that this submittal complies with contracted documents and comprises on deviations thereto:


Contractor's Stamp:	Engineer's Stamp:
Date: 7/26/11 Reviewed by: H.C. Myers (X) Reviewed Without Comments () Reviewed With Comments	
ENGINEER'S COMMENTS:	

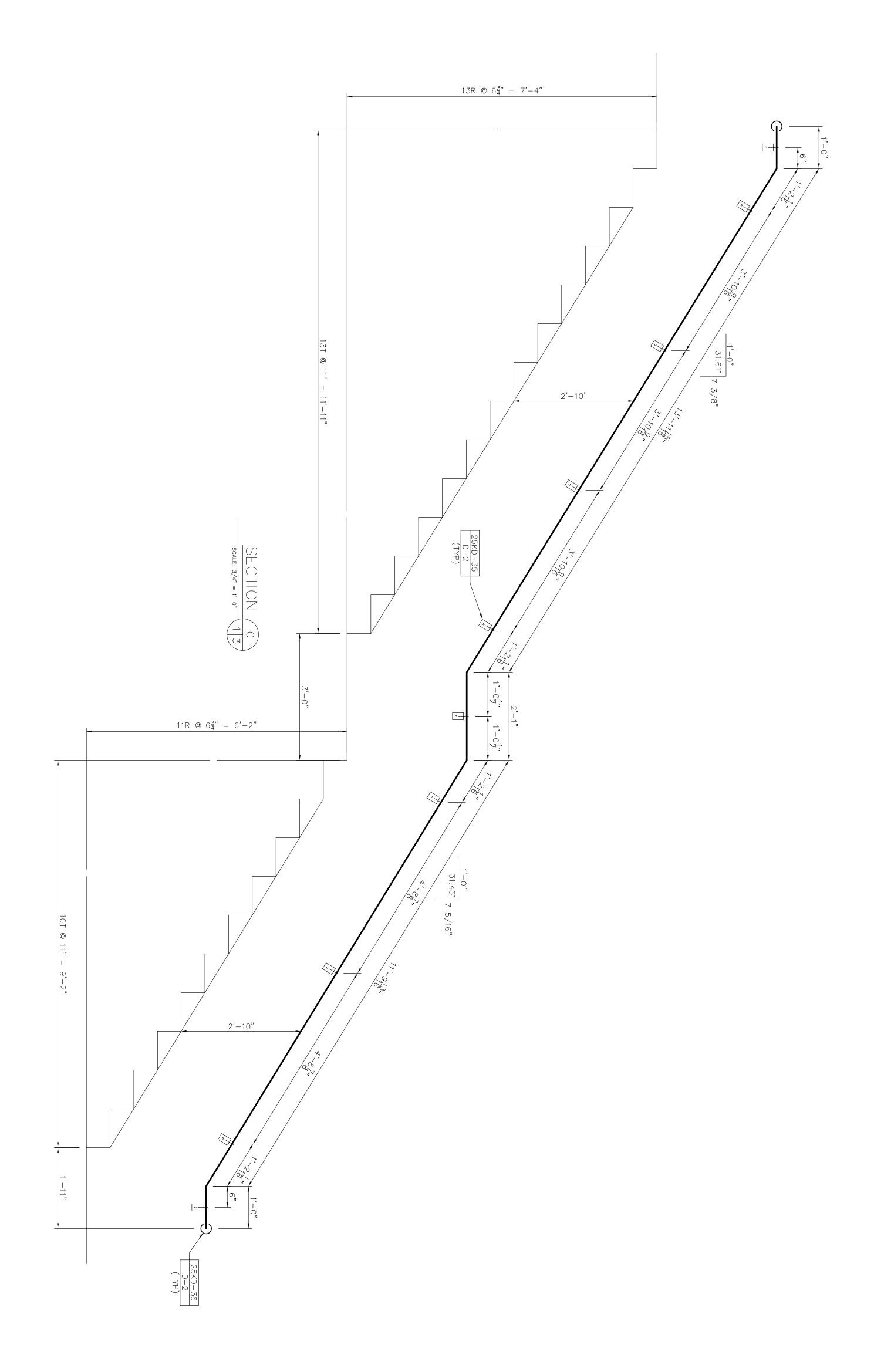


HAROLD D. THOMPSON W.R.F. DESIGNER GSM INC. FOUNTAIN, CO. CUSTOMER GSM INC. FOUNTAIN, CO. CUSTOMER WEAVER CONSTRUCTION WEAVER CONSTRUCTION CONTRACTOR FILD CHECKED BY OTHERS SCALE NOTED NOTED SCALE SPECTION BY OTHERS NOTED DATE SCALE SPECTION BY OTHERS SCALE SPECTION BY OTHERS NOTED CUSTOMER P.O. /VOB 2908-05470 DESCRIPTION CUSTOMER P.O. /VOB 2908-05470	DIATE RAIL.
Ist AVE DENVER, CO	TUBE
	. 40) Of Rail
 12) ALL RAIL WHEN PROPERLY INSTALLED SHALL MEET OR EXCEED OSHA REQUIREMENTS. 13) MAX. POST SPACING TO BE 6'-O" C/C. 14) ALL RAIL IS TO BE FINISHED IN ACCORDANCE WITH THE ALUMINUM ASSOCIATION'S DESIGNATION M10C22A41. 15) ALL DIMENSIONS SHOWN THROUGHOUT THIS SET ARE APPROXIMATE AND SHALL BE FIELD VERIFIED DURING ERECTION. 	
 8) ALL KICK PLATES ("F" TYPE TOE BOARD) SHALL BE SHIPPED LOOSE IN 24'-0" LG. STOCK LENGTHS FOR FIELD CUTTING & DRILLING AS REQ'D. 9) ALL POSTS ARE FURNISHED CUT TO LENGTH WITH FITTINGS & MOUNTING PLATES ATTACHED (EXCEPT FOR TOP FITTING AT LEVEL & RAKE LINE POSTS). 10) PIPE FOR STRAIGHT RAIL IS FURNISHED IN 24'-0" STOCK LENGTHS FOR CUTTING & DRILLING AS REQ'D. 11) ELBOWS W/ A 4" C/L RADIUS ARE FURNISHED AS REQ'D. & MUST BE FIELD CUT TO FIT FIELD CONDITIONS. 	
GENERAL NOTES! 1) ALL RAIL TO BE OF MECHANICAL CONSTRUCTION U.N.O 2) ALL RAILS TO BE FABRICATED FROM 1 1/2"¢ (SCH. 40) ALUMINUM PIPE (6105–T5 ALLOY). 3) ALL POSTS TO BE FABRICATED FROM 1 1/2"¢ (SCH. 80) ALUMINUM PIPE (6105–T5 ALLOY). 4) ALL COMPONENTS TO BE 6105–T5 ALLOY. 5) ALL FASTENERS (SELF TAPPING SCREWS, BLIND RIVETS, MACHINE BOLTS, EXPANSION ANCHORS, ETC.) TO BE STAINLESS STEEL. (TYPE 304) 6) ALL RAILING SURFACES IN CONTACT WITH CONCRETE OR DISSIMILAR METALS SHALL RECEIVE ONE SHOP APPLIED COAT OF BITUMINOUS PAINT. 7) ALL BOLTS USED TO MOUNT RAILINGS TO FLOORS, WALLS, STEEL, ETC. ARE BY RAILING MFR.	
STD. TEE FITTING (SHOP ATTACH (SHOP ATTACH (SHOP ATTACH TO POST USING (SHOP ATTACH TO POST USING SHOP ATTACH (SHOP ATTACH TO POST USING SHOP ATTACH THING SHOP ATTACH SHOP ATTACH THE SS. BUNU BUTTON HEAD SHOP ATTACH THE SS. SHOP ATTACH SHOP ATTACH SHOP ATTACH SHOP ATTACH SHOP ATTACH THE SS. SHOP ATTACH SHOP ATTACH	

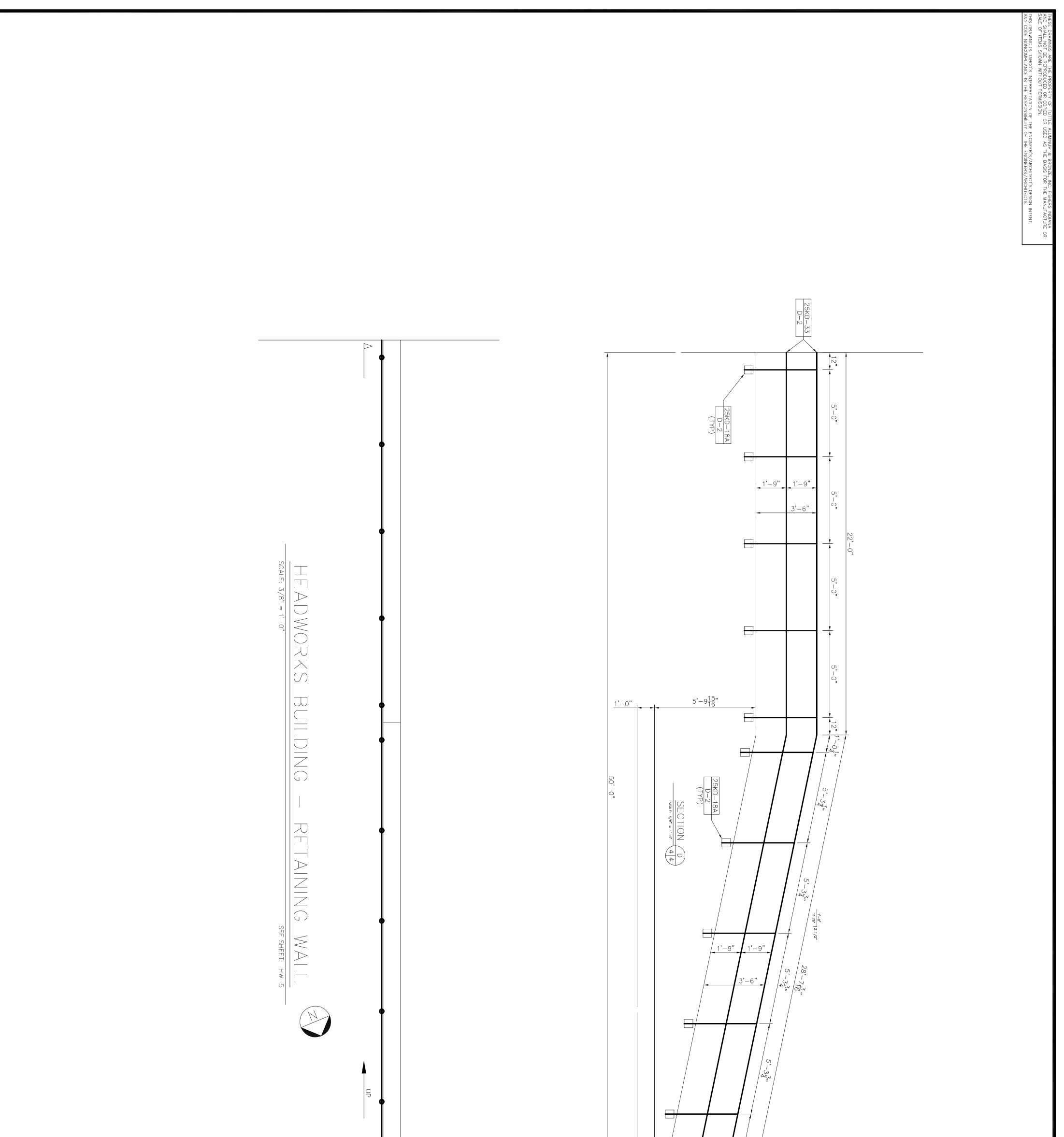
	S.S. OF S.S.	Image: Construction of the second
Art ROCKY MOUNTAIN RAILINGS 11839 E.5er. NE DENKER, co. 80239 Bit HAROLD D. THOMPSON W.R.F. FOUNTAIN, CO. FOUNTAIN, CO. FO	CUSTOMER NOTE FILL VOID CAVITY IN CMU WITH GROUT & ALL RAIL MOUNTING LOCATIONS. 1/4" #20x3/4" PHILLIPS FLAT HEAD TC-F BOLT (COUNTERSUNK) STD. ALUM. WALL BRKT. (SHIP LOCSE) WALL BRAT. 2" EPOXY ANCHORS WALL BRACKET 25KD-35	1 1/2"ø (SCH. 80) 1 1/2"ø (SCH. 80) ALUM. PIPE STD. ALUM. SIDE MOUNT BRKT. (SHOP ATTACH TO S.S. TEK-SOREWS) 3.S. TEK-SOREWS) 4.UM. SIDE MOUNT S.S. TEK-SOREWS 2.1. CONC. SIDE MOUNT 2-HOLE 25KD-18E



2'-10"


	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}$ \left(\begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array} \left(\begin{array}{c} \end{array}\\ \end{array}\\ \end{array} \left(\begin{array}{c} \end{array} \left(\begin{array}{c} \end{array} \left(\begin{array}{c} \end{array} \left(\end{array}) \left(\end{array} \left(\begin{array}{c} \end{array} \left(\end{array}) \left(\bigg) \left(\bigg
PLEASE VERIFY A PRIOR TO FABRIC PRIOR TO FABRIC PROCKEY MC 11839 E 51st AVE DENVER, 0 HAROLD D. THOMPSON FOUNTAIN, CO. DETALS HEADWORKS BLDG. FINSH M10C22A41 DR. DDB DATE 7/26/11 ERECTION BY OTHERS FIELD CHECKED BY OTHERS CUSTOMER P.O./JOB 2908-05470	2'-2" 3'-48" 5'-8" (FP) CH-3A D-2 (TYP) CH-3A D-2 (TYP) CH-3A
NOTED	
RETE STAIR DIMENSIONS	

TOTAL BASE MT. EMBED SIDE MT. POST


		<u>y</u>		
		-	$13R \oplus 6\frac{3}{4}" = 7'-4"$	
Date ROCKY MOUNTAIN RAILINGS IB39 E 51st AVE DENVER, C0 80230 PHONE (303) 432-003 FAX (303) 432-2038 HAROLD D. THOMPSON W.R.F. FOUNTAIN, CO. DENVER CONSTRUCTION GETMLS STAIR DETAILS FOUNTAIN, CO. ONTRACTOR Insh MT0C22A41 SCALE ONTRACTOR GR. DDB OATE 7/26/11 SCALE GR. DDB OATE 7/26/11 SCALE GR. DDB OATE 7/26/11 NOTED FIED ONECGED BY OTHERS NOTED ONTRACTOR R1940 ULTR VF DEAWING NO. DEAWING NO.	PLEASE VERIFY ALL CONCRETE STAIR DIMENSIONS PRIOR TO FABRICATION.			

HESE DRAWINGS ARE THE PROPERTY OF TUTTLE ALUMINUM & BRONZE, INC. FISHERS INDIANA AND SHALL NOT BE REPRODUCED OR COPIED OR USED AS THE BASIS FOR THE MANUFACTURE OR ALE OF ITEMS SHOWN WITHOUT PERMISSION. HIS DRAWING IS TABCO'S INTERPRETATION OF THE ENGINEER'S/ARCHITECT'S DESIGN INTENT. ANY CODE NONCOMPLIANCE IS THE RESPONSIBILITY OF THE ENGINEERS/ARCHITECTS.

													_
	NO.		I						B`	Y I		DA	TE
	L/F	CUSTOMER P.O./JOB 2908-05470	FIELD CHECKED BY OTHERS	ERECTION BY OTHERS NOTED	DR. DDB DATE 7/26/11 AS	FINISH M10C22A41	DETAILS STAIR SECTION	FOUNTAIN, CO.	HAROLD D. THOMPSON W.R.F.	11839 E 51st AVE DENVER, CO 80239	ROCKY MOUN		Z
					9 0 0			CUSTOMER	DESIGNER				1
REFER TO CONTRACT DWG DWG NO				Ĩ	APPROVAL 0		WEAVER CONSTRUCTION		GSM	PHONE (303) 432-	AIN R	· / .	San
					DATE					-000	5		
	(7	DRAWING NO.	T T T S T S 40						3 FAX (303) 432-2038	N RAILINGS		

PLEASE VERIFY ALL CONCRETE STAIR DIMENSIONS PRIOR TO FABRICATION.

NO. REVISION BY DATE		
ROCKY MC 11839 E 51st AVE DENVER, CO HAROLD D. THOMPSON W.I FOUNTAIN, CO. DETALS RETAINING WALL DETALL FINSH M10C22A41 DR. DDB DATE 7/26/11 ERECTION BY OTHERS FIELD CHECKED BY OTHERS CUSTOMER P.O./JOB 2908-05470 L/F	PLEASE VERIFY ALL PRIOR TO FABRICA	D-1 D-1
NOTED OUTRACT	LL CONCRETE STAIR DIMENSIONS ATION.	
INTER CONSTRUCTION PRINTS FOR DATE JOB NO. APPROVAL 07-26-11 REFER TO CONTRACT DWG. DWG. NO. REFER TO CONTRACT DWG. DWG. NO.	DIMENSIONS	

TOTAL BASE MT. EMBED SIDE MT.

- - 1 1 - N/A - 11

POST

February 10, 1986

Tuttle Aluminum and Bronze Company 120 Shadow Lawn Drive Noblesville, Indiana 46060

ATTN: Mr. Doug Waugh

Draver CO Destin, Fl Garv IN Gaithersburg, MD Harrisburg, PA Hintsville, AL Lowester, AY Lowester, KY Rotegs, NG Satisbury, MD Satisbury, MD Satisbury, MD Satisbury, MD

Affiliates: Alexandria VA Norfolx VA

RE: Load Testing of Aluminum Hand Rail Structure - TABCO 2500 Tuttle Aluminum and Bronze Company Noblesville, Indiana ATEC Job No. 21-62016

Gentlemen:

Submitted herewith are results of load testing of an aluminum hand rail structure at the referenced site. This testing was performed on February 7, 1986 on the railing configuration noted below.

Three independent loads were applied to the rail structure. (See attached sketch of the rail structure) The loads were applied horizontally at a midspan, horizontally at a post and vertically at a midspan. The load was applied by a hydraulic jack attached to a fork lift. A calibrated proving ring was attached to the rail at loading locations for measurement of load. The loads were then applied by jacking the pump against the proving ring until the desired load was reached.

Deflection readings were made at maximum loading (200#) and then again after release of load to determine any permanent deflection. This was measured as deflection of the top rail horizontally (for horizontal loading) and the top rail vertically (for vertical loading).

The following is the construction description of the TABCO 2500 - Mechanical Connections railing system:

Consulted Gentechnical Environmental & Materials Engineers

Corporate Office: Indianapors, IN

Offices:

Atlanta GA Baltimore, MD Birminghain, AL Calumet Catv, IL Chicago IL Cincinnati OH Dallas TX Dayton OH

57

February 10, 1986 Tuttle Aluminum & Bronze Page 2

• [], • •

TABCO 2500 CONSTRUCTION

Aluminum rail was constructed of 1-1/2" (Sch 40) aluminum pipe, top, intermediate, and post. All pipe to pipe connections were mechanically attached with fittings and rivets. The posts were welded to 3/8" X 2-1/2" x 6" aluminum base plates and mounted to a concrete floor with two (2) 3/8" x 2-3/4" stainless steel TRUBOLTS.

We appreciate the opportunity to be of service to you on this project. If you have any questions, please give me a call at this office.

Very truly yours;

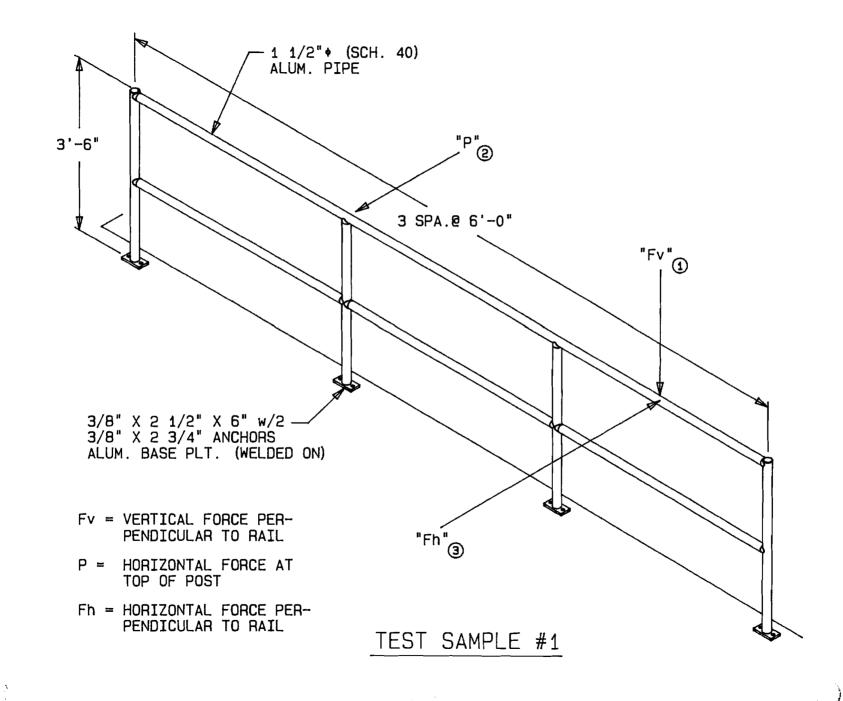
ATEC ASSOCIATES, INC.

_ -0 Kiondo 1/Miliano

Thomas J. Struewing Project Engineer

TJS/cas

Load Test of Aluminum Railing Tuttle Aluminum and Bronze Company Noblesville, Indiana ATEC Job No. 21-62016


	TABCO 2500 - Mechanical Deflection	<u>Connections</u> <u>Permanent Set *</u>
Horizontal load Midspan = 200# (Fh)	at 1-9/16"	1/16"
Vertical Load at Nidspan = 200# (Fv)	0.127"	0.00"
Horizontal Load Post = 200# (P)	at 1-5/16"	0 "

* Deflection after release of load

•

(

C

.

5

ROCKY MOUNTAIN RAILINGS

Re: Alloy Temper for Rocky Mountain Railings, Inc. Aluminum Pipe

Subject: Increased Yield Strength and Anodizing

As of 01/01/2007, Rocky Mountain Railings, Inc. has changed the use of alloy 6063-T6, 1-1/2" Sch. 40 pipe to the use of Aluminum Alloy 6105-T5, The reasons for the change is as follows:

- 1). 6105-T5 has an ultimate minimum tensile strength of 38 KSI, and 6063-T6 has 22 KSI (See Alcoa Conformance Chart) This alloy meets or exceeds OSHA and UBC loading requirements.
- 2). Alloy 6105-T5 is also equivalent to alloy 6061-T6 in terms of tensile and yield strength. Alloy 6061-T6 is also a commonly specified alloy due to its superior strength. However the anodizing finish of 6061-T6 does not match Rocky Mountain Railings, Inc. standard clear anodize of our fittings 6105-T5 is a near perfect match in finish, Therefore a more aesthetic appearance.

Although Rocky Mountain Railings, Inc. has endured cost impact for the use of alloy 6105-T5, We have not passed this cost to our customers. We feel that the increased strength of alloy and the appearance of the finish have helped in the submittal process and a feeling of satisfaction, knowing that we are supplying a quality product to our customer.

If you have any questions, Please call at (303)-432-0003

Alcoa Engineered Products

Understanding Extruded Aluminum Alloys

Among Alcoa Engineered Products' structural 6XXX series alloys, 6005 and 6105 are medium strength alloys that are very similar to alloy 6061 except they contain higher amounts of silicon. These alloys are used in designs that require moderate strength, but are generally not recommended for applications where the structure may be susceptible to impact or overloading.

When bending is required, the naturally aged -T1 temper is preferred. However, due to the excess silicon content, properties may increase more rapidly with room temperature aging than typically experienced with 6063 and 6061 alloys. In comparison to 6061, alloys 6005 and 6105 are easier to extrude and are less quench sensitive, allowing them to be used for more complex shapes. Alloys 6005 and 6105, when produced to a -T5 temper, have the same minimum tensile and yield strength as 6061-T6. In comparison to 6063, alloys 6005 and 6105 in -T5 tempers have better machinability and strength properties than 6063-T6.

. .

Alloys 6005 and 6105 can also be welded or brazed using various commercial methods (caution: direct contact with dissimilar materials can cause galvanic corrosion). The heat from welding or brazing can reduce strength in the weld region. Consult the Material Safety Data Sheet (MSDS) for proper safety and handling precautions when using 6005 and 6105 alloys.

These alloys also offer good finishing characteristics and respond well to common anodizing methods such as clear, clear and color dve and hardcoat.

Typical applications for alloys 6005 and 6105 include:

- Automotive connector stock
- Structural members
- Hand rail tubing
- Seamless tubing
 - Ladder structures

6005/6105 Temper Standard Tempers	r Designations and Definitions Standard Temper Definitions*
F	As fabricated. There is no special control over thermal conditions and there are no mechanical property limits.
T1	Cooled from an elevated temperature shaping process and naturally aged. (See Note A.)
	Cooled from an elevated temperature shaping process & artificially aged. (See Note A.)
Alcoa Special Tempers** (For 6005 Alloy only)	Alcoa Special Temper Definitions
T1S14	A maximum formability special temper for product that will be formed within 1 to 2 weeks after shipment. Samples are aged and tested in the -T5 condition to verify heat treat capability.
T5S3	An underaged temper to increase formability at a sacrifice of mechanical properties.
T5511	Same mechanical property limits as -T5. Stretched 1-3% for stress relief.

*For further details of definitions, see Aluminum Association's Aluminum Standards and Data manual and Tempers for Aluminum and Aluminum Alloy Products. Note A: Applies to products that are not cold worked after cooling from an elevated temperature shaping process, or in which the effect of cold work in flattening or straightening may not be recognized in mechanical properties. **Alcoa Special Temper designations are unregistered tempers for reference only and provided for customer use to identify unique processing, material, or end use

application characteristics.

Alloy 6005 Cher		iquìdus	Temp	erature:	1210°F	Solidus Temperatur	Density: 0.097 lb./ in. ³				
Percent Weight					Elements		Others	Others			
	<u>Si</u>	<u>Fe</u>	<u>Cu</u>	<u>Mn</u>	Ma	Cr	<u>Zn</u>	Ii	Each	<u>Total</u>	Aluminum
Minimum	.6		-	_	.40	_				-	
Maximum	.9	.35	.10	.10	.6	.10	.10	.10	.05	.15	Remainder

Alloy 6105 Chemical Analysis					iquidus	s Temp	erature:	1200°F	Solidus Temperatu	Density: 0.097 lb./ in. ³	
Percent Weight			-		Elem	ents			Others Others		
	<u>Si</u>	<u>Fe</u>	<u>Cu</u>	<u>Mn</u>	Mg	<u>Cr</u>	<u>Zn</u>	Ti	Each	Total	<u>Aluminum</u>
Minimum	.6				.45						
Maximum	1.0	.35	.10	.15	.8	.10	.10	.10	.05	.15	Remainder
						Ave	200 00	officiant			

Average Coefficient of Thermal Expansion (68° to 212°F)

6005	13.0 X 10 ⁻⁶ (inch per inch per °F)
6105	13.0 X 10 5 (inch per inch per °F)

Alloy

		cified lion or		Tensile Str	ength (ksi)		Elongation ³ Percent	Typical Thermal	Typical Electrical
Temper	Wall Thickness (inches) ² Min. Max.		Ultimate Min. Max.		Yield (0.2% offset) Min. Max.		Min, in 2 inch	Conductivity at 77°F btu-in./tt²hr°F	Conductivity ⁵ (% IACS)
							67 4D4		
Alloy 6005 S	tandard Ter	npers ¹							
F	A	.11		No Prope	erties Apply			N/A	N/A
 T1		.500	25.0		15.0		16	1250	47
T5		.124	38.0		35.0	-	8	1310	49
T5	,125		38.0		35.0		10	1310	49
Alloy 6105 S	tandard Ter	npers ¹	Charles Marine				Real Providence		
F	A	JI		No Prope	erties Apply			N/A	46
T1		.500	25.0		15.0		16	1220	
T5		.500	38.0		35.0		8	1340	50
Alloy 6005 S	pecial Temp	vers*				iller i Maria			
T1S146		.124	38.0		35.0		8	1250	47
T1S14 ⁶	.125		38.0		35.0	_	10	1250	47
T5S3	All		35.0		30.0		8	N/A	N/A
T55117		.124	38.0		35.0		8	1310	49
T55117	.125		38.0		35.0		10	1310	49

© The mechanical property limits for standard tempers are listed in the Property Limits section of the Aluminum Association's <u>Aluminum Standards and Data</u> manual and <u>Tempers for Aluminum and Aluminum Alloy Products</u>. © The thickness of the cross section from which the tension test specimen is taken determines the applicable mechanical properties. © For materials of such dimensions that a standard test specimen cannot be taken, or for shapes thinner than .062^s, the test for elongation is not required. © D=Specimen diameter. © Minimum, unless stated as typical. © These properties apply to the material after proper artificial aging. No properties apply to shipped product. Por stress-relieved tempers, the characteristics and properties other than those specified may differ somewhat from the corresponding characteristics and properties of material in the basic temper.

*Alcoa Special Temper designations are unregistered tempers for reference only and provided for customer use to identify unique processing, material, or end use application characteristics.

		Formability	Machinability	General Corrosion Resistance	Weldability (Arc with Inert Gas)	Brazeability	Anodizing Response	Typical Conductivity (%IACS)
Alloy	Temper	DCBA	DCBA	DCBA	DCBA	DCBA	DCBA	40 50 60
6005	-T1	N/A	N/A	N/A				
	-T5, T511	N/A	N/A	N/A				
6105	-T1	N/A	N/A	N/A				
	-T5	N/A	N/A	N/A				
6061	-T4							
	-T6		Terrista in					
6063	-T4						20	
	-T6				Constant Constant			
6262	-T6						21	

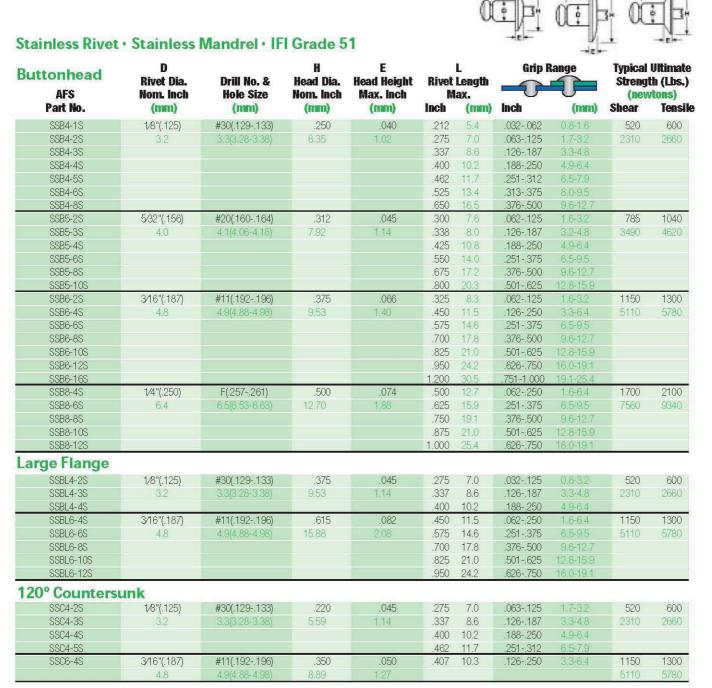
In Rating: A=Excellent B=Good C=Fair D=Poor For further details of explanation of ratings for, see Aluminum Association's <u>Aluminum Standards and Data</u> manual.

Alcoa Distribution and Industrial Products

53 Pottsville Street Cressona, PA 17929 Phone: 800-233-3165 FAX: 800-252-4646

317-594-5609

1.1.5


an an in the second stands and strong and an statements eral information general information wrought products I VARIOUS TEMPERATURES® TYPICAL TENSILE PROPERTIES AT VARIOUS TEMPERATURES® Table 3 (continued) Table 3 (continued) Tensilo Strength, kal Elon Bion-pation In 2 In. Tentilo Strength, Alloy and Temper Lion ∧ itoy anvi Tensilo Steengin. sellan islin., nerceni Elea-Temp., Alloy Temp Tenip. sation in Z in Tomper Temper in 2 in., Percent Ultimate Yichit Ultimate Vield® Ullimate Derconi (iCfuen Yichico 25 6063-76 -320 5436-0 -320 7075-16, -320 ~112 ·T651 75 -112 Ľ 22 20 31 75 30 36 50 60 23 22 20 17 ΞŞ <u> | 8</u> 70 31 300 400 500 30 55 2i 9 6,5 1,5 2,5 2 9 6.5 4.6 7.5 4.2 4,5 3,3 2,3 70 70 700 ii G YNAD С 2 x, 66= 20,000 50 49 48 6151-TG 17 17 300360 500 7075-173, ю 79 6053-T6, -T651 67 14 13 13 13 27 80 44 44 12 5 3 3 3 25 313 5 4 3 5 5 4 3 5 5 5 4 9 -112 -17351 ~112 300 400 24 12 4.7 2 75 212 300 63 58 27 13 6.5 4.6 _ 75 43 28 14 6.5 5 4 15 20 60C 16 11 55 65 70 500 600 700 30 50 43 35 õã 110 700 6061-T6, <u>47</u> 45 -T651 18 17 30 27 25 31 G2G2-T651 --- 320 42 7079-TG. -TG51 75 -320 38 31 15 2.7 1.8 -- 112 47 45 42 34 H 42 34 19 7.5 4.6 3 -112 68 75 212 300 40 38 31 300 400 75 212 14 14 18 37 60 28 13 8.5 20 28 40 85 95 20 ŝō sõõ 400 500 ٥Ö 700 6262-179 62 JĞ -320 [4 7.5 5,5 tõõ -112 56 55 58 53 38 15 8.**3** 4.6 5 700 C 49 000* - 18 75 212 300 400 500 600 4,3 JŪ 6063-T1 YIEL 36 26 24 22 22 20 18 20 37 45 80 ×. 66= 24,400 04 37 14 13 14 15 6.5 3,5 2,5 2 33 18 20 40 75 80 34 48 13 6 2.7 1.8 - * 3.2 2.3 70Ö O Lowest strengths during 10,000 hours of exposure at testing temperature under no load; stress applied at 5,000 psi/min to yield strength and then it train rate for 0.03 in./m. min to failure. Under some conditions of temperature and then, the application of heat will givernely affect cartain alloys for use of allowing diagram of the entropy of Allowing the suitability of the various should be consulted. $1\overline{10}$ $1\overline{30}$ 6063-TS -320 22 22 24 21 22 18 118 118 119 110 110 -112 DOffact equals 0.2 parcent. <u>28</u> <u>27</u> 24 OPreferred alloy designation is 6101. 20 9 45 23 23 5.5 2.5 2 400 500 600 700 40 75 YIELD x. 66 = 13,860 DS Z1000 ALUMINUM COMPANY OF AMERICA ALCOA ALURINUM HANDDOOK

p.7

47.51

Marson

Stainless Rivets

KLIK-FAST RIVETS conform to IFI-114 (inch) and IFI-505 (metric). Millimeters (mm) and newtons (N) are in green.

Meet our stainless lineup

AND REAL ON CONTRACT OF

COVERAGE RATES

	Dry Mils (Microns)	Wet Mils (Microns)	Sq Ft/Gal (m²/Gal)
Suggested	10.0 (255)	15.5 (395)	103 (9.5)
Minimum	8.0 (205)	12.5 (320)	128 (11.9)
Maximum	12.0 (305)	19.0 (480)	86 (7.9)

Allow for overspray and surface irregularities. Film thickness is rounded to the nearest 0.5 mil or 5 microns. Application of coating below minimum or above maximum recommended dry film thicknesses may adversely affect coating performance.

MIXING Stir thoroughly, making sure no pigment remains on the bottom of the can.

THINNING Use No. 2 Thinner. For air or airless spray, brush or roller, thin up to 5% or ¼ pint (190 mL) per gallon if necessary. Drum heaters or inline heaters may be necessary to maintain application viscosity during cool weather.

SURFACE TEMPERATURE

Minimum 40°F (4°C) Maximum 135°F (57°C) The surface should be dry and at least 5°F (3°C) above the dew point.

APPLICATION EQUIPMENT

Air Spray

Gun	Fluid Tip	Air Cap	Air Hose ID	Mat'l Hose ID	Atomizing Pressure	Pot Pressure
DeVilbiss MBC or JGA	E	704		1/2" or 3/4" (12.7 or 19 mm)	50 psi (3.4 bar)	20 psi (1.4 bar)

Low temperatures or longer hoses require higher pot pressure.

Airless Spray

Tip Orifice	Atomizing Pressure	Mat'l Hose ID	Manifold Filter
0.017"-0.031"	2400-3000 psi	3/8" or 1/2"	60 mesh
(430-785 microns)	(165-207 bar)	(9.5 or 12.7 mm)	(250 microns)

Use appropriate tip/atomizing pressure for equipment, applicator technique and weather conditions. **Roller:** Use high quality synthetic nap covers. Short nap for smooth surfaces. Long nap for rough surfaces. **Note:** Two or more coats may be required to obtain recommended film thicknesses.

Brush: Use high quality nylon or synthetic bristle brushes. **Note:** Two or more coats may be required to obtain recommended film thicknesses.

CLEANUP

Flush and clean all equipment immediately after use with the recommended thinner or xylol.

WARRANTY & LIMITATION OF SELLER'S LIABILITY: Tnemec Company, Inc. warrants only that its coalings represented herein meet the formulation standards of Tnemec Company, Inc.

THE WARRANTY DESCRIBED IN THE ABOVE PARAGRAPH SHALL BE IN LIEU OF ANY OTHER WARRANTY, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. INERE ARE NO WARRANTIES THAT EXTEND BEYOND THE DESCRIPTION ON THE FACE HERBED. The byer's sole and exclusive temedy against Taemec Company, Inc. shall be for replacement of the product in the event a defective condition of the product should be found to exist and the exclusive remedy shall not have foiled its essential purpose as long as Tnemec is willing to provide comparable replacement product to the buyer. NO OTHER EMEMOY (INCLUDING, BUT NOT LIMITED TO, INCIDENTIAL OR CONSCOURNTIAL DAMAGES FOR LOST PROFITS, LOST SALES, INIURY TO PERSON OR PROFERRY, ENVIRONMENTAL INJURIES OR ANY OTHER MERCEDULATION THE PARE HERBEDY (INCLUDING, BUT NOT LIMITED TO, WARMENTAL INJURIES OR ANY OTHER MERCEDULATIAL USS) SHALL BE AVAILABLE TO THE BUYER, Technical and application information here in is provided for the purpose of establishing a general profile of the coating and proper coating application procedures. Test performance results were obtained in a controlled environment and Inemec Company makes no cleim that these tests or any other tests, accurately represent ell environments. As application, environmental and design factors can vary significantly, due care should be exercised in the selection and use of the coating. FOR INDUSTRIAL USE ONLY. 222003310-00

TUTTLE ALUMINUM 120 SHADLOWLAWN DRIVE

FISHERS IN 46038

COAL TAR CTG. H.B. TNEMEC

s. 3

2003310-00		PAGE 3
	FOR COATINGS, RESINS, AND RELATED MATERIALS (APPROVED BY THE U.S. DEPARTMENT OF LABOR AS 'ESSENTIALLLY SIMILAR' TO FORM OSHA-20) (MEETS REQUIREMENTS OF CFR 29 PART 1910.1200, OSHA'S HAZARD COMMUNICATION STANDARD) NPCA 1	L-84
	SECTION 1 - MANUFACTURER AND PRODUCT INFORMATION	
PRODUCT PRODUCT TRADE NA FORMULA MSDS PREPA	PRODUCT IDENTIFICATION: ID	
TELEPHON EMERGENO	RER IDENTIFICATION: 	64116-3064
	SECTION 2 - HAZARDOUS INGREDIENTS	a and the till the till the set of the till the till and the .
CAS# 148 TALC (NO A PCT BY WI	ASBESTOS FIBERS/RESPIRABLE DUST)	
2 CAS# 772 BARIUM SUI PCT BY WI	27-43-7 JFATE (TOTAL DUST)	
PCT BY WI	DAL TAR PITCH (CONTAINS PPAH'S) 1: 34.4860	
CAS# 108		
PCT BY WI EXPOSURE L ACGIG T OSHA PE OSHA ST	T: 5.6690 VAPOR PRESSURE: 22.000 MMHG @ 68F JIMIT: 0050.00 PPM VL/TWA: 0100.00 PPM 'EL: 0150.00 PPM	
ETHYL BENZ	ENE 2.6770 VAPOR PRESSURE: 6.000 MMHG @ 68F	
CAS# 133 DIMETHYLBE PCT BY WT	0-20-7 NZENE : 11.0730 VAPOR PRESSURE: 5.100 MMHG @ 68F	
مله عله عله مله عله عله عله عله عله عله	**************************************	****

TNEMEC COMPANY, INC. MATERIAL SAFETY DATA SHEET

F046-0465 5G COAL TAR CTG. H.B. TNEMEC SECTION 4 - FIRST AID MEASURES -----EYE CONTACT: Flush immediately with large amounts of clean water under low pressure for at least 15 minutes. Consult a physician. SKIN CONTACT: Wash affected area with soap and water. Remove contaminated clothing. Dispose of or launder accordingly. Consult a physician if skin irritation persists. INHALATION: Remove affected individual to fresh air. Treat symptomatically. If breathing is difficult, administer oxygen. If breathing has stopped give artificial respiration. Consult a physician. INGESTION: Drink 1 or 2 glasses of water to dilute. Do not induce vomiting. Consul a physician or poison control center IMMEDIATELY. Treat symptomatically. NOTE TO PHYSICIAN: Consult SECTION 5 - FIRE AND EXPLOSION HAZARD DATA Higher - -N/A EXTINGUISHING MEDIA: Foam, carbon dioxide, and dry chemical. FIRE-FIGHTING PROCEDURES AND EQUIPMENTS: Keep away from heat, open flames, sparks, and areas where static charge may be generated. Do not apply to hot surfaces due to possible fire and explosion risk. For closed containers, pressure build-up and possible explosion might occur due to extreme heat exposure. Solvent vapors are heavier than air and may travel considerable distance to a source of ignition and flash back. Water may be used to cool unruptured containers. Wear self-contain-ed breathing apparatus with a full facepiece operated in pressure-demand or other positive pressure mode to prevent inhalation of hazardous decomposition products. Use appropriate extinguishing media to control fire. Water may cause violent frothing if sprayed directly into containers of burning liquid. SECTION 6 - SPILL OR LEAK PROCEDURES CLEAN-UP: Remove all sources of ignition. Spills may be collected with inert, absorbent material for proper disposal. Use non-sparking tools, protective gloves, goggles and clothing, adequate ventilation, avoid the breathing of vapors and use respiratory protective devices. Transfer absorbent material to suitable containers for proper disposal. SECTION 7 - SPECIAL PRECAUTIONS HANDLING AND STORAGE: Store in dry area. Keep closures tight and upright to prevent leakage. Do not store in high temperature areas or near fire or open flame. Refer to product data sheet for recommended storage temperatures. SPECIAL COMMENTS: Prevent prolonged breathing of airborne contaminants such as vapor, spray mists, or dusts. Prevent contact with skin and eyes. Do not take internally. Keep out of reach of children. Do not reuse or alter containers without proper industrial cleaning. Do not weld or flame cut empty, uncleaned containers due to potential fire and explosion hazard. Consult product data sheet for proper application instructions.

TNEMEC COMPANY, INC. MATERIAL SAFETY DATA SHEET F046-0465 5G COAL TAR CTG. H.B. TNEMEC SECTION 12 - ECOLOGICAL INFORMATION ECOTOXICOLOGICAL INFORMATION: SECTION 13 - DISPOSAL CONSIDERATIONS WASTE DISPOSAL: Dispose of in accordance with Federal, state, and local regulations regarding pollution. SECTION 14 - TRANSPORT INFORMATION DOT HAZARD CLASS TRANSPORTATION ASSISTANCE: Contact Tnemec's Traffic department @ (816) 474-3400. -----SECTION 15 - REGULATORY INFORMATION FEDERAL REGULATIONS: This product contains the following toxic chemicals subject to the reporting requirements of Section 313 of the Emergency Planning and Community Right-To-Know Act of 1986 and of 40 CFR 372: TOLUENE CAS# 108-88-3 PCT BY WT: 5.6690 -ETHYL BENZENE CAS# 100-41-4 PCT BY WT: 2.6770 DIMETHYLBENZENE PCT BY WT: 11.0730 CAS# 1330-20-7 ------STATE REGULATIONS: SECTION 16 - OTHER INFORMATION Kevin Settles 01/18/2001 02/23/1997 MSDS Prepared for . . . TUTTLE ALUMINUM 120 SHADLOWLAWN DRIVE FISHERS 46038 TN MSDS Last Prepared : 04/27/2000 n: Health- 3* Flammability-Reactivity- 1 HMIS Information: 3 For specific information regarding occupational safety and health standards, please refer to the Code of Federal Regulations, Title 29, Part 1910. Part 1910. To the best of our knowledge, the information contained herein is accurate. However, neither the Tnemec Company or any of its subsidiaries assume any liability whatsoever for the accuracy of completeness of the information contained herein. Final determination of suitability of any material is the sole responsibility of the user. All materials may present inknown health hazards and should be used with caution. Although certain hazards are described herein, we cannot guarantee that these are the only hazards which exist.

22003310-00	PAGE	1
FOR COATINGS, RESINS, AND RELATED MATERIALS (APPROVED BY THE U.S. DEPARTMENT OF LABOR AS 'ESSENTIALLLY SIMILAR' TO FORM OSHA-20)		
(MEETS REQUIREMENTS OF CFR 29 PART 1910.1200, OSHA'S HAZARD COMMUNICATION STANDARD) NPCA 1	-84	
SECTION 1 - MANUFACTURER AND PRODUCT INFORMATION		
CHEMICAL PRODUCT IDENTIFICATION: PRODUCT ID	<u></u>	***
NAME ADDRESS TELEPHONE EMERGENCY TELEPHONE NAME TELEPHONE	64116-3	064
SECTION 2 - HAZARDOUS INGREDIENTS	a and Nine two are use and and	
1 CAS# 100-41-4 ETHYL BENZENE		
PCT BY WT: 19.9980 VAPOR PRESSURE: 6.000 MMHG @ 68F		
ACGIG TVL/TWA: 0100.00 PPM ACGIH TLV/STEL: 0125.00 PPM OSHA PEL/TWA: 0100.00 PPM OSHA STEL: 0125.00 PPM		
2 XYLENE CAS# 1330-20-7 DIMETHYLBENZENE PCT BY WT: 80.0020 VAPOR PRESSURE: 5.100 MMHG @ 68F EXPOSURE LIMIT: ACGIG TVL/TWA: 0100.00 PPM ACGIH TLV/STEL: 0150.00 PPM OSHA PEL/TWA: 0100.00 PPM OSHA STEL: 0150.00 PPM		
<pre>************************************</pre>	spected its ******** air *******	* *
SECTION 3 - HEALTH HAZARD INFORMATION		
EMERGENCY OVERVIEW: POTENTIAL HEALTH EFFECTS: EYE: Severe irritation.	• .	•
Redness, tearing, blurred vision. SKIN: Moderate irritation, drying of skin, defatting and possible		· .
INHALATION - OVEREXPOSURE TO SOLVENT VAPORS OR SPRAY MIST: Nasal and respiratory irritation, anesthetic effects, dizziness, possible unconsciousness and asphyxiation, stupor, weakness, fatigue, nausea, and headache. INHALATION - OVEREXPOSURE TO FREE PIGMENT DUST:		. *
INGESTION: Gastrointestinal irritation, nausea, vomiting, diarrhea, death, aspiration into the lungs which can be fatal. CHRONIC EFFECTS:		
NOTICE: Reports have associated repeated and prolonged occupation overexposure to solvents with permanent brain and nervous system damage. Intentional misuse by deliberately concentrating and inhaling the vapors may be harmful or fatal. Based on an International Agency for Research on Cancer (IARC) con		

TNEMEC COMPANY, INC. MATERIAL SAFETY DATA SHEET

F041-0002 5G THINNER CLEAR . - -----SECTION 6 - SPILL OR LEAK PROCEDURES CLEAN-UP: Remove all sources of ignition. Spills may be collected with inert, absorbent material for proper disposal. Use non-sparking tools, protective gloves, goggles and clothing, adequate ventilation, avoid the breathing of vapors and use respiratory protective devices. Transfer absorbent material to suitable containers for proper disposal. - -----SECTION 7 - SPECIAL PRECAUTIONS - ------HANDLING AND STORAGE: Store in dry area. Keep closures tight and upright to prevent leakage. Do not store in high temperature areas or near fire or open flame. Refer to product data sheet for recommended storage temperatures. SPECIAL COMMENTS: Prevent prolonged breathing of airborne contaminants such as vapor, spray mists, or dusts. Prevent contact with skin and eyes. Do not take internally. Keep out of reach of children. Do not reuse or alter containers without proper industrial cleaning. Do not weld or flame cut empty, uncleaned containers due to potential fire and explosion hazard. Consult product data sheet for proper application instructions. SECTION 8 - SAFE HANDLING AND USE INFORMATION HYGIENIC PRACTICES: Wash hands and other contaminated skin areas with warm soap and water before eating. EYE PROTECTION: Use chemical resistant splash type goggles. RESPIRATORY PROTECTION: Respiratory protective devices must be used when engineering and administration controls are not adequate to maintain Threshold Limit Values (TLV) and Permissible Exposure Limits (PEL) of airborne contaminants below the listed values for those hazardous ingredients identified in Section II of this MSDS. Observe OSHA regulations for respirator use (CFR 29, 1910.134) whenever a respirator is used. Particulate, chemical cartridge, air purifying half-mask respirators can be used within certain limitations; consult the respirator manufacturer for specific uses and limitations. Where airborne contaminant concentrations are unknown, the use of a NIOSH/MSHA approved fresh-air supplied respirator is mandatory. OTHER PROTECTION: Use Chemical resistant gloves. Use chemical resistant gloves. Use chemical resistant coveralls or apron to protect against, skin and clothing contamination. Use protective cream where skin contact is likely. VENTILATION: Sufficient ventilation, in volume and pattern, should be provided thr EYE PROTECTION: VENTILATION: Sufficient ventilation, in volume and pattern, should be provided through both local and general exhaust to keep the air contaminant concentration below current applicable OSHA Permissible Exposure Limits (PEL) and ACGIH's Threshold Limit Values (TLV). Appropriate ventilation should be employed to remove hazardous decomposition products formed during welding or flame cutting operations of surfaces coated with this product. Heavier than air solvent vapors should be removed from lower levels of work area due to potential explosion hazard and all ignition sources (non-explosion proof equipment) should be eliminated if flammable mixtures will be encountered. SECTION 9 - PHYSICAL AND CHEMICAL PROPERTIES 6.00 Lower - 275.0 °F Higher - 288.0 °F 7.2000 LB/GL

7.200

9.400 (Ether = 1)

43

TNEMEC COMPANY, INC. MATERIAL SAFETY DATA SHEET

F041-0002 5

***					THINNER CLEAR			
	MSDS	Last Prepared	* * * *		: 04/27/2000	u dente dente dente allant	n and die bes and	
	HMIS	Information: Rea	Health- ctivity-	2 1	Flammability-	3	÷	

For specific information regarding occupational safety and health standards, please refer to the Code of Federal Regulations, Title 29, Part 1910.

Part 1910. To the best of our knowledge, the information contained herein is accurate. However, neither the Tnemec Company or any of its subsidiaries assume any liability whatsoever for the accuracy of completeness of the information contained herein. Final determination of suitability of any material is the sole responsibility of the user. All materials may present unknown health hazards and should be used with caution. Although certain hazards are described herein, we cannot guarantee that these are the only hazards which exist.

ROCKY MOUNTAIN RAILINGS

Basic Cleaning Procedures for Anodic Finishes

Cleaning of light surface soil may be accomplished using the following methods:

- Flush surface with water using moderate pressure to remove soil. If soil is still adhering after drying, a mild detergent may be necessary.
- When mild detergent or soap is necessary, it should be used with brushing (nonmetal) or sponging. The surface must be thoroughly rinsed with clean water after the use of any cleaning agent. It may be necessary to sponge the surface while rinsing, particularly if the cleaner is permitted to dry on the surface. Mild detergents ruled safe for bare hands should be safe for coated aluminum. Stronger detergents should be carefully spot tested and may necessitate the use of rubber gloves, long handled brushes, etc.
- If surface soil still adheres after following the procedures above, cleaning using a palm-sized nylon pad can be employed. Thoroughly wet pad with clean water or a mild detergent. Rub the metal surface in the direction of the metal grain with uniform pressure. After scrubbing, the metal surface should be rinsed thoroughly using clean water to remove all residues. Solvents may be used to remove non-water soluble deposits. Extreme care must be exercised when solvents are used since they may damage organic sealants, gaskets and painted finishes. If solvents are used, rinse the surface completely with clean water.

Cleaning Precautions

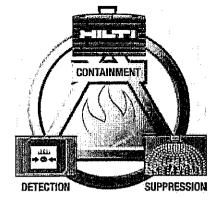
- Never use aggressive alkaline or acid cleaners on aluminum finishes. Do not use cleaners containing trisodium phosphate, phosphoric acid, hydrochloric acid, hydrofluoric acid, fluorides, or similar compounds on anodized aluminum surfaces. Always follow the cleaner manufacturer's recommendations as to the proper cleaner and concentration. Test-clean a small area first. Different cleaners should not be mixed.
- It is preferable to clean the metal when shaded. Do not attempt to clean hot, sun-heated surfaces since possible chemical reactions on hot metal surfaces will be highly accelerated and non-uniform. Also, avoid cleaning in freezing temperatures or when metal temperatures are sufficiently cold to cause condensation. Surfaces cleaned under these adverse conditions can become streaked or tainted that they cannot be restored to their original appearance.

References

VOLUNTARY GUIDE SPECIFICATION FOR CLEANING AND MAINTENANCE OF ARCHITECTURAL ANODIZED ALUMINUM, AAMA 609.1 American Architectural Manufacturers Association

Attached are page(s) from the 2008 Hilti North American Product Technical Guide. For complete details on this product, including data development, product specifications, general suitability, installation, corrosion, and spacing & edge distance guidelines, please refer to the Technical Guide, or contact Hilti.

> Hilti, Inc. 5400 South 122nd East Avenue Tulsa, OK 74146


> > 1-800-879-8000 www.hilti.com

PROFIS: The World's Most Powerful Anchor Design Software

- Easy to Learn Start working in just minutes
- Fast and Powerful Produce detailed designs quickly
- Specify with Confidence The largest number of approvals and latest design codes

No charge. Download now at www.us.hilti.com or www.hilti.ca

Firestop Systems

When it comes to Life Safety and building code compliance, Hilti provides complete solutions with a wide range of products and unmatched technical support.

- · Firestop Systems Guides
 - Through PenetrationsJoint Penetrations
- FACT Program
- FS 411
- BASIC Training
- Engineering Judgements
- Firestop Design Center online at www.us.hilti.com or www.hilti.ca

Hilti Diaphragm Deck Design

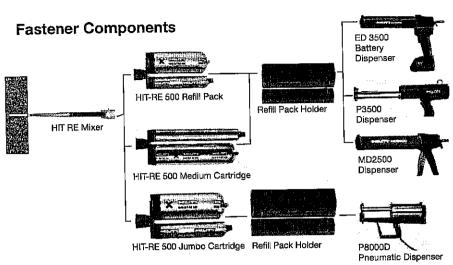
The Hilti Diaphragm Deck Design Program allows designers to quickly and accurately design roof deck and composite floor deck diaphragms.

- Ability to design with innovative Hilti fasteners for frame and sidelap connection
- Creates easy to use load tables with span ranges based on user input
- Allows for different safety factors depending on load type, building code and field quality control
- · Direct link to Hilti website

Hilti Online

- Technical Library
- Design Centers
- · Interactive Product Advisors
- · Full-line Product Catalog
- Online Ordering
- Maps to Hilti locations
- "Contact Us" program to answer your questions

MI - Industrial Pipe Support Technical Guide


A guide to specifying the Hilti modular pipe support system for medium to heavy loads without welding.

- MI System is the ideal solution for pipes up to 24 in. diameter
- · Reliable fastenings without welds
- Easily installed

Hilli, Inc. (US) 1-800-879-8000 | www.us.hilti.com | en español 1-800-879-5000 | Hilti (Canada) Corp. 1-800-363-4458 | www.ca.hilti.com | Product Technical Guide 2008

HIT-RE 500 Epoxy Adhesive Anchoring System 4.2.7

4.2.7.1 Product Description

The Hilti HIT-RE 500 System is a high strength, two part epoxy adhesive. The system consists of a side-by-side adhesive refill pack, a mixing nozzle, a HIT dispenser with refill pack holder, and either a threaded rod, rebar, HIS internally threaded insert or smooth epoxy coated bar. HIT-RE 500 is specifically designed for fastening into solid base materials such as concrete, grout, stone or solid masonry. HIT-RE 500 may be used in underwater fastenings and for oversized holes up to 2 times the rod diameter (2-1/2" rod and 3" max. hole diameter) and for diamondcored holes.

Product Features

- Superior bond performance
- Use in diamond cored or pneumatic drilled holes and under water up to 165 feet (50 m)
- Meets DOT requirements for most states; contact the Hilti Technical Staff
- Meets requirements of ASTM C 881-90, Type IV, Grade 2 and 3, Class A, B, C except gel times
- Meets requirements of AASHTO specification M235, Type IV, Grade 3, Class A, B, C except gel times
- Mixing tube provides proper mixing, eliminates measuring errors and minimizes waste
- Contains no styrene; virtually odorless
- Extended temperature range from 23°F to 104°F (-5°C to 40°C)
- Excellent weathering resistance; Resistance against elevated temperatures
- Suitable for oversized holes
- Seismic qualified per IBC[®]/IRC[®] 2003, IBC[®]/IRC[®] 2000 and UBC[®] 1997 (ICC-ES AC58). Please refer to ESR-1682.

4.2.7.1	Product Description	
4.2.7.2	Material Specifications	
4.2.7.3	Technical Data	
4.2.7.4	Installation Instructions	
4.2.7.5	Ordering Information	

Listings/Approvals

City of Los Angeles Research Report #25514 NSF/ANSI Std 61 certification for use in potable water Europan Technical Approval ETA-04/0027 ETA-04/0028 ETA-04/0029

Code Compliance

IBC [®] /IRC [®] 2003 (ICC-ES AC58)	
IBC®/IRC® 2000 (ICC-ES AC58)	
UBC [®] 1997 (ICC-ES AC58)	
LEED [®] : Credit 4.1-Low Emitting	
Materials	

The Leadership in Energy and Environmental Design (LEED[®]) Green Building Rating systemTM is the nationally accepted benchmark for the design, construction and operation of high performance green buildings.

Components

HAS Threaded Rods

Mental Age of the series of the

HIS Internally Threaded Inserts

Rebar (supplied by contractor)

Smooth, epoxy coated bar (supplied by contractor)

4.2.7 HIT-RE 500 Epoxy Adhesive Anchoring System

Guide Specifications

Master Format Section:

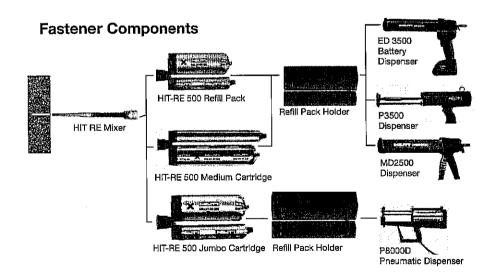
03250 (Concrete accessories)

Related Sections:

03200	(Concrete Reinforcing-
	Reinforcing Accessories)
05050	(Metal Fabrication)
05120	(Structural Steel;
	Masonry Accessories)

Injectable adhesive shall be used for installation of all reinforcing steel dowels or threaded anchor rods and inserts into new or existing concrete. Adhesive shall be furnished in side-by-side refill packs which keep component A and component B separate. Side-by-side packs shall be designed to compress during use to minimize waste volume. Side-by-side packs shall also be designed to accept static mixing nozzle which thoroughly blends component A and component B and allows injection directly into drilled hole. Only injection tools and static mixing nozzles as supplied by manufacturer shall be used. Manufacturer's instructions shall be followed. Injection adhesive shall be formulated to include resin and hardener to provide optimal curing speed as well as high strength and stiffness. Typical curing time at 68°F (20°C) shall be approximately 12 hours.

Injection adhesive shall be HIT-RE 500, as furnished by Hilti.


Anchor Rods Shall be furnished with chamfered ends so that either end will accept a nut and washer. Alternatively, anchor rods shall be furnished with a 45 degree chisel point on one end to allow for easy insertion into the adhesive-filled hole. Anchor rods shall be manufactured to meet the following requirements: 1, ISO 898 Class 5.8

2. ASTM A 193, Grade B7 (high strength carbon steel anchor);

3. AISI 304 or AISI 316 stainless steel, meeting the requirements of ASTM F 593 (condition CW).

Special order length HAS Rods may vary from standard product.

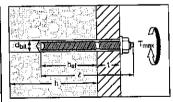
Nuts and Washers Shall be furnished to meet the requirements of the above anchor rod specifications.

HIT-RE 500 Epoxy Adhesive Anchoring System 4.2.7

4.2.7.2 Material Specifications

Material Properties for HIT-RE 500 - Cured Adhesive

			1 Minimum values	
Bond Strength ASTM C882-911	10.110	1000 met	result of tests at	
2 day cure	12.4 MPa	1800 psi	temperatures (23	3, 40, 00° F).
7 day cure	12.4 MPa	1800 psi		
Compressive Strength ASTM D-695-961	82.7 MPa	12,000 psi		
Compressive Modulus ASTM D-695-961	1493 MPa	0.22 x 10 ⁶ psi		
Tensile Strength 7 day ASTM D-638-97	43.5 MPa	6310 psi		
Elongation at break ASTM D-638-97	2.0%	2.0%		
Heat Deflection Temperature ASTM D-648-95	63°C	146°F	Į	
Absorption ASTM D-570-95	0.06%	0.06%		
Linear Coefficient of Shrinkage on Cure ASTM D-2566-86	0.004	0.004		
Electrical resistance DIN IEC 93 (12.93)	6.6 x 10 ¹³ Ω/m	1.7 x 1012Ω/in.	Mechanica	al Properties
Material Specifications			f _y ksi (MPa)	min. f _u ksi (M <u>Pa)</u>
Standard HAS-E rod material meets the requirements of ISO 898 Class	5.8		58 (400)	72.5 (500)
High Strength or 'Super HAS' rod material meets the requirements of AS		-	105 (724)	125 (862)
Stainless HAS rod material meets the requirements of ASTM F 593 (30-	4/316) Condition CW 3/8" -	5/8"	65 (448)	100 (689)
Stainless HAS rod material meets the requirements of ASTM F 593 (30-	4/316) Condition CW 3/4" -	-1 1/4"	45 (310)	85 (586)
HIS Insert 11MnPb30+C Carbon Steel conforming to DIN 10277-3			54.4 (375)	66.7 (460)
HIS-R Insert X5CrNiMo17122 K700 Stainless Steel conforming to DIN E	EN 10088-3		50.8 (350)	101.5 (700)
HAS Super & HAS-E Standard Nut material meets the requirements of A				
HAS Stainless Steel Nut material meets the requirements of ASTM F 59)4			
HAS-E Carbon Steel and Stainless Steel Washers meet dimensional rec	uirements of ANSI B18.22.	1 Type A Plain		
HAS Super & HAS-E Standard Washers meet the requirements of ASTN	/ F 436			
All HAS-E & HAS Super Rods (except 7/8") & HAS-E Standard, HIS inse	erts, nuts & washers are zinc	plated to ASTM B 63	33 SC 1	<u> </u>


7/8" Standard HAS-E & HAS Super rods hot-clip galvanized in accordance with ASTM A 153

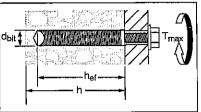
Note: Special Order steel rod material may vary from standard steel rod materials.

4.2.7.3 Technical Data

HIT-RE 500 Installation Specification Table for HAS Threaded Rods

HAS Roo	Size in.	3/8	1/2	5/8	3/4	7/8	1	1-1/4
Details	(mm)	(9.5)	(12.7)	(15.9)	(19.1)	(22.2)	(25.4)	(31.8)
d _{bit} bit diameter ¹	in.	7/16	9/16	3/4	7/8	1	1-1/8	1-3/8
h _{nom} std. depth of embed.	in. (mm)	3-3/8 (90)	4-1/2 (110)	5-5/8 (143)	6 -3/4 (171)	7-7/8 (200)	9 (229)	11-1/4 (286)
T _{max} Emb max. HAS-E Rods ≥ h,		18 (24)	30 (41)	75 (102)	1 50 (203)	175 (237)	235 (319)	400 (540)
tightening HAS SS Emb torque HAS-Super < h		15 (20)	20 (27)	50 (68)	105 (142)	125 (169)	165 (224)	280 (375)
h min. base material thickness	(in.)				1.5 h _{ef}			·
Approx. number of fastenir	gs per cartrid	lge at star	ndard emb	edment ²				
Small Cartridge		52	28	11	7	5	4	2
Medium Cartridge	84	45	18	11	8	6	3	
Jumbo Cartridge		255	137	56	37	27	19	12

Use matched tolerance carbide tipped bits or Hilti matched tolerance DD-B or 1 DD-C diamond core bits.


2 Assumes no waste.

Hilti, Inc. (US) 1-800-879-8000 | www.us.hilti.com | en español 1-800-879-5000 | Hilti (Canada) Corp. 1-800-363-4458 | www.hilti.ca | Product Technical Guide 2008 263

4.2.7 HIT-RE 500 Epoxy Adhesive Anchoring System

HIT-RE 500 Installation Specification Table for HIS Inserts

HIS insert Details	in. (mm)	3/8 (9.5)	1/2 (12.7)	5/8 (15.9)	3/4 (19.1)
d _{bit} bit diameter1, 2	in.	11/16	7/8	1-1/8	1-1/4
h _{aom} std. embed. depth	in. (mm)	4-1/4 (110)	5 (125)	6-5/8 (170)	8-1/4 (210)
€th useable thread length	in. (mm)	1 (25)	1-3/16 (30)	1-1/2 (40)	2 (50)
T _{max} Max. tightening torque	ft lb (N·m)	18 (24)	35 (47)	80 (108)	160 (217)
h min. base material in. thickness (mm)		6-3/8 (162)	7-1/2 (191)	10 (254)	12-3/8 (314)
Approx. number of faste	nings pe	r cartridge at star	idard embedmen	2	
Small Cartridge		27	16	6	4
Medium Cartridge		49	30	11	8
Jumbo Cartridge		168	105	38	27

1 Use matched tolerance carbide tipped bits or Hilti matched tolerance DD-B or DD-C diamond core bits.

2 Assumes no waste.

HIT-RE 500 Installation Specification Table for Rebar in Concrete

			1	1						
	lebar Size:	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10	No. 11
Details	_]						
Bit diameter ^{1, 2, 3}	in.	1/2	5/8	3/4	7/8	1	1-1/8	1-3/8	1-1/2	1-3/4
h _{nom} std. embed. dep	th in.	3-3/8	4-1/2	5-5/8	6-3/4	7-7/8	9	10-1/8	11-1/4	12-3/8
	(mm)	(86)	(114)	(143)	(171)	(200)	(229)	(257)	(286)	(314)
Approx. number of fa	astenings pe	er cartridge a	at standard ei	mbedment ³						
Small Cartridge		44	25	16	11	8	6	3	2	1
Medium Cartridge		72	41	27	18	13	10	5	3	2
Jumbo Cartridge		221	125	83	56	41	31	14	11	7

1 Rebar diameters may vary. Use smallest drill bit which will accommodate rebar.

2 Use matched tolerance carbide tipped bits or Hilti matched tolerance DD-B or DD-C diamond core bits.

3 Assumes no waste.

HIT-RE 500 Installation Specification Table for Metric Rebar in Concrete (Canada Only)

Reba	ar Size:	10M	15M	20M	25M	30M	35M
Details							
Bit diameter1,2	in.	5/8	3/4	1	1-1/8	1-3/8	1-3/4
h _{nom} std. embed. depth	(mm)	115	145	200	230	260	315
Approx. number of faste	nings per	cartridge a	t standard er	nbedment ²			
Small Cartridge		20	17	5	6	3	1
Medium Cartridge		32	28	9	10	5	2
Jumbo Cartridge		98	84	27	31	16	7

 Rebar diameters may vary. Use smallest bit which will accommodate rebar.
 Assumes no waste.

Combined Shear and Tension Loading

 $\left(\frac{N_{\rm d}}{N_{\rm rec}}\right)^{5/3} + \left(\frac{V_{\rm d}}{V_{\rm rec}}\right)^{5/3} \le 1.0$ (Ref. Section 4.1.8.3)

HIT-RE 500 Epoxy Adhesive Anchoring System 4.2.7

HIT-RE 500 Allowable and Ultimate Bond/Concrete Capacity for HAS Rods in Normal Weight Concrete^{1,2,3,4}

		HIT-RE E	i00 Allowable B	ond/Concrete C	Capacity	HIT-RE 500 Ultimate Bond/Concrete Capacity						
		Ten			ear	Теп	sile	Sh				
Anchor	Embedment	f ', = 2000 psi	f' : = 4000 psi	f', = 2000 psi	f',= 4000 psi	f ',= 2000 psi	f ', = 4000 psi	f ', = 2000 psi	f', = 4000 ps			
)jameter	Depth	(13.8 MPa)	(27.6 MPa)	(13,8 MPa)	(27.6 MPa)	(13.8 MPa)	(27.6 MPa)	(13.8 MPa)	(27.6 MPa)			
in (mm)	in (mm)	ib (kN)	Ib (kN)	Ib (kN)	Ib (KN)	Ib (kN)	Ib (kN)	Ib (kN)	Ib (kN)			
	1-3/4	645	1095	1510	2135	2580	4370	4530	6405			
	(44)	(2.9)	(4.9)	(6.7)	(9.5)	(11.5)	(19.4)	(20.2)	(28.4)			
3/8	3-3/8	2190	2585	3155	4460	8760	10345	9460	13380			
(9.5)	(86)	(9.7)	(11.5)	(14.0)	(19.8)	(39.0)	(46.0)	(42.1)	(59,5)			
	4-1/2 (114)	2420 (10.8)	2585 (11.5)	4855 (21.6)	6860 (30.5)	9685 (43.1)	10335 (46.0)	14560 (64.8)	20580 (91.5)			
	2-1/4	1130	1965	2510	3550	4530	7860	7525	10640			
	(57)	(5.0)	(8.7)	(11.2)	(15.8)	(20.2)	(35.0)	(33.5)	(47.3)			
1/2	4-1/2	4045	5275	5610	7935	16185	21095	16820	23800			
(12.7)	(114)	(18.0)	(23.5)	(25.0)	(35.3)	(72.0)	(93.8)	(74.8)	(105.9)			
(1217)	6 (152)	4775 (21.2)	5380 (23.9)	8635 (38.4)	12210 (54.3)	19095 (84.9)	21520 (95.7)	25900 (115.2)	36620 (162.9)			
5/8 (15.9)	2-7/8 (73)	1 690 (7.5)	3045 (13.5)	5245 (23.3)	7420 (33.0)	6770 (30.1)	12175 (54.2)	15735 (70.0)	22250 (99.0)			
	5-5/8 (143)	6560 (29.2)	7355 (32.7)	8760 (39.0)	12395 (55.1)	26240 (116.7)	29420 (130.9)	26280 (116.9)	37180 (165.4)			
	7-1/2 (190)	7320 (32.6)	7515 (33.4)	13615 (60.6)	19080 (84.9)	29290 (130.3)	30060 (133.7)	40480 (180.1)	57240 (254.6)			
	3-3/8	2310	4515	7335	10370	9250	18065	22000	31108			
	(86)	(10.3)	(20.1)	(32.6)	(46.1)	(41.1)	(80.4)	(97.9)	(138.4)			
3/4	6-3/4	8670	10755	12615	17840	34685	43020	37840	53520			
(19.1)	(172)	(38.6)	(47.8)	(56.1)	(79.4)	(154.3)	(191.4)	(168.3)	(238.1)			
	9	10385	12995	19430	27470	41535	51985	58280	82400			
	(229)	(46.2)	(57.8)	(86.4)	(122.2)	(184.8)	(231.2)	(259.2)	(366.5)			
	4	3005	5665	7795	11020	12030	22670	23375	33050			
	(101)	(13.4)	(25.2)	(34.7)	(49.0)	(53.5)	(100.8)	(104.0)	(147.0)			
7/8	7-7/8	12495	15875	17175	24290	49975	63495	51520	72860			
(22.2)	(200)	(55.6)	(70.6)	(76.4)	(108.0)	(222.3)	(282.4)	(229.2)	(324.1)			
	10-1/2	14705	16185	26440	37390	58820	64730	79320	112160			
	(267)	(65.4)	(72.0)	(117.6)	(166.3)	(261.6)	(287.9)	(352.8)	(498.9)			
	4-1/2	3945	8440	10035	14190	15790	33765	30104	42565			
	(114)	(17.5)	(37.5)	(44.6)	(63.1)	(70.2)	(150.2)	(133.9)	(189.3)			
1	9	13845	17365	22435	31720	55380	69465	67300	95160			
(25.4)	(229)	(61.6)	(77.2)	(99.8)	(141.1)	(246.3)	(309.0)	(299.4)	(423.3)			
	12	17935	17935	34535	48830	71740	71740	103600	146480			
	(305)	(79.8)	(79.8)	(153.6)	(217.2)	(319.1)	(319.1)	(460.8)	(651.6)			
	5-5/8	5760	12815	14760	20870	23045	51270	44280	62610			
	(143)	(25.6)	(57.0)	(65.7)	(92.8)	(102.5)	(228.1)	(197.0)	(278.5)			
1-1/4 (31.8)	11-1/4 (286)	24610 (109.5)	31620 (140.7)	35050 (155.9)	49570 (220.5)	98430 (437.8)	126480 (562.6)	105140 (467.7)	148710 (661.5)			
	15 (381)	34130 (151.8)	35270 (156.9)	53960 (240.0)	76300 (339.4)	136525 (607.3)	141090 (627.6)	161880 (720.1)	228900 (1018.2			

1 Influence factors for spacing and/or edge distance are applied to concrete/bond values above, and then compared to the steel value. The lesser of the values is to be used for the design.

2 Average ultimate concrete shear capacity based on Concrete Capacity Design (CCD) method for standard and deep embedment and based on testing for shallow embedment.

3 All values based on holes drilled with carbide bit and cleaned with brush per manufacturer's instructions. Ultimate tensile concrete/bond loads represent the average values obtained in testing.

4 For underwater applications up to 165 feet/50m depth reduce the tabulated concrete/bond values 30% to account for reduced mechanical properties of saturated concrete.

4.2.7 HIT-RE 500 Epoxy Adhesive Anchoring System

Rod Diameter	HAS-E S			Super \ 193 B7		5 SS 1/ <u>316 SS</u>
in. (mm)	Tensile Ib (kN)	Shear Ib (kN)	Tensile lb (kN)	Shear Ib (kN)	Tensil e Ib (kN)	Shear <u>Ib (kN)</u>
3/8	2640	136D	4555	2345	3645	1875
(9.5)	(11.7)	(6.0)	(20.3)	(10.4)	(16.2)	(8.3)
1/2	4700	2420	8100	4170	6480	3335
(12.7)	(20.9)	(10.8)	(36.0)	(18.5)	(28.8)	(14.8)
5/8	7340	3780	12655	6520	10125	5215
(15.9)	(32.7)	(16.8)	(56.3)	(29.0)	(45.0)	(23.2)
3/4	10570	5445	18225	9390	12390	6385
(19.1)	(47.0)	(24.2)	(81.1)	(41.8)	(55.1)	(28.4)
7/8	14385	7410	24805	12780	16865	8690
(22.2)	(64.0)	(33.0)	(110.3)	(56.9)	(75.0)	(38.6)
1	18790	9680	32400	16690	22030	11350
(25.4)	(83.6)	(43.0)	(144.1)	(74.2)	(98.0)	(50.5)
1-1/4 (31.8)	29360 (130.6)	15125 (67.3)	50620 (225.2)	26080 (116.0)	34425 (153.1)	17735 (78.9)

Allowable Steel Strength for Carbon Steel & Stainless Steel HAS Rods¹

1 Steel strength as defined in AISC Manual of Steel Construction (ASD):

$$\label{eq:constraint} \begin{split} \text{Tensile} &= 0.33 \text{ x } F_u \text{ x Nominal Area} \\ \text{Shear} &= 0.17 \text{ x } F_u \text{ x Nominal Area} \end{split}$$

Ultimate Steel Strength for Carbon Steel & Stainless Steel HAS Rods¹

Rod Diameter		HAS-E Standard SO 898 Class 5.8		HAS Super ASTM A 193 B7			HAS SS AISI 304/316 SS		
in. (mm)	Yield Ib (kN)	Tensile Ib (KN)	Shear Ib (kN)	Yield 16 (kN)	Tensile Ib (kN)	Shear Ib (kN)	Yield Ib (kN)	Tensile Ib (kN)	Shear Ib (kN)
3/8	4495	6005	3605	8135	10350	6210	5035	8280	4970
(9.5)	(20.0)	(26.7)	(16.0)	(36.2)	(43.4)	(27.6)	(22.4)	(36.8)	(22.1)
1/2	8230	10675	6405	14900	18405	11040	9225	14720	8835
(12.7)	(36.6)	(47.5)	(28.5)	(66.3)	(79.0)	(49.1)	(41.0)	(65.5)	(39.3)
5/8	13110	16680	10010	23730	28760	17260	14690	23010	13805
(15.9)	(58.3)	(74.2)	(44.5)	(105.6)	(125.7)	(76.8)	(65.3)	(102.4)	(61.4)
3/4	19400	24020	14415	35120	41420	24850	15050	28165	16800
(19.1)	(86.3)	(106.9)	(64.1)	(156.2)	(185.7)	(110.5)	(66.9)	(125.3)	(75.2)
7/B	26780	32695	19620	48480	56370	33825	20775	38335	23000
(22.2)	(119.1)	(145,4)	(87.3)	(215.7)	(256.9)	(150.5)	(92.4)	(170.5)	(102.3)
1	35130	42705	25625	63600	73630	44180	27255	50070	30040
(25.4)	(156.3)	(190.0)	(114.0)	(282.9)	(337.0)	(196.5)	(121.2)	(222.7)	(133.6)
1-1/4	56210	66730	40035	101755	115050	69030	43610	78235	46940
(31.8)	(250.0)	(296.8)	(178.1)	(452.6)	(511.8)	(307.1)	(194.0)	(348.0)	(208.8)

1 Steel strength as defined in AISC Manual of Steel Construction 2nd Ed. (LRFD):

 $\begin{array}{l} \mbox{Yield} = \mbox{F}_y \, x \, \mbox{Tensile} \, \, \mbox{Stress Area} \\ \mbox{Tensile} = 0.75 \, x \, \mbox{F}_u \, x \, \, \mbox{Nominal Area} \\ \mbox{Shear} = 0.45 \, x \, \mbox{F}_u \, x \, \, \mbox{Nominal Area} \\ \end{array}$

HIT-RE 500 Epoxy Adhesive Anchoring System 4.2.7

HIT-RE 500 Allowable Bond/Concrete Capacity and Steel Strength for HIS Carbon Steel and HIS-R Stainless Steel Internally Threaded Inserts

<u> </u>		HIT-RE 500 Allowable B	ond/Concrete Capacity ²		Steei Bolt	Strength ^{1,2}	
Anchor Diameter in. (mm)	Embedment Depth in. (mm)	Tensile f' _c ≥ 2000 psi (13.8 MPa) lb (kN)	Shear f' _c ≥ 2000 psi (13.8 MPa) Ib (kN)	ASTM A 325 Tensile ¹ Ib (kN)	<u>Carbon Steel</u> Shear ¹ Ib (kN)	ASTM F 593 S Tensile ¹ Ib (kN)	tainless Steel Shear ¹ Ib (kN)
3/8	4-1/4	2870	1565	4370	2250	3645	1 875
(9.5)	(108)	(12.8)	(7.0)	(19.4)	(10.0)	(16.2)	(8.3)
1/2 (12.7)	5 (127)	4530 (20.1)	2890 (12.9)	7775 (34.6)	4005 (17.8)	6480 (28.8)	3335 (14.8)
5/8	6-5/8	8255	4635	12150	6260	10125	5215
(15.9)	(168)	(36.7)	(20.6)	(54.0)	(27.8)	(45.0)	(23.2)
3/4	8-1/4	9030	6695	17945	9010	12395	6385
(19.1)	(210)	(40.1)	(29.8)	(77.8)	(40.1)	(55.1)	(28.4)

and the second second second

HIT-RE 500 Ultimate Bond/Concrete Capacity and Steel Strength for HIS Carbon Steel and HIS-R Stainless Steel Internally Threaded Inserts

	I	HIT-RE 500 Ultimate Bo	ond/Concrete Capacity ²		Ultimate Bo	It Strength ^{1,2}	
Anchor Diameter in. (mm)	Embedment Depth in. (mm)	Tensile f' _c ≥ 2000 psi (13.8 MPa) lb (kN)	Shear f' _c ≥ 2000 psi (13.8 MPa) Ib (kN)	ASTM A 325 Tensile ¹ Ib (kN)	Carbon Steel Shear ¹ Ib (KN)	ASTM F 593 S Tensile ¹ Ib (KN)	t <u>ainless Steel</u> Shear ¹ Ib (kN)
3/8	4-1/4	11480	6260	9935	5960	8280	4970
(9.5)	(108)	(51.0)	(27.8)	(44.2)	(26.5)	(36.8)	(22.1)
1/2	5	18115	11565	17665	10600	1 4720	8835
(12.7)	(127)	(80.5)	(51.4)	(78.6)	(47.2)	(65.5)	(39.3)
5/8 (15.9)	6-5/8	33025	18550	27610	16565	23010	13805
	(168)	(146.9)	(82.5)	(122.8)	(73.7)	(102.4)	(61.4)
3/4 (19.1)	8-1/4	36125	26775	39760	23855	28165	16900
	(210)	(160.6)	(119.1)	(176.9)	(106.1)	(125.3)	(75.1)

1 Steel values in accordance with AISC

•			
	ASTM A 325 bolts:	$F_v = 92 \text{ ksl}$, $F_u = 120 \text{ ksl}$	
	ASTM F 593 (AISI 304/316):	$F_v = 65 \text{ ksi}, F_u = 100 \text{ ksi}$ for 3/8" thru 5/8"	
		$F_v = 45$ ksi, $F_u = 85$ ksi for 3/4"	

Allowable Load Values	Ultimate Load Values
Tension = 0.33 x F_u x A_{nom}	Tension = 0.75 x $F_u x A_{nom}$
Shear = 0.17 x F_{u} x A_{nom}	Shear = 0.45 x $F_u x A_{nom}$

2 Use lower value of either bond/concrete capacity or steel strength.

4.2.7 HIT-RE 500 Epoxy Adhesive Anchoring System

HIT-RE 500 Ultimate Bond Strength and Steel Strength for Rebar in Concrete1

				Concrete Compr	-			Grade A	0 Rebar
Nominal	Embed.	f'c	= 2000 psi (13.8 N	/IPa)	f'c=	= 4000 psi (27.6 N	/IPa)	Gruue e	io nebui
Rebar Size	Depth in. (mm)	Ultimate Bond Strength Ib (kN)	Embed, to Develop Yield Strength ¹ in. (mm)	Embed. to Develop Tensile Strength ¹ in. (mm)	Ultimate Bond Strength Ib (kN)	Embed, to Develop Yield Strength ¹ in. (mm)	Embed, to Develop Tensite Strengtin ¹ in. (mm)	Yield Strength Ib (kN)	Tensile Strength Ib (kN)
#3	3-3/8 (86) 4-1/2 (114)	10105 (45.0) 10920 (48.6)	2-1/4 (57)	3-3/8 (86)	10810 (48.1) 10810 (48.1)	2-1/8 (54)	3-1/4 (84)	6600 (29.4)	9900 (44.0)
#4	4-1/2 (114) 6 (152)	15980 (71.1) 18830 (83.8)	3-3/8 (86)	5-5/8 (143)	18540 (82.5) 18655 (83.0)	3 (76)	4-3/8 (111)	12000 (53.4)	18000 (80.1)
#5	5-5/8 (143) 7-1/2 (191)	20630 (91.8) 24870 (110.6)	5-1/8 (130)	8-7/8 (225)	27790 (123.6) 27790 (128.6)	3-7/8 (98)	5-3/4 (146)	18600 (82.7)	27900 (124.1)
#6	6-3/4 (171) 9 (229)	33695 (149.9) 38960 (173.3)	5-3/8 (136)	9-3/8 (238)	44675 (198.7) 44870 (200.0)	4 (102)	6 (152)	26400 (117.4)	39600 (176.2)
#7	7-7/8 (200) 10-1/2 (267)	40525 (180.3) 48460 (215.6)	7 (178)	12-3/8 (314)	59340 (264.0) 61720 (274.6)	4-7/8 (124)	7-1/4 (184)	36000 (160.1)	54000 (240.2)
#8	9 (229) 12 (305)	63940 (284.4) 69610 (309.7)	8-1/4 (210)	12-7/8 (327)	72820 (323.9) 72950 (324.5)	5-7/8 (149)	8-7/8 (225)	47400 (210. 9)	71100 (316.3)
#9	10-1/8 (257) 13-1/2 (343)	72245 (321.4) 94205 (419.1)	8-1/2 (216)	13 (330)	81235 (361.4) 84015 (373.7)	7-1/2 (191)	12 (305)	60000 (266.9)	90000 (400,4)
#10	11-1/4 (286) 15 (381)	92000 (409.3) 95850 (426.4)	9-3/8 (238)	17-7/8 (454)	96725 (430.3) 97070 (431.8)	8-7/8 (225)	14 (356)	76200 (339.0)	114300 (508.5)
#11	12-3/8 (314) 16-1/2 (419)	118615 (527.6) 123570 (549.7)	9-7/8 (251)	18-3/4 (476)	123120 (547.7) 123790 (550.7)	9-1/2 (241)	16-1/2 (419)	93600 (416.4)	140400 (624.6)

Based on comparison of average ultimate adhesive bond test values versus minimum yield and ultimate tensile strength of rebar. For more information, contact Hilti.

HIT-RE 500 Epoxy Adhesive Anchoring System 4.2.7

HIT-RE 500 Bond Strength and Steel Strength for Metric Rebar in Concrete (Canada Only) 1, 2, 3, 4, 5, 6, 7

		HIT-RE S	600 Tensile Bond S	Strength		Strength Properti	es of Metric Reba
		f' _c = 1	4 MPa	f' _c = 2	8 MPa	f _y = 400 MPa	$f_u = 600 MPa$
Rebar Size	Embedment Depth mm (in)	Ultimate Bond KN (lb)	Allowable Bond kN (lb)	Ultimate Bond kN (lb)	Allowable Bond KN (lb)	Yield Strength kN (lb)	Tensile Strength KN (lb)
10M	115 (4-1/2) 150 (6)	71.1 (15980) 83.8 (18830)	17.8 (3995) 20.9 (4705)	82.5 (18540) 83.0 (18655)	20.6 (4635) 20.7 (4665)	40 (8990)	60 (13490)
15M	145 (5-5/8) 190 (7-1/2)	91.8 (20630) 110.6 (24870)	22.9 (5155) 27.6 (6215)	123.7 (27810) 123.6 (27790)	30,9 (6950) 30,9 (6945)	80 (17985)	120 (26975)
20M	200 (7-7/8) 265 (10-1/2)	1 80.3 (40525) 215.6 (48460)	45.1 (10130) 53.9 (12115)	264 (59340) 274.6 (61720)	66 (14835) 68.6 (15430)	120 (26975)	180 (40465)
25M	230 (9) 305 (12)	284.4 (63940) 309.7 (69610)	71.0 (15985) 77.4 (17400)	323.9 (72820) 324.5 (72950)	81.0 (18205) 81.1 (18235)	200 (44960)	300 (67440)
30M	260 (10-1/8) 345 (13-1/2)	321.4 (72245) 419.1 (94205)	80.3 (18060) 104.8 (23550)	361.4 (81235) 373.7 (84015)	90.3 (20305) 93.4 (21000)	280 (62945)	420 (94415)
35M	315 (12-3/8) 420 (16-1/2)	527.6 (118615) 549.7 (123570)	131.9 (29650) 137.4 (30890)	547.7 (123120) 550.7 (123790)	136.9 (30780) 137.6 (30945)	400 (89920)	600 (134880)

1 Based on minimum steel strength and nominal cross-sectional area of rebar.

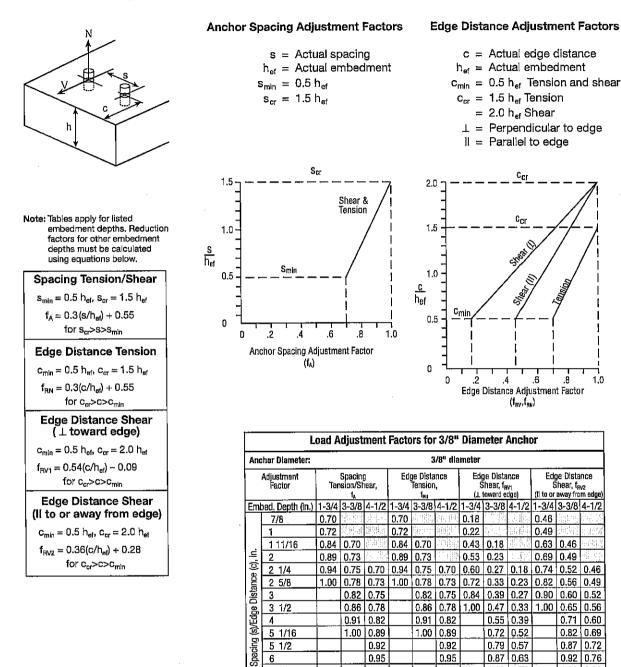
2 Use lesser value of bond strength or steel strength.

3 Minimum concrete thickness must be equal to 1.5 times the anchor embedment.

4 Testing done with imperial rebar in same size holes.

5 Allowable tension for adhesive bond based on a safety factor of 4.0.

6 For anchor spacing and edge distance guidelines, please refer to the following pages.


7 Ultimate tensile concrete/bond loads represent the average values obtained in testing.

Anchor	Drill Bit	Embedment	Ultimate
Diameter	Diameter	Depth	Tensile Load
in. (mm)	in. (mm)	in. (mm)	Ib (kN)
1 (25.4)	1-1/8 (29)		
1-1/4	1-3/8	9	40385
(31.8)	(34.9)	(229)	(179.7)
1 -1/2 (38.1)	1 <i>-5/8</i> (41)		

HIT-RE 500 Ultimate Tensile Strength for Smooth Epoxy Coated Dowel Bars in Concrete ≥ 2410 psi (15.9 MPa)

4.2.7 HIT-RE 500 Epoxy Adhesive Anchoring System

Anchor Spacing and Edge Distance Guidelines in Concrete

5 1/16

5 1/2

6 3/4

6

8

9

1.00 0.89

0.92

0.95

1.00

1.00 0.89

0.92

0.95

1.00

0.72 0.52

0.79 0.57

0.87 0.63

1.00 0.72

0.87

1.00

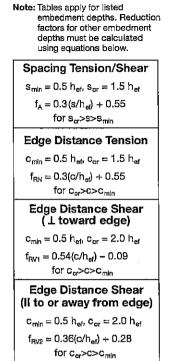
0.82 0.69

0.87 0.72

0.92 0.76

1.00 0.82

0.92


1.00

HIT-RE 500 Epoxy Adhesive Anchoring System 4.2.7

Anchor Spacing and Edge Distance Guidelines in Concrete

litri.

	L	oad A	djust	ment	Facto	ors foi	1/2"	Dian	neter /	Anch	or			
Anc	hor Diameter:					1	/2" dia	meter						
	Adjustment Factor		Spacing Ision/Sh		Ed	ge Dista Tension f _{RM}		Ś	ge Dista Shear, f _R toward e	VI .	Edge Distance Shear, f _{avz} ; (II to or away from edg			
Eml	oed, Depth (in.)	2-1/4	4-1/2	6	2-1/4	4-1/2	6	2-1/4	4-1/2	6	2-1/4	4-1/2	6	
	1	1.11.1	ж (<u>р</u>		$\{ g_{i} \}_{i \in I}$	- 46 C	2	÷.,		1941 - L	1413-1			
	1-1/8	0.70			0.70	- 194. I	це.	0.18	4.1		0.46			
	1-1/2	0.75	112.14	e da	0.75		ata) i	0.27	1		0.52		e a di	
	1-3/4	0.78			0.78			0.33			0.56	1.1.1		
	2	0.82	21		0.82			0.39		$1 \to \theta_{1}$	0.60	111	1 N.A.	
.e	2-1/4	0.85	0.70		0.85	0.70		0.45	0.18		0.64	0.46		
Spacing (s)/Edge Distance (c), in.	2-1/2	0.88	0.72	P 43	0.88	0.72		0.51	0.21		0,68	0,48	gand (
6	3	0.95	0.75	0.70	0.95	0.75	0.70	0.63	0.27	0.18	0.76	0.52	0.46	
stan	3-3/8	1.00	0.78	0.72	1.00	0.78	0.72	0.72	0.32	0.21	0.B2	0.55	0.48	
ā	4		0.82	0.75		0.82	0.75	0.87	0.39	0.27	0.92	0.60	0.52	
ĝ	4-1/2		0.85	0.7B		0.85	0.78	1.00	0.45	0.32	1.00	0.64	0.55	
<u>چ</u>	5		0.88	0.80		0.88	0.80		0.51	0.36		0.68	0.58	
P	6	1	0.95	0.85		0.95	0.85		0.63	0.45		0.76	0.64	
ġ.	6-3/4		1.00	0.89		1.00	0.89		0.72	0.52		0.82	0.69	
망	7			0.90			0.90		0.75	0.54		0.84	0.70	
	8			0.95			0.95		0.87	0.63		0.92	0.76	
	9			1.00			1.00		1.00	0.72		1.00	0.82	
	10									0.81			0.88	
	11									0.90			0.94	
1	12							1		1,00			1.00	

						Ŀ	oad A	djust	ment	Facto	rs foi	5/8"	and	3/4" E)iame	ter A	nchor	5							
An	chor Diameter					5/(8° dian	ieter						3/4" diameter											
Γ	Adjustment Factor		Spacing nsion/Sh f _A		Edg	ge Dista Tensior T _{en}		5	Shear, f _{evt} Shea			Edge Distance Shear, f _{RV2} (Il to or away from edge)			Spacing tsion/Sh		Edge Distance Tenslon f _{RN}			S	ge Dista Thear, f _R Ioward ei	<i>d</i> 1	Edge Distance Shear, f _{RV2} (Ii to or away from ed		
Emb	ed. Depth (in.)	2-7/8	5-5/8	7-1/2	2-7/8	5-5/8	7-1/2	2-7/8	5-5/8	7-1/2	2-7/8	5-5/8	7-1/2	3-3/8	6-3/4	9	3-3/8	6-3/4	9	3-3/8	6-3/4	9	3-3/8	6-3/4	9
	1-7/16	0.70			0.70			0.18	1	1. 19 A	0.46	1.1							h dia			1.1.1			4 C. N
	1-11/16	0.73	말 안.	det i	0.73	9. j.		0.23			0.49		1. 1	0.70	<u> 199</u>		0.70		<u>, jaj</u>	0.18	te pel	1999. E	0.46	8686 S.	(† 14)
	2	0.76			0.76			0.29	19	3.13	0.53	11.1		0.73	an a	\$14 N	0.73		문화되	0.23	198	-42.9	0.49		朝代
	2-13/16	0.B4	0.70		0.84	0.70		0.44	0.18	문헌	0.63	0.46		0.80		1990 - J.	0.80	<u>916 - 1</u>	1985	0.36		19.000	0.58	1698b	
	3-3/8	0.90	0.73	਼ ਦੇ	0.90	0.73	-916 - ¹	0.54	0.23		0.70	0.50		0.85	0.70		0.85	0.70	get âle j	0.45	0.18	1.11	0.64	0.46	
Ë.	3-3/4	0.94	0.75	0.70	0.94	0.75	0.70	0.61	0.27	0.18	0.75	0.52	0.46	0.88	0.72		0.88	0,72	한신다	0.51	0.21		0.68	0.48	
0	4-5/16	1.00	0.78	0.72	1.00	0.78	0.72	0.72	0.32	0.22	0.82	0.56	0.49	0.93	0.74		0.93	0.74		0.60	0.26		0.74	0.51	2046 A 1946
	4-1/2		0.79	0.73		0.79	0.73	0.76	0.34	0.23	0.84	0.57	0.50	0.95	0.75	0.70	0.95	0.75	0.70	0.63	0.27	0.18	0.76	0.52	0.46
Distance	5-1/16		0.82	0.75		0.82	0,75	0.86	0.40	0.27	0.91	0.60	0.52	1.00	0.78	0.72	1.00	0.78	0.72	0.72	0.32	0.21	0.82	0.55	D.48
ĕ	5-5/8		0.85	0.78		0.85	0.78	0.97	0.45	0.32	0.98	0,64	0.55		0.80	0.74		0.80	0.74	0.81	0.36	0.25	0.88	0.58	0.51
dge	5-3/4		0.86	0.78		0.86	0.78	1.00	0.46	0.32	1.00	0.65	0.56		0.81	0.74		0.81	0.74	0.83	0.37	0.26	0.89	0.59	0.51
(s)/Edge	6-3/4		0.91	0.82		0.91	0.82		0.56	0,40		0.71	0.60		0.85	0.78		0.85	0.78	1.00	0.45	0.32	1.00	0.64	0.55
) Bi	8-7/16		1.00	0.89		1.00	0.89		0.72	0.52		0.82	0.69		0.93	0.83		0.93	0.83		0.59	0.42		0.73	0.62
Spacing	10-1/B			0.96			0.96		0.88	0.64		0.93	0.77		1.00	0.89		1.00	0.89		0.72	0.52		0.82	0.69
l S	11-1/4		ļ	1.00			1.00		1.00	0.72		1.00	0.82			0.93			0.93		0.81	0.59		0.88	0.73
	12									0.77			0.86			0.95			0.95		0.87	0.63		0.92	0.76
	13-1/2									0.88			0.93			1.00			1.00		1.00	0.72		1.00	0.82
	15									1.00			1.00									0.81			0.88
	16																					0.87			0.92
	18				1			-											1			1.00			1.00

Hilti, Inc. (US) 1-800-879-8000 | www.us.hilti.com ! en español 1-800-879-5000 | Hilti (Canada) Corp. 1-800-363-4458 | www.hilti.ca | Product Technical Guide 2008 271

4.2.7 HIT-RE 500 Epoxy Adhesive Anchoring System

Anchor Spacing and Edge Distance Guidelines in Concrete

	L	.oad A	djust	ment	Facto	rs fo	r 7/8"	Diam	neter /	Ancho	r			
And	hor Diameter:				_	7	/8º dia	meter						
	Adjustment Factor		Spacing sion/Sh			je Dista Tensior f _ស		Ś	je Dista ihear, f _e loward e	¥1	Edge Distance Shear, f _{Rv2} (Il to or away from edge)			
Emb	ed. Depth (in.)	4	7-7/8	10-1/2	4	7-7/8	10-1/2	4	7-7/8	10-1/2	4	7-7/8	10-1/2	
П	2	0.70	141 - C	1.1	0.70	l.d. 1		0.18			0.46	•		
	2-1/2	0.74			0.74	jār pā	di de	0.25	1. A.		0.51	-	121	
	3	0.78		di di	0.78		1997.0	0.32	$\{ (1,1) \in \{1,1\} \}$	100	0.55	1.11		
[3-1/2	0.81		ar st	0.81	. j. 20		0.38	1.1	(2, 1, 2)	0.60	$ \gamma_1-\zeta $	20 A.	
	3-15/16	0.85	0,70	de la	0.85	0.70	이상	0,44	0.18		0.63	0.46		
. <u>.</u>	4-1/2	0.89	0.72		0.89	D.72	[]	0.52	0.22	1.2	0.69	0.49	< ::::::::::::::::::::::::::::::::::::	
6	5	0.93	0.74		0.93	0.74		0.59	0.25	1	0.73	0.51	- 11.	
8	5-1/4	0.94	0.75	0.70	0.94	0.75	0.70	0.62	0.27	0.18	0.75	0.52	0.46	
<u>اق</u>	6	1.00	0.78	0.72	1.00	0.78	0,72	0.72	0.32	0.22	0.82	0.55	0.49	
Spacing (s)/Edge Distance (c),	6-1/2		0.80	0.74		0.80	0.74	0,79	0.36	0.24	0.87	0.58	0.50	
뿽	7		0.82	0.75		0.82	0.75	0.86	0.39	0.27	0.91	0.60	0.52	
s)/E	8		0.85	0.78		0.85	0.78	1.00	0.46	0.32	1.00	0.65	0.55	
) fil	10		0.93	0.84		0.93	0.84		0.60	0.42		0.74	0.62	
acit	11-13/16		1.00	0.89	1	1.00	0.89		0.72	0.52		0.82	0.69	
တီ	12	1		0.89			0,89		0.73	0.53		0.83	0.69	
	14			0.95			0.95		0.87	0.63		0.92	0.76	
	15-3/4		ļ	1.00			1.00	<u> </u>	1.00	0.72		1.00	0.82	
	18									0.84			0.90	
	20			1						0.94			0.97	
	21									1.00			1.00	

Note: Tables apply for listed embedment depths. Reduction factors for other embedment depths must be calculated using equations below.

Spacing Tension/Shear $s_{min} = 0.5 h_{ef}, s_{cr} = 1.5 h_{ef}$ $f_A = 0.3 (s/h_{ef}) + 0.55$ for s_{cr} >Ss_{min}

Edge Distance Tension $c_{min} = 0.5 h_{ef}, c_{er} = 1.5 h_{ef}$ $f_{RN} = 0.3(c/h_{ef}) + 0.55$

for c_{or}>c>c_{min} Edge Distance Shear (⊥ toward edge)

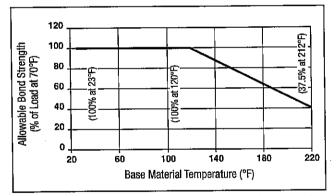
$$\begin{split} c_{min} &= 0.5 \ h_{ef}, \ c_{cr} = 2.0 \ h_{ef} \\ f_{RV1} &= 0.54(c/h_{ef}) - 0.09 \\ for \ c_{cr}{>}c{>}c{>}c_{min} \end{split}$$

Edge Distance Shear (II to or away from edge)

 $c_{min} = 0.5 h_{ef}, c_{cr} = 2.0 h_{ef}$ $f_{BV2} = 0.36(c/h_{ef}) + 0.28$

for c_{cr}>c>c_{min}

Ì						Ŀ	oad A	djusta	ment	Facto	rs for	1" ai	nd 1-	1/4º [Diame	eter A	nchor	S							
Anc	nor Diameter					1"	dlame	ter										1-1/4"	dlame	ter					
	Adjustment Factor		Spacing Edge Distance Edge Distance Edge Distance Tension/Shear Tension Shear, f _{RP} , f _A Shear, f _{RP} , f _{R0} (1 to or away from edge)					12		Spacing nsion/Sh f _A		Edg	ge Dista Tension f _{ae}		5	ge Dista Shear, f _R toward e	'n	Edge Distance Shear, f _{avz} (II to or away from edge)							
Emb	ed. Depth (in.)	4-1/2	9	12	4-1/2	9	12	4-1/2	9	12	4-1/2	9	12	5-5/8	11-1/4	15	5-5/8	11-1/4		5-5/8	11-1/4	15	5 5/8	11-1/4	15
	2-1/4	0.70			0.70			0.18	- 4 g		0.46						11.11			1.16		2,23			
	2-3/4	0.73			0.73			0.24			0.50		1.1	0.70	26 D	ginne -	0.70		ا : بندستوند :	0.18		<u>teri</u>	0.46	14.15	
1 [3	0.75			0.75	e gag		0.27		1.1.2	0.52			0.71	L. 3	노망	0.71		1975	0.20			0.47		1.03
	4	0.82	11 (A.)	<u>, sheq</u>	0.82		1666	0.39	1.1	1.1	0.60			0.76		9451	0.76			0.29			0.54		Nor P
	4-1/2	0.85	0 <u>.70</u>		0.85	0.70		0.45	0.18		0.64	0.46	199	0.79	966 Y		0.79	199	1994 - A	0.34		28 C	0.57	i de ge	191. g
	5	0.88	0.72	1 depta	0.88	0.72	3.4	0.51	0.21		0.68	0.48		0.82	1949 Ale		0.82	197		0.39		<u>ар</u>	0.60		
	5-5/8	0.93	0.74	a Cas	0.93	0.74	909 1	0.59	0.25	1.5	0.73	0.51	gi ta ta	0.85	0.70		0.85	0.70		0.45	0.18	3. Š.	0.64		
É	6	0.95	0.75	0.70	0.95	0.75	0.70	0,63	0.27	0.18		0.52	0,46	0.87	0.71		0.87	0.71		0.49	0,20	<u>1997</u>	0.66	0.47	
3	6-3/4	1.00	0.78	0.72	1.00	0.78	0.72	0.72	0.32	0.21	0.82	0.55	0.48	0.91	0.73	10 July	0.91	0.73	. j. 1	0.56	0.23	<u>1896 - 1</u> .	0.71	0.50	
	7-1/2		0.80	0.74		0.80	0.74	0.81	0.36	0.25	0.88	0.58	0.51	0.95	0.75	0.70	0.95	0.75	0.70	0.63	0.27	0.18	0.76		0.46
Distance	8-1/4		0.83	0.76		0.83	0.76		0.41	0.28		0.61	0.53	0.99	0.77	0.72	0.99	0.77	0.72	0.70	0.31	0.21	0.81		0.48
ă	9		0.85	0.78		0.85	0.78	1.00	0.45	0.32	1.00	0.64	0.55		0.79	0.73		0.79	0.73	0.77	0.34	0.23	0.86	0.57	0.50
B	10		0.88	0.80		0.88	0.80		0.51	0.36		0.68	0.58		0.82	0.75		0.82	0.75	0.87	0.39	0.27	0.92	0.60	0.52
(s)/Edge	11		0.92	0.83		0.92	0.83			0.41	ļ		0.61	<u> </u>	0.84	0.77		0.84	0.77	1.00	0.44	0.31	0.98	0.63	0.54
Ē	12		0.95	0.85		0.95	0.85			0.45			0.64		0.87	0.79		0.87	0.79		0.49	0.34		0.66	0.57
Spacing	13-1/2		1.00	0.89		1.00	0,89			0.52		0.82	0.69		0.91	0.82	1	0.91	0.82		0.56	0.40		0.71	0.60
ы М	14			0.90		_	0.90			0.54		0.84	0.70		0.92	0.83		0.92	0.83	İ	0.58	0.41			D.62
	<u>16-7/8</u>			0.97			0.97			0.67	<u> </u>	0.96			1.00	0.89		1.00	0.89		0.72	0.52		0.82	0.69
11	18			1.00			1.00		1,00	0.72		1.00	0.82			0.91			0.91		0.77	0.56		0.86	0.71
	20							<u> </u>		0.81			0.88			0.95		1	0.95		0.87	0.63		0.92	0.76
ļļ	22-1/2				<u> </u>					0.92	L		0.96			1.00			1.00		1.00	0.72		1.00	0.82
1	24					-	ļ			1.00			1.00									0.77			0.86
	27			1					ļ	<u> </u>	ļ							<u> </u>			<u> </u>	0.88	ļ	 	0.93
	30																	1				1.00			1.00


272 Hillti, Inc. (US) 1-800-879-8000 | www.us.hilti.com | en español 1-800-879-5000 | Hillti (Canada) Corp. 1-800-363-4458 | www.hilti.ca | Product Technical Guide 2008

HIT-RE 500 Epoxy Adhesive Anchoring System 4.2.7

Resistance of HIT-RE 500 to Chemicals

Chemical	Chemicals Tested	Resistant	Not Resistant
Alkalinize	Concrete drilling mud (10%) pH=12.6	+	
(Base material	Concrete drilling mud (10%) pH=13.2	+	
concrete)	Concrete potash solution (10%) pH=14.0	+	
	Acetic acid (10%) r concrete was		-
Acids	Nitric acid (10%) L dissolved by acid		-
	Hydrochloric acid (10%) 3 month -		-
	Sutfuric acid (10%)		-
	Benzyl alcohol		-
Solvents	Ethanol		-
	Ethyl acetate		-
	Methyl ethyl ketone (MEK)		-
	Trichlorethylene		- 1
, '	Xylene (mixture)	+	1
	Concrete plasticizer	+	
Chemicals	Diesel oil	+	
used on job sites	Oil	+	
_	Petrol	+	
	Oil for form work (forming oil)	+	
	Salt water	+	
Environmental	de-mineralized water	+	1
Chemicals	salt spraying test	+	
	SO ₂	+	
	Environment / Weather	4	

Influence of Temperature on Bond Strength

Note: Test procedure involves the concrete being held at the elevated temperature for 24 hours then removing it from the controlled environment and testing to failure.

Long term creep test in accordance with AC58 is available; please contact Hitti Technical Services.

Samples of the HIT-RE 500 resin were immersed in the various chemical compounds for up to one year. At the end of the test period, the samples were analyzed. Any samples showing no visible damage and having less than a 25% reduction in bending (flexural) strength were classified as **"Resistant."** Samples that were heavily damaged or destroyed were classified as **"Not Resistant."**

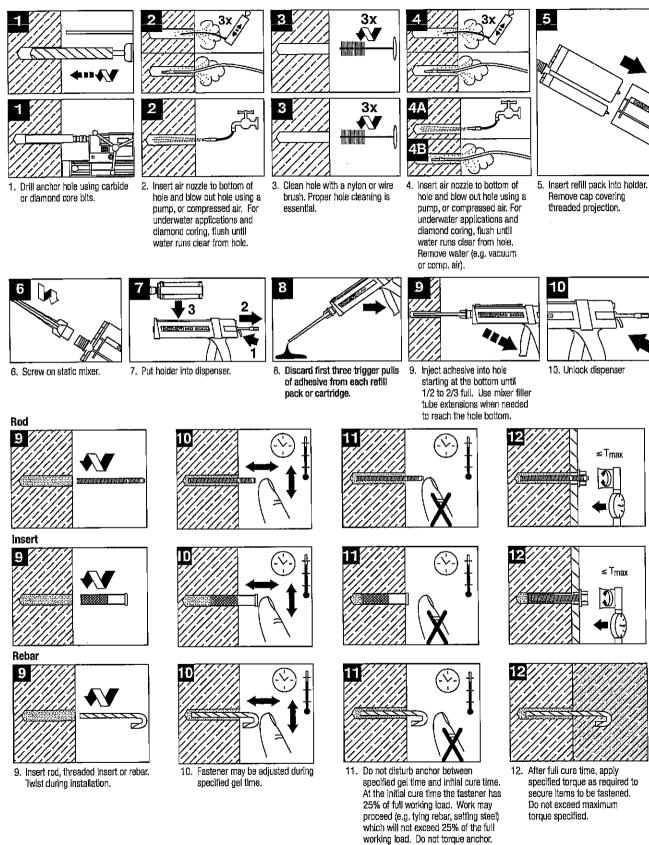
Note: In actual use, the majority of the resin is encased in the base material, leaving very little surface area exposed.

Full Cure Time Table1 (100% of working load)

Base Material	Temperature	Approx.
°F	0°	Full Curing Time
23	-5	72 hours
32	0	50 hours
50	10	24 hours
68	20	12 hours
86	30	8 hours
104	40	4 hours

Initial Cure Time Table1 (25% of working load)

Base Material	Base Material Temperature							
°F	0°	Initial Cure Time						
23	-5	36 hours						
32	0	25 hours						
50	10	12 hours						
68	20	6 hours						
86	30	4 hours						
104	40	2 hours						


Gel Time Table1 (Approximate)

Base Material	Temperature	Approx.
۴		Gel Time
23	-5	4 hours
32	0	3 hours
50	10	2 hours
68	20	30 minutes
86	30	20 minutes
104	40	12 minutes

 Minimum product temperature must be maintained above 41°F (5°C) prior/during installation.

4.2.7 HIT-RE 500 Epoxy Adhesive Anchoring System

4.2.7.4 Installation Instructions

274 Hitti, Inc. (US) 1-800-879-8000 | www.us.hilti.com | en español 1-800-879-5000 | Hilti (Canada) Corp. 1-800-363-4458 | www.hilti.ca | Product Technical Guide 2008

HIT-RE 500 Epoxy Adhesive Anchoring System 4.2.7

HIT HIT-RE 500 Volume Charts

Threaded Rod Installation

Drill Bit ¹ Diameter (in.)	Adhesive Volume Required per Inch of embedment (in ³)
5/16	0.055
7/16	0.095
9/16	0.133
3/4	0.261
7/8	0.326
1	0.391
1-1/8	0.478
1-3/8	0.626
	Diameter (in.) 5/16 7/16 9/16 3/4 7/8 1 1-1/8

EXAMPLE:

Determine approximate fastenings for 5/8" rod embedded 10" deep.

 $10 \times 0.261 = 2.61 \text{ in}^3$ of adhesive per anchor 16.5 ÷ 2.61 = 6 fastenings per small cartridge 81.8 ÷ 2.61 = 31 fastenings per jumbo cartridge

1 Rebar diameter may vary. Use smallest drill bit which will accommodate rebar.

Rebar Installation

Rod Diameter (in.)	Drill Bit ¹ Diameter (in.)	Adhesive Volume Required per Inch of embedment (in ³)
#3 or 3/8	1/2	0.110
#4 or 1/2	5/8	0.146
#5 or 5/8	3/4	0,176
#6 or 3/4	7/8	0.218
#7 or 7/8	1	0.252
#8 or 1	1-1/8	0.299
#9 or 1-1/8	1-3/8	0.601
#10 or 1-1/4	1-1/2	0.659
#11 or 1-3/8	1-3/4	1.037
NOTE: Useab	le volume of	HIT-RE 500 refill cartrid

Metric Rebar Installation (Canada Only)

Bar Diameter				
10M	5/8	0.186		
15M	3/4	0.170		
20M	1	0.388		
25M	1-1/8	0.289		
30M	1-3/8	0.481		
35M	1-3/4	0.996		

je is 16.5 in³ (270 ml). Useable volume of HIT-RE 500 medium refill cartridge is 26.9 in³ (440 ml). Useable volume of HIT-RE 500 jumbo refill

cartridge is 81.8 in³ (1340 ml).

4.2.7.5 Ordering Information

HIT-RE 500 Refill Pack

HIT-RE 500 Medium Cartridge

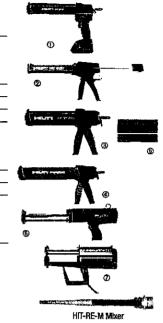
HIT Adhesives

item No.	Description	
340225	HIT-RE 500 11.1 oz (330 ml) Includes (1) Refill Pack and (1) Mixer with filler tube	
369251	HIT-RE 500 MC 11.1 oz (330 ml) Includes (25) Refill Packs and (25) Mixers with filler tube	
369110	HIT-RE 500 Medium 16.9 cz (500 ml) Includes (20) Refill Packs and (20) Mixers with filler tube	
373958	HIT-RE 500 Jumbo 47.3 oz (1400 ml) Includes (4) Jumbo Refill Packs and (4) Mixers	

4.2.7 HIT-RE 500 Epoxy Adhesive Anchoring System

Dispensers

Battery Powered


llem No.	Ordering designation	
3245363	ED3500 2.0 Ah kit	0
Manual		
ttem No.	Ordering designation	
371291	MD 1000 Manual Dispenser for HIT-ICE	Ø
229154	MD 2000 dispenser — includes foit pack holder	(9
338853	MD 2500 Manual Dispenser	•
229170	Refill Holder Replacement for MD2000, ED 3500 or P-3000HY dispensers	6

Pneumatic Dispenser with 1/4" internally threaded compressed air coupling

Item No.	Ordering designation	
354180	P-3500 dispenser (for foil packs)	
373959	HIT-P8000D pneumatic dispenser (for jumbo cartridges)	
373960	Jumbo pack holder replacement for P8000D	

Mixers and Filler Tubes

tlem No.	Ordering designation
337111	HIT-RE-M static mixer (suitable for foil pack and jumbo cartridges)

6

<u>City/pkg</u> 1

276 Hilti, Inc. (US) 1-800-879-8000 J www.us.hilti.com I en español 1-800-879-5000 I Hilti (Canada) Corp. 1-800-363-4458 J www.hilti.ca I Product Technical Guide 2008

HIT-RE 500 Epoxy Adhesive Anchoring System 4.2.7

Threaded Rods

	HAS Rod	s 5.8		HAS Super A193, B7 High Strength Rods		HAS-R Rods 304 Stainless Steet			HAS-R Rods 316 Stainless Steel			
ltem No. (Bax)	Master Carlon (MC)	Description (in.)	Qty Box/MC	Item No.	Description	Qty Box	item No.	Description	Orty Box	ltem Na.	Description	City Bax
385417	3432178	3/8 x 3	10/360									
385418	3432179	3/8 x 4-3/8	10/240									
385419	3432180	3/8 x 5-1/8	20/240	68657	3/8x5-1/8	10	385462	3/8x5-1/8	10	3024335	3/8x5-1/8	1
385420	3432181	3/8-8	10/160				385463	3/8 x 8	10			
385421	3432182	3/8 x 12	10/90									
385422	3432183	1/2 x 3-1/8	10/240									
385423	3432184	1/2 x 4-1/2	10/160									
385424	3432185	1/2 x 6-1/2	20/160	68658	1/2x6-1/2	10	385464	1/2x6-1/2	10	3024336	1/2x6-1/2	1
385425	3432239	1/2 x 8	10/120				385465	1/2x8	1			
385426	3432186	1/2 x 10	10/120	· · · · · ·			385466	1/2x10	1			
·····										3024337	1/2x11	1
385427	3432187	1/2 x 12	10/80				1					
385428	3432188	5/8x8	20/80	333783	5/8x7-5/8	10	385467	5/8x7-5/8	10	333781	5/8x7-5/8	10
							385468	5/8x10	1			
385429	3432189	5/8 x 9	10/60							3024338	5/8x9	1
385430	3432190	5/8 x 12	10/60							3024339	5/8x12	1
385431	3432191	5/8 x 17	10/40									
385432	3432052	3/4 x 10	10/40	68660	3/4x9-5/8	5	385469	3/4x9-5/8	5	3024340	3/4x9-5/8	1
385433	3432163	3/4 x 11	10/30									
385434	3432164	3/4 x 12	10/30				385470	3/4x12	1			
385435	3432165	3/4 x 14	10/30	3006083	3/4 x 14	5	385471	3/4x14	1			
7.7							385472	3/4x16	1			
385436	3432166	3/4 x 17	10/20									
385437	3432167	3/4 x 19	10/20									
385438	3432168	3/4 x 21	10/20									
385439	3432169	3/4 x 25	10/20						-			
385440	3432170	7/8 x 10	10/20	68661	7/8x10 (HDG) ¹	5	385473	7/8x10	1			
				3006077	7/8x12 (HDG)1	5						
385441	3432171	7/8 x 13	10/20	45259	7/8x16 (HDG)1	5						
385442	3432172	1 x 12	4/16	68662	1x12	5	385474	1x12	1	3024341	1x12	4/16
385443	3432173	1 x 14	2/16	3006079	1x14	5		1				1
385444	3432174	1 x 16	2/12	3006080	1x16	5		_				
385445	3432175	1 x 20	2/12	3006081	1x21	5						
385446	3432176	1-1/4 x 16	4/8	333779	1-1/4x16	4						
385447	3432177	1-1/4 x 22	4/8	l								
	1			3006082	1-1/4x23	5						

1 Hot dipped galvanized (7/8" rod only). Coating thickness 2 mils (50.8 μm).

· NAMARARA AND A CONTRACT OF A	() he he i ha he
	的行动的任何的现在分词的行动的

and a state of the second state of the

HIS Internally Threaded Inserts

- ----

HIS Item No,	HIS-R Item No.	Description	Useable Thread Length (in.)	Qty Box
258020	258029	3/8x4-1/4	1	10
258021	258030	1/2x5	1-3/16	5
258022	258031	5/8x6-5/8	1-1/2	5
258023	258032	3/4x8-1/4	2	5

Hitti, Inc. (US) 1-800-879-8000 | www.us.hilti.com | en español 1-800-879-5000 | Hitti (Canada) Corp. 1-800-363-4458 | www.hilti.ca | Product Technical Guide 2008 277

-

In The United Sate	Statistics	In Canada	
PAYMENT TERMS:	Net 30 days from date of involce. Customer agrees to pay all costs incurred by Hilti in collecting any delinquent amounts, including attorney's fees.	PAYMENT TERMS:	Net 30 days from date of invoice. Customer agrees to pay all costs incurred by Hilti in collecting delinquent amounts, if any, including reasonable attorney's fees.
	All sales are F.O.B. Destination with transportation allowed via Hilti designated mode. Delivery dates are estimates only. Additional charges for expedited shipments, special handling requirements, and orders below certain dollar amounts shall be the responsibility of Customer. Fuel surcharges may apply depending on market conditions. All orders sold on credit are subject to Credit Department approval.	FREIGHT:	Sales are F.O.B. Destination Point with transportation allowed via Hilti designated mode. Additional charges may apply for expedited delivery, special handling requirements, and order under certain limits. A fuel surcharge may apply depending on market conditions.
RETURN POLICY:	Products must be in saleable condition to qualify for return.	CREDIT:	All orders sold on credit are subject to
	Saleable condition is defined as unused items in original undamaged packaging and unbroken quantities and in as-new condition. All returns are subject to Hilti inspection and acceptance, and a \$125 restocking charge if returned more than 90 days after invoice date. Proof of purchase is required for all returned materials. Special orders products and discontinued items are not eligible for return credit. Dated materials are only returnable in case quantity, and within 30	RETURN POLICY:	Credit Department approval. Product may be returned prepaid (unless otherwise authorized) to Hilti provided: i) it is returned by the original purchaser ii) it is not dated product returned more than 30 days after the original delivery date
WARRANTY:	days after involce date. Hilti warrants that for a period of 12 months from the date it sells a product it will, at its sole option and discretion, refund the purchase price, repair, or replace such product if it contains a defect in		iii) it is not discontinued, clearance or special order product iv) it is unused, in original packaging and
	material or workmanship. Absence of Hilt's receipt of notification of any such defect within this 12-month period shall constitute a waiver of all claims with regard to such product. THE FOREGOING WARRANTY IS IN LIEU OF ALL OTHER WADRANTIES EXPRESS OR IMPLIED, INCLUDING BUT NOT		In unbroken quantities. Hilti will inspect product and, if the above requirements are satisfied, will credit to customer the original purchase price. A 15% restocking fee may apply.
	LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hill shall in no event be liable for, and Customer hereby agrees to indemnify Hill against all claims related to special, direct, indirect, incidental, consequential, or any other damages arising out of or related to the sale, use, or inability to use the product. Acceptance is limited to the express terms contained herein, and	WARRANTY:	Other than the manufacturer's published warranty, no warranties or conditions, express or implied, written or oral, statutory or otherwise are implied. Any and all conditions and warranties implied by law or by the Sale of Goods Act or any similar statutes of any Province are hereby
ACCEPTANCE OF ORDER:	terms are subject to change by Hilti without notice. Additional or different terms proposed by Customer are deemed material and are objected to and rejected, but such rejection shall not operate as a	TITLE TO PRODUCT:	expressly waived. Title to product remains with Hiti until the total purchase price of product is paid.
DOMESTIC ORIGIN:	rejection of the offer unless it contains variances in the terms of the description, quantity, price or delivery schedule of the goods. Orders are not deemed "accepted" by Hilti unless and until it ships the associated items. Any non-domestic Hilti product will be so identified on shipping	PRICES:	Customer agrees to pay Hilti prices set out on invoice. Customer agrees to pay taxes as indicated on invoice unless Hilti receives acceptable exemption
DOMESTIC ORIGIN:	documents and involces for customers who properly identify themselves as a federal government entity. All other customers may obtain such information by written request to Hilti, inc., Contract Compliance, P.O. Box 21148, Tulsa, Oklahoma 74121. Hilti's Quality Department personnel are the only individuals authorized to warrant the country of origin of Hilti products.	INDEMNIFICATION:	certificates. Customer agrees to use product at own risk and to indemnify Hilti against all llabilities, including legal fees, to third parties arising out of the use or possession thereof. Hilti shall in no event be llable for special, incidental or
BUSINESS SIZE:	Hilti is a large business.		consequential damages.
PRICES:	Prices are those stated on the order, and unless otherwise noted are based on purchasing all items on the order — pricing for individual products may vary for purchases of different quantities or item combinations. Hilti does not maintain most favored customer records, makes no representation with respect to same, and rejects any price warranty terms proposed by Customer. Hilti's published		Hilti sales personnel are not authorized to modify these Terms and Conditions or modify Customer's credit terms. Terms are subject to change by Hilti with reasonable notice to Customer.
	net price list is subject to change without notice.	CASH SALES:	Payment in full is due prior to goods being released.
CONSENT TO JURISDICTION	been made and entered into in Tulsa, Oklahoma. Any and all disputes arising directly or indirectly from such transactions shall be resolved in the courts of the County of Tulsa. State of Oklahoma, to the exclusion of any other court, and any resulting judgment may be enforced by any court having jurisdiction of such an action. All transactions shall be governed by and construed in accordance with the laws of the State of Oklahoma.		All terms and conditions apply once customer agrees to purchase product. Quotations on special promotion products are only valid until end of promotion period.
INDEMNIFICATION:	Customer hereby agrees to indemnify Hilti for any costs, including attorney's fees, incurred by Hilti as a result, in whole or in part, of any violation by Customer of any Federal, State or Local statute of regulation, or of any nationally accepted standard. It shall be Customer's sole responsibility to comply with all applicable laws and regulations regarding the handling,use, transportation, or disposal of products upon taking possession of same.	r	
AUTHORIZATION:	HILTI LEGAL DEPARTMENT PERSONNEL ARE THE ONLY INDIVIDUALS AUTHORIZED TO MODIFY THESE TERMS AND CONDITIONS, WARRANT PRODUCT SUITABILITY FOR SPECIFIC APPLICATIONS, OR EXECUTE CUSTOMER DOCUMENTS, AND ANY SUCH ACTION IS NULL AND VOID UNLESS IN WRITTEN FORM SIGNED BY SUCH INDIVIDUAL.		

CONTRACTOR DESCRIPTION OF A DESCRIPTIONO Hiti, Inc. (US) 1-800-879-8000 | www.us.hilti.com | en español 1-800-879-5000 | Hilti (Canada) Corp. 1-800-363-4458 | www.ca.hilti.com | Product Technical Guide 2008

R0001 – RMR Standard Calculations Aluminum Railing Design Calculations – R11-02-15H Colorado

Prepared for Rocky Mountain Railings

Denver, CO

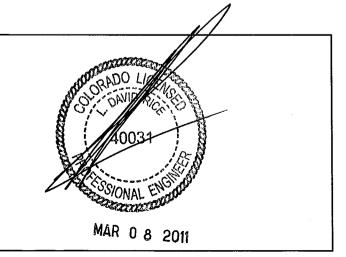
Engineers Design Approval Stamp:

Design Criteria:

1. Railing live loads per International Building Code 2009:

Guardrails

50 plf uniform load in any direction on top rail
200 pound concentrated load in any direction on top rail
50 pound concentrated load over 1 ft² of infill area
Concentrated load and uniform loads need not be assumed to act concurrently


Railing deflections per ASTM E985

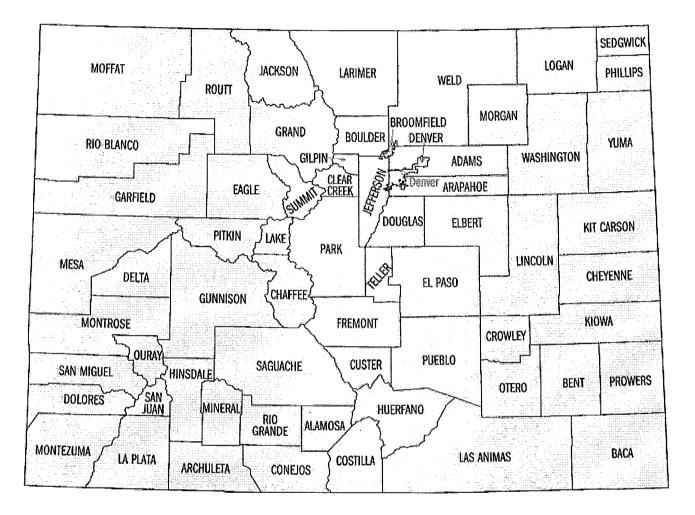
Members designed per Aluminum Association Inc, "Aluminum Design Manual"

- 2. Aluminum member sizes shall be as recommended in the calculation booklet
- 3. Aluminum alloys shall be as recommended in the calculation booklet
- 4. Stainless steel fasteners to be minimum Condition "CW", Fy= 65 ksi
- 5. Aluminum welds to be filler alloy 5356, unless noted otherwise
- 6. Concrete strength is assumed to be F'c= 4,000 psi, normal weight
- 7. Additional RISA Finite Element Analysis model data available upon request.

This Certification is limited to the structural design of structural components of this handrail or divider system. It does NOT include responsibility for:

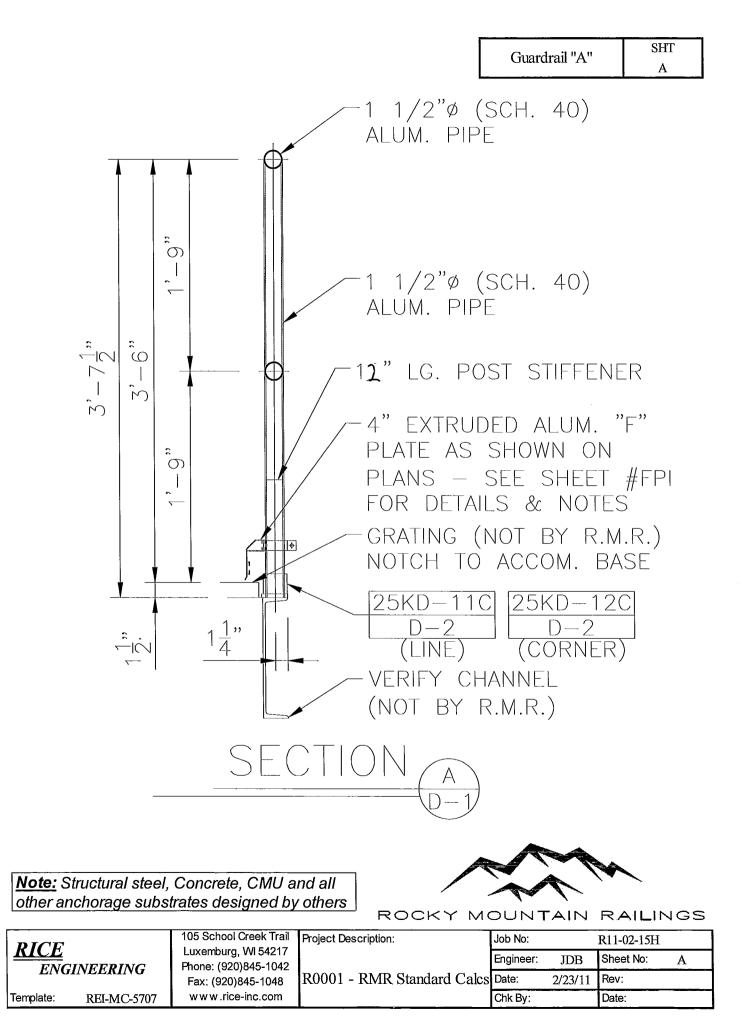
- Structural design of misc. hardware (latches, hinges, etc.).
- Structural design of concrete slabs and other masonry units
- Structural design of wood blocking or wood framing
- Structural design of all other anchorage substrates
- The manufacture, assembly, or installation of the system.
- Quantities of materials or dimensional accuracy of drawings

Date: 3/8/11


Sheet				Sheet		1
Number	Description	Date	Revision	Number	Description	Date
PL	Project Location & Specs	2/23/11				
A	Guardrail "A"	2/23/11				
	Guardrail "A" Analysis	2/23/11				
A2	2-Bolt Base Plate	2/23/11				
A3	Corner Base Plate	2/23/11				
A3.1	RISA Data	2/23/11				
A3.2	RISA Data Guardrail "B"	2/23/11				
B		2/23/11 2/23/11				
B2	Guardrail "B" Analysis Surface Mount Anchorage	2/23/11				- <u> </u>
B3	Hilti Adhesive	2/23/11				_
<u> </u>	Guardrail "C"	2/23/11				<u>.</u>
	Guardrail "C" Analysis	2/23/11				
C2	Side Mount Anchorage	2/23/11				l A
C3	Hilti Adhesive	2/23/11				
C4	Corner Side Mount Anchorage	2/23/11				
C4.1	RISA Data	2/23/11				Net and a second
C4.2	RISA Data	2/23/11	·			
C5	Hilti Adhesive	2/23/11				
C6	Side Mount Anchorage	2/23/11				
C7	Hilti Adhesive	2/23/11				1
D	Guardrail "D"	2/23/11				
D1-D1B	Guardrail "D" Analysis	2/23/11				
D2	Side Mount Anchorage	2/23/11			· · · · · · · · · · · · · · · · · · ·	
D3	Side Mount Anchorage	2/23/11				
E	Guardrail "E"	2/23/11				
	Guardrail "E" Analysis	2/23/11				
E2	Side Mount Anchorage	2/23/11				
E3	Side Mount Anchorage	2/23/11				
F	Guardrail "F"	2/23/11		and the		
	Guardrail "F" Analysis	2/23/11	<u> </u>	A		
F2	Post Embedment in Grout	2/23/11		<u> </u>		
M1	Miscellaneous Connections	2/23/11		Strategies, 4		
M1A	RISA Data	2/23/11	<u></u>		2 ⁶	
<u>M2</u> M2A	Wall Rail Post Bracket	2/23/11		· · · · · · · · · · · · · · · · · · ·	18. 	
M2A M2B	RISA Data	2/23/11		1. 1. 1. 1. 1.	· · · · · · · · · · · · · · · · · · ·	-
	Wall or Grab Rail Analysis	2/23/11				-
M4	Grab Rail Bracket Analysis	2/23/11				
M5	Wall Rail Bracket Analysis	2/23/11		*		
M6	Offset Rail Connections	2/23/11				
M7	Wall Mount End Cap	2/23/11	ALCONT.			
M8	2-Bolt Raked Base Plate	2/23/41				
	Algør Base Plate Models	2/23/11			······································	
S1	Fastener Spec. Sheet	2/23/11				
	Van Nater // Var					
188		<u></u>				
	V No. // V					
制成			- <u></u>			
製紙	<u> </u>					
	a second s					
This Cert	fication is limited to the structural design	n of	l f		a commence of the second secon	
	components of this handrail or divider sy		Sta		CAUCE LINE	
	OT include responsibility for:	<i>y</i> storm.	ات ات			
11 4000 11	or monute responsibility for.		A OL			
Stru	ctural design of misc. hardware (latches,	hinges etc.)	đđ			
	ctural design of concrete slabs and other		- VI			
	ctural design of wood blocking or wood f		to the second stamp: Engineers Design Approval Stamp:		B JA IRB	
	ctural design of all other anchorage subst					
			rs I		De la companya de la	
	manufacture, assembly, or installation of				SONAL E	
• Qua	ntities of materials or dimensional accura	icy of drawin	gs H		- Accounter	
			E		MAD	
			1		MAR 0 8 2011	

- It does NOT include responsibility for:
- Structural design of misc. hardware (latches, hinges, etc.). •
- Structural design of concrete slabs and other masonry units •
- Structural design of wood blocking or wood framing ٠
- . Structural design of all other anchorage substrates ٠
- The manufacture, assembly, or installation of the system. Quantities of materials or dimensional accuracy of drawings •

e

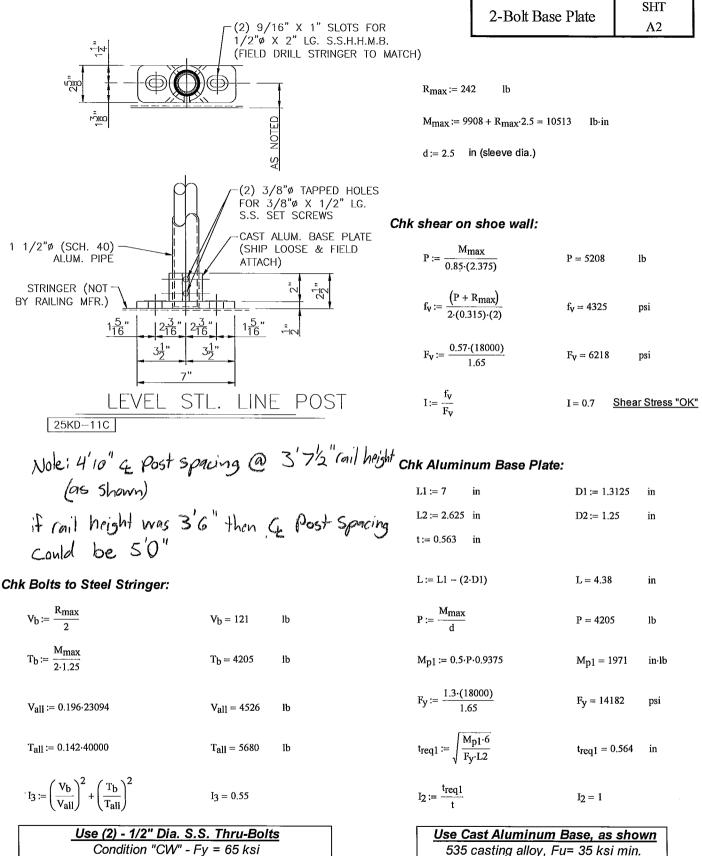

Project Location &	SHT
Specifications	PL

Project Location: Colorado

- Design Loads per IBC 2009
 - 50 plf uniform load in any direction on top rail
 - 200# concentrated load in any direction on top rail
 - 50# concentrated load applied to 1 square foot of infill

RICE		105 School Creek Trail	Project Description:	Job No:		R11-02-15H	
	INEERING	Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	PL
	INEEKINO	Fax: (920)845-1048	R0001 - RMR Standard Calcs	Date:	2/23/11	Rev:	
Template:	REI-MC-2002	w w w .rice-inc.com		Chk By:		Date:	

Dina Pailing & Deat	These calculations	s are based on emperical test data		
Pipe Railing & Post	performed by Juliu	-	Guardrail "A" Analysi	s SHT
Input Variables:				A1
$F_H := 50$ plf	Load Case 1 (Uniform Load)			
$F_V := 0$ plf	Simultaneous Vertical Unifor	m Load	1 1/2"ø (SCH	. 40)
P := 200 lb	Load Case 2 (Point Load)	b	ALUM. PIPE	· · · · /
$L_{bp} \coloneqq 21$ in	Unbraced Length of Post			
h := 41 in	Railing Height Above Base F			
L := 58 in 4'-	10" MAX POST SPAC		1 1/2"ø (SCH ALUM. PIPE	. 40)
Number of Railing Spar	ns: *Note: Post Sp.			
Number of Railing Spar 1 span ☑ 2 span ☑	(Anchor limits +			STIFFENER
2 span I♥ 3 or more spans IV	span longil	$\hat{\boldsymbol{y}}$	-4" EXTRUDED PLATE AS SHO	
Railing Section:	Post Section:	ମ /	PLANS - SEE	
1 1/4" Schd. 40	1 1/4" Sch		FOR DETAILS &	
1 1/4" Schd. 80	1 1/4" Sch		GRATING (NOT NOTCH TO ACC	
1 1/2" Schd. 40	1 1/2" Sch		د	5KD-12C
1 1/2" Schd. 80	1 1/2" Sch	d. 80 $\hat{-10}$ $1\frac{1}{4}$	D-2	D-2
1 1/2" tube	🔲 1 1/2" tube		VERIFY CHANN	CORNER) FI
2" Schd. 40	2" Schd. 4	0	(NOT BY R.M.F	
2" Schd. 80	2" Schd. 8	0 SEC	TION	
Railing Temper:	Post Temper:		(D-1)	
6063-T5	6063-т6			
6063-т6	Г 6005-T5			
6061-T6 or 6105-T	5 🖸 6061-T6 o	r 6105-T5	AU 1	
☐ 4/3 increase allo	owed Post Weld	ed to Base Plate		lations below are automatic
Railing Properties	Post Prope	rties	Computational Fa	otore
kr= 0.31 kr= 0.31	kr=	$\frac{0.31}{0.31} \qquad S_{R1} := \frac{R_r}{t_r} \qquad S_{R1} = 6$		
lyr= 0.31 Sxr= 0.326	lyr= Sxr=	$\frac{0.31}{0.326} = \frac{3R1}{t_r} = \frac{3R1}{t_r}$		
Syr= 0.326 R= 0.95	Syr= R=	$\begin{array}{c} 0.326 \\ \hline 0.95 \\ \hline 0.145 \end{array} S_{R3} \coloneqq \frac{R_p}{t_p} S_{R3} = 6 \end{array}$	$K_2 := (4 \cdot q1) + (5 \cdot q2) +$	
t = 0.35	t=	$\begin{array}{c} 0.95 \\ \hline 0.145 \end{array} \qquad S_{R3} \coloneqq \frac{Rp}{tp} \qquad S_{R3} = 6 \end{array}$.55 $K_3 := (48 \cdot q1) + (66 \cdot q2)$	+ (87·q3) K3 = 66
E _r := 10100000 psi				
$I_{xtotr} := I_{xr}$ $I_{xtotr} = 0.31$	$I_{xtotp} := I_{xp}$	$I_{xtotp} = 0.31$ in ⁴ <u>12" M</u>	in. Length AL. Ribbed 1	ube Stub
$I_{ytotr} := I_{yr}$ $I_{ytotr} = 0.31$	$\int in^4 I_{vtotp} := I_{vp}$	$I_{\text{st}} = 0.31$ in $I_{\text{st}} = 1.31$	= 0.174 in ⁴ L _{st} :=	9.5 in
$I_{ytotr} := I_{yr}$ $I_{ytotr} = 0.31$	in $I_{ytotp} := I_{yp}$	<u>,,,,</u>	$= 0.224 ext{ in}^3 ext{ Fbst} :=$	25000 psi
	105 School Creek Trail	Project Description:	Job No: R1	I-02-15H
<u>RICE</u>	Luxemburg, WI 54217	- '		eet No: A1
ENGINEERING	Phone: (920)845-1042 Fax: (920)845-1048	R0001 - RMR Standard Ca		
Template: REI-MC-5707	w w w .rice-inc.com		Chk By: Da	te:


Railing Analysis:	$W_h := \frac{F_H}{12}$	$W_{\mathbf{V}} \coloneqq \frac{F_{\mathbf{V}}}{12}$		Guard	rail "A" Analysis	SHT A1 A
Case 1 Uniform Load: $\Delta_{yr1} \coloneqq \frac{5 \cdot W_h \cdot L^4}{384 \cdot E_r \cdot I_{ytotr}}$			$\Delta_{\text{yrl}} = 0.196$	in	Modeled as a simple span	
$\Delta_{xr1} \coloneqq \frac{5 \cdot W_v \cdot L^4}{384 \cdot E_r \cdot I_{xtotr}}$			$\Delta_{\mathbf{Xrl}} = 0$	in		
$\Delta_{\text{allr}} \coloneqq \frac{L}{96}$			$\Delta_{allr} = 0.6$	in	Per ASTM Specification 1	3985
$M_{yrmax} \coloneqq \frac{W_{h}L^2}{K_1}$			М _{уптах} = 1752	lb∙in		
$M_{xrmax} \coloneqq \frac{W_{v'}L^2}{K_1}$			M _{xrmax} = 0	lb∙in		
D			· · · · · · · · · · · · · · · · · · ·			
$f_{bry1} \coloneqq \frac{M_{yrmax}}{S_{yr}}$			f _{bry1} = 5374	psi		
$f_{brx1} \coloneqq \frac{M_{xrmax}}{S_{xr}}$			$f_{bTX1} = 0$	psi		
Case 2 - Point Load:						
$\Delta_{yr2} := \frac{P \cdot L^3}{K_3 \cdot E_r \cdot I_{ytotr}}$			$\Delta_{\rm Yf2}=0.189$	in		
$M_{yrmax2} := \frac{P \cdot L}{K_2}$			M _{yrmax2} = 2320	lb∙in		
$f_{bry2} \coloneqq \frac{M_{yrmax2}}{S_{yr}}$			f _{bry2} = 7117	psi		
$F_{bry} := \begin{cases} (F_{bry1} \cdot 1.33) & \text{if IBC} = 1 \\ F_{bry1} & \text{otherwise} \end{cases}$			Fbry = 25000	psi		
Calculation Results:						
$Int_{r1} := \left(\frac{fbrx1}{Fbry}\right) + \left(\frac{fbry1}{Fbry}\right)$	$\mathrm{Int}_{r1}=0.21$					
$Int_{r2} := \frac{f_{bry2}}{F_{bry}}$	$Int_{\Gamma 2} = 0.28$					
RAILS := $ "OK" \text{ if } \frac{\max(\Delta y_{f1}, \Delta x_{f1})}{ "FAIL" }$	$\frac{1}{F_{\text{br}}} \leq 1 \wedge \left(\frac{f_{\text{br}}}{F_{\text{br}}}\right)$	$\left(\frac{1}{y}\right) + \left(\frac{f_{bry1}}{F_{bry}}\right) \le 1 \land \frac{f_{br}}{F_{br}}$	$\frac{y_2}{r_y} \le 1$ [RAILS = "	OK"	

<u>RICE</u> ENGINEERING			Project Description:	Job No:		R11-02-15	Ŧ
		Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	A1 A
ENGINEERING	Fax: (920)845-1048	R0001 - RMR Standard Calcs	Date:	2/23/11	Rev:		
Template:	REI-MC-5707	www.rice-inc.com		Chk By:		Date:	

• •

Post Analysis:	$E_p := E_r$	Guardrail	'A" Ana	alysis SHT
$\Delta_{xp1} \coloneqq \frac{W_h \cdot L \cdot (h - L_{st})^3}{3 \cdot E_p \cdot (I_{xp})}$		$\Delta_{xp1} = 0.804$	in	A1 B
$\Delta_{xp2} \coloneqq \frac{P \cdot 0.85 \cdot \left(h - L_{st}\right)^3}{3 \cdot E_p \cdot \left(I_{xp}\right)}$		$\Delta_{\rm XP2} = 0.566$	in	
Max Deflection:				
$\Delta_{tot} \coloneqq \frac{W_h \cdot L \cdot \left(h - L_{st}\right)^3}{3 \cdot E_p \cdot I_{xp}} + \frac{W_h \cdot L \cdot \left[h^3 - \frac{1}{3 \cdot \left[\left(E_p \cdot I_{xp}\right)\right]^3}\right]}{3 \cdot \left[\left(E_p \cdot I_{xp}\right)\right]^3}$	$\frac{\left(h - L_{st}\right)^{3}}{+ \left(E_{p} \cdot I_{st}\right)}$	$\Delta_{\text{tot}} = 1.425$	in	
$\Delta_{\text{allp}} \coloneqq \frac{h}{12}$		$\Delta_{\text{allp}} = 3.42$	in	Per ASTM E985
Case 1 - Uniform Load:				
$\mathbf{M}_{xp} := \left(\mathbf{W}_{h} \cdot \mathbf{L} \cdot \mathbf{h} \right) + \mathbf{W}_{v} \cdot \mathbf{L} \cdot \boldsymbol{\Delta}_{tot}$	$M_{xpmax} := 0.5 \cdot M_{xp} \cdot q1 + M_{xp}q2 + M_{xp} \cdot q3$	M _{xpmax} = 9908	lb∙in	
$\mathbf{M}_{xp2} \coloneqq \mathbf{W}_{h} \cdot \mathbf{L} \cdot \left(\mathbf{h} - \mathbf{L}_{st} \right) + \mathbf{W}_{v} \cdot \mathbf{L} \cdot \boldsymbol{\Delta}_{xp1}$	$M_{xpmax2} \coloneqq 0.5 \cdot M_{xp2} \cdot q1 + M_{xp2}q2 + M_{xp2} \cdot q3$	$M_{xpmax2} = 7613$	lb∙in	
Case 2 - Point Load:				
$\mathbf{M}_{xpmax4} \coloneqq \mathbf{P} \cdot (\mathbf{h} - \mathbf{L}_{st}) \cdot 0.85$		M _{xpmax4} = 5355	lb∙in	· · · · · · · · · · · · · · · · · · ·
$M_{xpmax3} := (P \cdot h \cdot 0.85)$		M _{xpmax3} = 6970	lb∙in	
Max Post Stress:				
$f_{bpx} := \frac{max(M_{xpmax2}, M_{xpmax4})}{S_{xp}}$		f _{bpx} = 23351	psi	
$F_{bpx} := \begin{cases} (F_{bpx1} \cdot 1.33) & \text{if } IBC = 1 \\ F_{bpx1} & \text{otherwise} \end{cases}$		F _{bpx} = 25000	psi	
Max Post/Stub Combined Str	ress:			
$f_{bpx2} := max(M_{xpmax}, M_{xpmax3}) \cdot \overline{(I_{xp})}$	$\frac{I_{xp}}{+ I_{st} \cdot S_{xp}}$	f _{bpx2} = 19467	psi	
Max Stub Stress:		F _{bpx} = 25000	psi	
$f_{bst} := max(M_{xpmax}, M_{xpmax3}) \cdot \frac{1}{(I_{xp} + I_{xpmax3})}$	$\frac{I_{st}}{I_{st}) \cdot S_{st}}$	f _{bst} = 15902	psi	
Calculation Results:		Fbst = 25000	psi	
$Int_{p1} \coloneqq max \left(\frac{f_{bpx}}{F_{bpx}}, \frac{f_{bpx2}}{F_{bpx}}, \frac{f_{bst}}{F_{bst}} \right)$		$Int_{p1} = 0.93$		

POSTS :=	"OK" if Int _{p1} ≤ 1 ∧ "FAIL" otherwise	$\frac{\max(\Delta_{xp1}, \Delta_{xp2}, \Delta_{tot})}{\Delta_{allp}} \le 1$	PO	STS = "OK"	ļ		
DICE			Project Description:	Job No: R11-02-15H		I	
RICE Luxemburg, WI 54217 ENGINEERING Phone: (920)845-1042 Fax: (920)845-1048 Fax: (920)845-1048		Engineer:	JDB	Sheet No:	A1 B		
		R0001 - RMR Standard Calca	Date:	2/23/11	Rev:		
Template:	REI-MC-5707	w w w .rice-inc.com		Chk By:		Date:	

535 casting alloy, Fu= 35 ksi min.

RICE	105 School Creek Trail	Project Description:	Job No:		R11-02-15H	
ENGINEERING	Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	A2
ENUMBERING	Fax: (920)845-1048 R0001 - RMR Standard Calcs	Date:	2/23/11	Rev:		
Template:	www.rice-inc.com		Chk By:		Date:	

-(2) 9/16" X 1" SLOTS FOR 1/2"ø X 2" LG. S.S. S.S.H.H.M.B. (FIELD DRILL STRINGER TO MATCH) ⊕ AS NOTED ÷<u>i</u>4 12" LG. POST STIFFENER--(2) 3/8"ø TAPPED HOLES FOR 3/8"ø X 1/2" LG. S.S. SET SCREWS 1 1/2"ø (SCH. 40) ALUM. PIPE -CAST ALUM. BASE PLATE (SHIP LOOSE & FIELD ATTACH) STRINGER (NOT 27 BY RAILING MFR.) Τ 1<u>5</u>" 2¦3" $\frac{33}{16}$ 18' ---8" LEVEL STL. CORNER POST 25KD-12C

Corner Base Plate	SHT
	A3

R _{max} := 101	lb	Reactions from RISA Model
$M_{max} := 0$	lb∙in	(Comer Post Modeled as a Pin Connection)

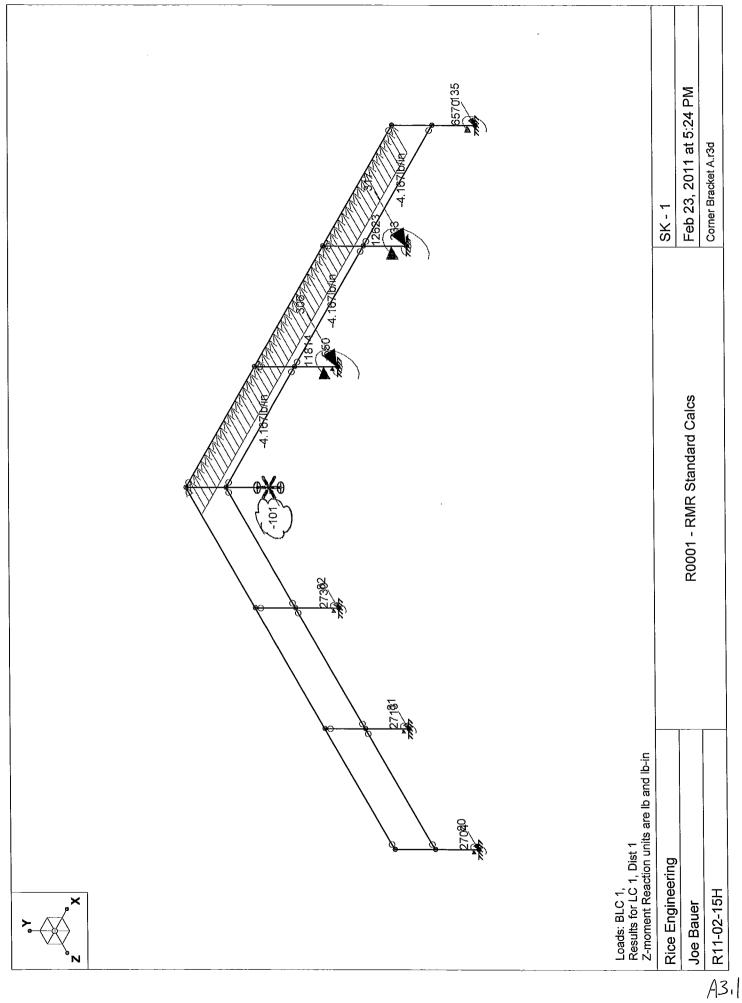
d := 2.5 in (sleeve dia.)

Chk shear on shoe wall:

$\mathbf{P} \coloneqq \frac{\mathbf{M}_{\max}}{0.85 \cdot (2.375)}$	$\mathbf{P} = 0$ lb
$f_{V} := \frac{\left(P + R_{\max}\right)}{2 \cdot (0.315) \cdot (2)}$	$f_V = 80$ psi
$F_{V} := \frac{0.57 \cdot (18000)}{1.65}$	F _V = 6218 psi
$\mathbf{I} := \frac{\mathbf{f}_{\mathbf{V}}}{\mathbf{F}_{\mathbf{V}}}$	I = 0.01 Shear Stress "OK"

Chk Aluminum Base Plate:

L1 := 7 in	D1 := 1.3125	in
L2 := 2.625 in	D2 := 1.25	in
t := 0.563 in		
L := L1 - (2·D1)	L = 4.38	in
$\mathbf{P} := \frac{\mathbf{M}_{\max}}{\mathbf{d}}$	$\mathbf{P}=0$	lb
$M_{p1} := P \cdot 0.9375$	$\mathbf{M}_{p1} = 0$	in∙lb
$F_{y} := \frac{1.3 \cdot (18000)}{1.65}$	Fy = 14182	psi
$t_{req1} := \sqrt{\frac{M_{p1} \cdot 6}{F_{y} \cdot L2}}$	$t_{req1}=0$	in
$I_2 := \frac{t_{req1}}{t}$	$I_2 = 0$	


<u>Use Cast Aluminum Base, as shown</u>
535 casting alloy, Fu= 35 ksi min.

DICE	105 School Creek Trail	Project Description:	Job No: R11-		R11-02-15H	
ENGINEERING	Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	A3
LINGINEEKIING	Fax: (920)845-1048	R0001 - RMR Standard Calcs	Date:	2/23/11	Rev:	
Template:	www.rice-inc.com		Chk By:		Date:	

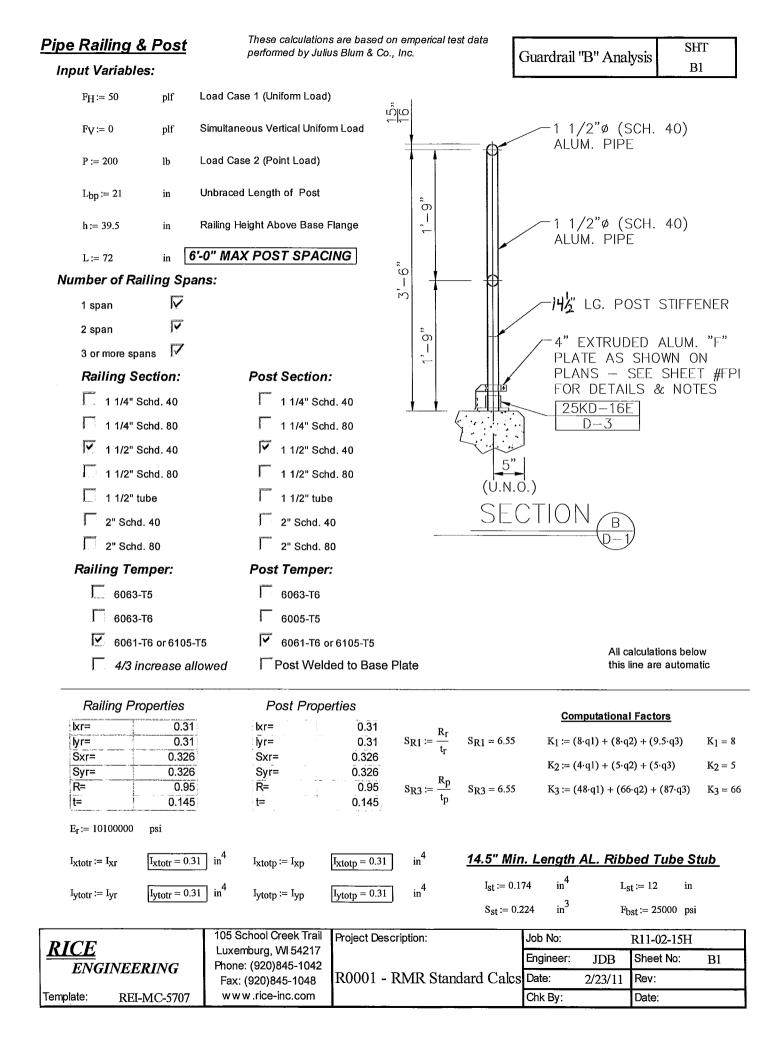
Chk Bolts to Steel Stringer:

$V_b := \frac{R_{max}}{2}$	V _b = 50.5	lb
$T_b := \frac{M_{max}}{2 \cdot 1.25}$	$T_b = 0$	lb
$V_{all} := 0.196 \cdot 23094$	V _{all} = 4526	lb
$T_{all} := 0.142 \cdot 40000 \cdot \frac{0.1875}{0.456}$	T _{all} = 2336	lb
$I_3 := \left(\frac{V_b}{V_{all}}\right)^2 + \left(\frac{T_b}{T_{all}}\right)^2$	$I_3 = 0$	

Use (2) - 1/2" Dia. S.S. Thru-Bolts or Drill & Tap - 3/16" Min. Thread Engagement Condition "CW" - Fy = 65 ksi

	_	SK - 2	Feb 23, 2011 at 5:24 PM	Corner Bracket A.r3d
			R0001 - RMR Standard Calcs	
Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	Z-moment Reaction units are lb and lb-in	Rice Engineering	Joe Bauer	R11-02-15H

...


	Guardrail "B"	SHT B
τήφ 1 1/2"¢ (SC ALUM. PIPE	CH. 40)	
60 1 1/2"ø (SC ALUM. PIPE	CH. 40)	
¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹	ED ALUM. "F Shown on EE sheet #	,,
$\begin{array}{c} 25KD - 16E \\ \hline D - 3 \\ \hline \end{array} \\ (U.N.O.) \\ \hline \end{array}$		
SECTION D-1		

<u>Note:</u> Structural steel, Concrete, CMU and all other anchorage substrates designed by others

ROCKY MOUNTAIN RAILINGS

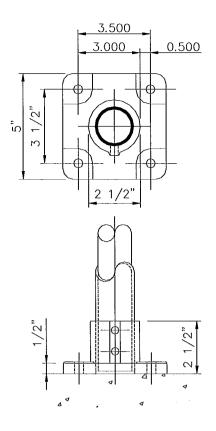
DICE		105 School Creek Trail	Project Description:	Job No:		R11-02-15H	
<u>RICE</u>	NEEDINC	Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	В
ENG.	INEERING		R0001 - RMR Standard Calcs	Date:	2/23/11	Rev:	
Template:	REI-MC-5707	www.rice-inc.com		Chk By:		Date:	

Ra	ailing Analysis:	$W_h := \frac{F_H}{12}$	$W_{\mathbf{V}} \coloneqq \frac{F_{\mathbf{V}}}{12}$		Guardrail "B" Analy		SHT B1 A
С	ase 1 Uniform Load:			1			DIA
	$\Delta_{yr1} \coloneqq \frac{5 \cdot W_h \cdot L^4}{384 \cdot E_r \cdot I_{ytotr}}$			Δ _{yr1} = 0.466	in	Modeled as a simple spar	1.
	$\Delta_{xr1} \coloneqq \frac{5 \cdot W_v \cdot L^4}{384 \cdot E_T \cdot I_{xtotr}}$			$\Delta_{\rm Xrl} = 0.47$	in		
	$\Delta_{\text{allr}} := \frac{L}{96}$			$\Delta_{allr} = 0.75$	in	Per ASTM Specification	E985
	$M_{yrmax} \coloneqq \frac{W_{h} L^2}{K_1}$			M _{yrmax} = 2700	lb∙in		
	$M_{xrmax} \coloneqq \frac{W_{v} \cdot L^2}{K_1}$			M _{xrmax} = 2700	lb∙in		
•				100000013171/ C ''			· · · · · · · · · · · · · · · · · · ·
	$f_{bry1} \coloneqq \frac{M_{yrmax}}{S_{yr}}$			f _{bry1} = 8282	psi		
	$f_{\text{DTX1}} \coloneqq \frac{M_{\text{XTMax}}}{S_{\text{XT}}}$			$\mathbf{f}_{brx1} = 8282$	psi		
C	Case 2 - Point Load:						
Ū	$\Delta_{yr2} := \frac{P \cdot L^3}{K_3 \cdot E_r \cdot I_{ytotr}}$			$\Delta_{\rm yr2} = 0.361$	in		
	$M_{yrmax2} \coloneqq \frac{P \cdot L}{K_2}$			M _{yrmax2} = 2880	lb∙in		
	$f_{bry2} \coloneqq \frac{M_{yrmax2}}{S_{yr}}$			$f_{bry2} = 8834$	psi		
	F _{bry} := (F _{bry1} ·1.33) if IBC = F _{bry1} otherwise	= 1		F _{bry} = 25000	psi		

Calculation Results:_____

$Int_{\Gamma_1} := \left(\frac{f_{brx}}{F_{br}}\right)$	$\left(\frac{1}{y}\right) + \left(\frac{f_{bry1}}{F_{bry}}\right)$	$Int_{\Gamma I} = 0.66$					
$\operatorname{Int}_{r2} := \frac{\operatorname{fbry2}}{\operatorname{Fbry}}$	2	$Int_{T2}=0.35$					
	OK" if $\frac{\max(\Delta_{yr1}, A_{yr1})}{\Delta}$ FAIL" otherwise	$\frac{\Delta_{xr1}, \Delta_{yr2}}{\text{allr}} \le 1 \land \left(\frac{\text{fbrx1}}{\text{Fbry}}\right)$	$+\left(\frac{\text{fbry1}}{\text{Fbry}}\right) \le 1 \land \frac{\text{fbry2}}{\text{Fbry}} \le 1 \qquad \boxed{\text{RA}}$	ILS = "OK"			
DICE			Project Description:	Job No:		R11-02-15H	[
<u>RICE</u>	TEEDING	Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	B1 A
ENGI	ENGINEERING Phone: (920)845-1042 Fax: (920)845-1048 R0001 - RMR St		R0001 - RMR Standard Calcs	Date:	2/23/11	Rev:	
Template:	REI-MC-5707	www.rice-inc.com		Chk By:		Date:	

Post Analysis:	$\mathbf{E}_{\mathbf{p}} \coloneqq \mathbf{E}_{\mathbf{r}}$	ſ	Guardrail	"B" An	alysis	SHT
$\Delta_{xp1} \coloneqq \frac{W_h \cdot L \cdot (h - L_{st})^3}{3 \cdot E_p \cdot (I_{xp})}$		Δ_{xp}	1 = 0.664	in		B1 B
$\Delta_{xp2} \coloneqq \frac{P \cdot 0.85 \cdot \left(h - L_{st}\right)^3}{3 \cdot E_p \cdot \left(I_{xp}\right)}$		Δ_{xp2}	= 0.376	in		
Max Deflection:						
$\Delta_{tot} \coloneqq \frac{W_h \cdot L \cdot \left(h - L_{st}\right)^3}{3 \cdot E_p \cdot I_{xp}} + W_h \cdot L \cdot \left[h^3 - \left(h^3 - \left(h^3 - \left(h^3 - \left(h^3 - \left(h^3 - \left(h^3 - h^3 - h^$	$\frac{\mathbf{h} - \mathbf{L}_{st} \mathbf{J}^3}{(\mathbf{E}_{\mathbf{p}} \cdot \mathbf{I}_{st})]}$	Δ_{tot}	= 1.5	in		
$\Delta_{\text{allp}} \coloneqq \frac{h}{12}$		Δ_{all}	p = 3.29	in	Per AS	TM E985
Case 1 - Uniform Load:						
$\mathbf{M}_{\mathbf{X}\mathbf{p}} \coloneqq \left(\mathbf{W}_{\mathbf{h}} \cdot \mathbf{L} \cdot \mathbf{h} \right) + \mathbf{W}_{\mathbf{v}} \cdot \mathbf{L} \cdot \boldsymbol{\Delta}_{tot}$	$M_{xpmax} \coloneqq 0.5 \cdot M_{xp} \cdot q1 + M_{xp} q2 + M_{xp} \cdot q3$	M _{xp}	max = 11850	lb∙in		
$M_{xp2} := W_h \cdot L \cdot (h - L_{st}) + W_v \cdot L \cdot \Delta_{xp1}$	$M_{xpmax2} \coloneqq 0.5 \cdot M_{xp2} \cdot q1 + M_{xp2}q2 + M_{xp2} \cdot q3$	M _{xp}	max2 = 8250	lb∙in		
Case 2 - Point Load:						
$M_{xpmax4} := P \cdot (h - L_{st}) \cdot 0.85$		M _{xp}	omax4 = 4675	lb∙in		
$M_{xpmax3} := (P \cdot h \cdot 0.85)$		M _{xp}	max3 = 6715	lb∙in		
Max Post Stress:						
$f_{bpx} \coloneqq \frac{max(M_{xpmax2}, M_{xpmax4})}{S_{xp}}$		f _{bpx}	= 25307	psi		
$F_{bpx} := (F_{bpx1} \cdot 1.33) \text{ if } IBC = 1$		Fbpz	_K = 25000	psi		
F _{bpx1} otherwise						
Max Post/Stub Combined Stre	ss:					
$f_{bpx2} := max(M_{xpmax}, M_{xpmax3}) \cdot \frac{1}{(I_{xp} + I_{xpmax3})}$	^f xp I _{st})·S _{xp}	f _{bpx}	2 = 23282	psi		
Max Stub Stress:		Fbp	_x = 25000	psi		
$f_{bst} := max(M_{xpmax}, M_{xpmax3}) \cdot \frac{I_{st}}{(I_{xp} + I_{st})}$	st)·Sst	fbst	= 19018	psi		
Calculation Results:		Fbst	t = 25000	psi		
				<u> </u>		


Int _{p1} := max	fbpx	fbpx2	fbst
шірі .– шал	Fbpx	F _{bpx}	F _{bst}

 $Int_{p1} = 1.01$ 1% Over OK

 POSTS :=
 "OK" if $Int_{p1} \le 1.014 \land \frac{max(\Delta_{xp1}, \Delta_{xp2}, \Delta_{tot})}{\Delta_{allp}} \le 1$ POSTS = "OK"

 "FAIL" otherwise
 105 School Creek Trail
 Project Description:
 Job No:
 R11-02-15H

DICE		105 School Creek Trail	Project Description:	Job No: R11-02-15			ł
$\left \frac{RICE}{ENC} \right $	INEERING	Luxemburg, WI 54217 Phone: (920)845-1042	JDB	Sheet No:	B1 B		
ENG			R0001 - RMR Standard Calcs	Date:	2/23/11	Rev:	
Template:	REI-MC-5707	w w w .rice-inc.com		Chk By:		Date:	

Chk Anchor Bolts (assume f'c=4,000 psi conc.):

$V_b \coloneqq \frac{R_{max}}{4}$	V _b = 75	lb
$T_b := \frac{M_{max}}{(L1 - D2) \cdot 0.85 \cdot 2}$	$\mathrm{T}_{b}=1744$	lb

See Next Sheet for Calculation

Use (4) - 1/2" Dia. S.S. Threaded Rods
W/ Hilti HIT-RE 500 Epoxy Adhesive
Embedment= 3-1/2" min.
Edge Distance= 2-1/4" min.
End Distance = 3"

Surface Mount Anchor	SHT
Analysis	B2

R_{max} := 300 lb

 $M_{max} := 11850 + R_{max} \cdot 2.5 = 12600$ lb·in

d := 2.5 in (sleeve dia.)

Chk shear on shoe wall:

$$P := \frac{M_{max}}{0.85 \cdot (2.375)}$$
 $P = 6241$ lb

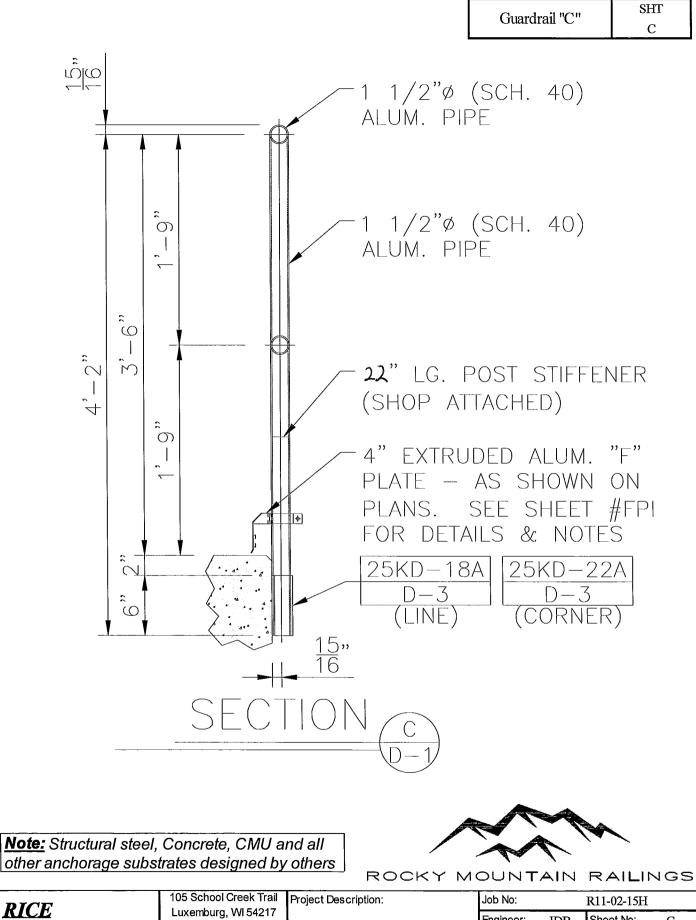
$$f_{V} := \frac{(P + R_{max})}{2 \cdot (0.315) \cdot (2)}$$
 $f_{V} = 5192$ psi

$$F_V := \frac{0.57 \cdot (18000)}{1.65}$$
 $F_V = 6218$ psi

 $I \coloneqq \frac{f_V}{F_V}$

I = 0.83 Shear Stress "OK"

Chk Aluminum Base Plate:


L1 := 5 in	D1 := 0.75 in
L2 := 5 in	D2 := 0.75 in
L := L2 - (2·D2)	L = 3.5 in
$F_y := \frac{1.3 \cdot (18000)}{1.65}$	$F_y = 14182$ psi
$\mathbf{P} := \frac{\mathbf{M}_{\max}}{\mathbf{d} \cdot 2}$	P = 2520 lb
$M_{pl} := \frac{P \cdot 0.5 \cdot 3^2}{3.5^2}$	$M_{pl} = 926$ in lb
$t_{req} := \sqrt{\frac{M_{pl} \cdot 6}{F_{y} \cdot 5}}$	$t_{req} = 0.28$ in
$I := \frac{t_{req}}{0.5}$	I = 0.56 Bending Stress "OK"

<u>Use Cast Aluminum Base, as shown</u> 535 casting alloy, Fu= 35 ksi min.

<u>RICE</u> Engineering	105 School Creek Trail	Project Description:	Job No:		R11-02-15H	
	Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	B2
		R0001 - RMR Standard Calcs	Date:	2/23/11	Rev:	
Template:	w w w .rice-inc.com		Chk By:		Date:	

Hilti HIT-RE 500 Epoxy Adjustment for Embed Depth:

Iti HIT-RE 500 Epox		er Embed De	pth:	Γ	Hilti Adhesiv	e	SH B:	
	dment	- I		L			2.	
s1 := 3.5 in spaci	ng 1	C S1		<u> </u>	Reactions Per Bo	olt:		
s2:= 3.5 in spaci	ng 2				V:= 75 lb	shear		
$c_1 := 2.25$ in edge	distance 1)) (6 수		T ≔ 1744 lb	tension		
c2:=3 in edge	distance 2	C2						
<u>From HILTI Design G</u>	Buide:	L] 	11 ((A) (A)(A) (D) = 0.0			
$T_{upper} := 5275$ lb	$h_{efu} := 4.5$ in	1			<u>4) - 1/2" Dia. S.S</u> Iilti HIT-RE 500 I			
$T_{lower} := 1965$ lb	$h_{efl} := 2.25$ in	ì			Embedment= 3	3-1/2" r	nin.	
V _{upper} := 7935 lb	$h_{efu} = 4.5$ in	1			Edge Distance= End Distanc			
$V_{lower} := 3550$ lb	$h_{efl} = 2.25$ in	1	L	culation	s below this line are a)
$T_{all} := \frac{(T_{upper} - T_{lower})}{(T_{all} - T_{lower})}$	hefu — hef) — Tupper (hefu — - (h _{efu} — hefl)	- h _{efl})	T _{all} = 3804 11	b Inte	rpolated Tension Valu	e		
$V_{all} := \frac{(V_{upper} - V_{lower})}{(V_{upper} - V_{lower})}$	$\left(\begin{array}{c} {{{\left({{{ h}_{{ m efu}}} - {{ h}_{{ m eft}}} ight)} - {{ V}_{{ m upper}}} \cdot \left({{{ h}_{{ m efu}}} - {{ h}_{{ m eft}}} ight)} \\ - \left({{{ h}_{{ m efu}}} - {{ h}_{{ m eft}}} ight)} \end{array}$	$-h_{efl}$	V _{all} = 5986 ll	b Inte	rpolated Shear Value			
$f_{AN1} := \begin{bmatrix} 1.00 & \text{if } s_1 \ge 1.5 \\ 0.3 \cdot \left(\frac{s_1}{h_{ef}}\right) + 0.5 \\ \text{"Increase Spacing} \\ f_{AN2} := \begin{bmatrix} 1.00 & \text{if } s_2 \ge 1.5 \end{bmatrix}$	5 if $1.5h_{ef} > s_1 > 0.5 \cdot h_{ef}$ " otherwise		f _{AN1} = 0.85	Spa	cing (Tension and Sh	ear)		
	5 if $1.5h_{ef} > s_2 > 0.5 \cdot h_{ef}$		f _{AN2} = 0.85	Spa	cing (Tension and Sh	ear)		
$f_{RN} := \begin{bmatrix} 1.00 & \text{if } c_1 \ge 1.5 \cdot I \\ 0.3 \cdot \left(\frac{c_1}{h_{ef}}\right) + 0.55 \end{bmatrix}$ "Increase Edge Dis	$] if 1.5h_{ef} > c_1 > 0.5 \cdot h_{ef} $		f _{RN} = 0.74	Edg	e Distance (Tension)			
	h_{ef} 09 if $1.5h_{ef} > c_1 > 0.5 \cdot h_{ef}$ istance" otherwise	f	f _{RV1} = 0.26	Edg	je Distance (Shear Pe	mpendic	ular to Ec	lge)
	h_{ef} 28 if $1.5h_{ef} > c_2 > 0.5 \cdot h_{e}$ istance" otherwise	f	f _{RV2} = 0.59	Edg	ge Distance (Shear Pa	nallel or	Away fro	m Edge)
$V_{ball} := V_{all} \cdot f_{AN1} \cdot f_{AN2} \cdot f_{F}$	2V1·fBV2		V _{ball} = 655	b				
Tball := Tall fAN1 fRN			$T_{ball} = 2402$					
$I_{b} := \left(\frac{V}{V_{ball}}\right)^{1.67} + \left(\frac{T}{T_{ball}}\right)^{1.67}$)1.67			1.00				
	105 School Creek Trail	Project Descriptio	n:	.8	Job No:	R11_()2-15H	
<u>CE</u>	Luxemburg, WI 54217				Engineer: JDB	Shee		B3
ENGINEERING	Phone: (920)845-1042 Fax: (920)845-1048	R0001 - RMI	R Standard	Calcs	_	-		
late:	www.rice-inc.com				Chk By:	Date		

DICE			Project Description:	Job No:		R11-02-15H	
RICE		Luxemburg, WI 54217		Engineer:	JDB	Sheet No:	C
ENG	INEERING	Phone: (920)845-1042		шушеег.	JDB	Sheet NO.	C
		Fax: (920)845-1048	R0001 - RMR Standard Calcs	Date:	2/23/11	Rev:	
Template:	REI-MC-5707	w w w .rice-inc.com		Chk By:		Date:	

Pipe Railing & Post		are based on emperical test		SHT	
Input Variables:	performed by Julius	s Blum & Co., Inc.	Guardrail "C"	Analysis C1	
-	.oad Case 1 (Uniform Load)				
$F_V := 0$ plf S	Simultaneous Vertical Uniform	ا Load			
P := 200 lb l	Load Case 2 (Point Load)	<u>, , </u>		."ø (SCH. 40) PIPE	
L _{bp} := 23 in ℓ	Jnbraced Length of Post		-		
	Railing Height Above Anchor	n		2"ø (SCH. 40)	
	0" MAX POST SPACI		ALUM.	PIPE	
Number of Railing Span	IS:	=			
1 span 🗸					
2 span 🔽				G. POST STIFFEN	NER
3 or more spans		,4 , , , , , , , , , , , , , , ,	(SHOF	' ATTACHED)	
Railing Section:	Post Section:		4" EX	TRUDED ALUM.	"F"
1 1/4" Schd. 40	1 1/4" Schd				
1 1/4" Schd. 80	1 1/4" Schd	. 80	FOR I	5. SEE SHEET DETAILS & NOTE	
1 1/2" Schd. 40	✓ 1 1/2" Schd	. 40	25KD		
1 1/2" Schd. 80	T 1 1/2" Schd		D-	-3 D-3	
1 1/2" tube	T 1 1/2" tube			NE) (CORNER	<i>(</i>)
2" Schd. 40	C 2" Schd. 40	-	<u>15</u> " <u>16</u>		
2" Schd. 80	C 2" Schd. 80		\overline{CTION}		
Railing Temper:	Post Temper:				
6063-T5	Г 6063-Т6		0-		
6063-T6	6005-T5				
6061-T6 or 6105-T	4_1775100	6105 T5			
4/3 increase allo		ed to Base Plate		All calculations below this line are automation	
Railing Properties	Post Proper	ties	Comp	utational Factors	
kr= 0.31	kr=	$\begin{array}{c} 0.31 \\ 0.31 \\ 0.31 \\ \end{array} S_{R1} := \frac{R_r}{t_r}$			$K_1 = 8$
lyr= 0.31 Sxr= 0.326	lyr= Sxr=	$\begin{array}{c} 0.31 \\ 0.326 \end{array} S_{R1} \coloneqq \frac{1}{t_r} \\ \end{array}$			
Syr= 0.326 R= 0.95	Syr=	0.326 Rp			K ₂ = 5
t= 0.145	R= t=	$\begin{array}{c} 0.95 \\ 0.145 \end{array} \qquad S_{R3} := \frac{K_p}{t_p} \end{array}$	$S_{R3} = 6.55$ $K_3 := (48 \cdot 1)^{-1}$	q1) + (66·q2) + (87·q3)	К3 = б
E _r := 10100000 psi					
$I_{\text{xtotr}} := I_{\text{xr}}$ $\overline{I_{\text{xtotr}} = 0.31}$] in ⁴ $I_{xtotp} := I_{xp}$	$i_{\text{xtotp}} = 0.31$ in ⁴	22" Min. Length AL.	Ribbed Tube Stub	<u> </u>
$I_{ytotr} := I_{yr}$ $I_{ytotr} = 0.31$	in ⁴ I _{ytotp} := I _{yp}	$I_{ytotp} = 0.31$ in ⁴	$I_{st} \coloneqq 0.174 \qquad in^4$	L _{st} := 16 in	
	хуюр хур	yop	$S_{st} := 0.224 mtext{ in}^3$	F _{bst} := 25000 psi	
RICE		Project Description:	Job No:	R11-02-15H	
ENGINEERING	Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB Sheet No:	C1
	Fax: (920)845-1048	R0001 - RMR Stand		/23/11 Rev:	
Template: REI-MC-5707	w w w .rice-inc.com		Chk By:	Date:	

Railing Analysis:	$W_h := \frac{F_H}{12}$ W	$V_{v} := \frac{FV}{V}$	1	Guard	Irail "C" Analysis	SHT
Case 1 Uniform Load:	12	12	,		1 un 0	Cl A
$\Delta_{yr1} \coloneqq \frac{5 \cdot W_h \cdot L^4}{384 \cdot E_r I_{ytotr}}$			$\Delta_{\rm yrl}=0.466$	in	Modeled as a simple spa	lin .
$\Delta_{xr1} \coloneqq \frac{5 \cdot W_{v} \cdot L^4}{384 \cdot E_r I_{xtotr}}$			$\Delta_{XII} = 0$	in		
$\Delta_{\text{allr}} \coloneqq \frac{L}{96}$			$\Delta_{allr} = 0.75$	in	Per ASTM Specification	ı E985
$M_{yrmax} \coloneqq \frac{W_{h} \cdot L^2}{K_1}$			M _{yrmax} = 2700	lb∙in		
$M_{xrmax} \coloneqq \frac{W_{v} L^2}{K_1}$			M _{Xrmax} = 0	lb∙in		
$f_{bry1} := \frac{M_{yrmax}}{S_{yr}}$			f _{bry1} = 8282	psi		
$f_{brx1} \coloneqq \frac{M_{xrmax}}{S_{xr}}$			$f_{\text{brx1}} = 0$	psi		
Case 2 - Point Load:						
$\Delta_{yr2} \coloneqq \frac{P \cdot L^3}{K_3 \cdot E_r I_{ytotr}}$			$\Delta_{yr2} = 0.361$	in		
$M_{yrmax2} := \frac{P \cdot L}{K_2}$			M _{yrmax2} = 2880	lb∙in		
$f_{bry2} := \frac{M_{yrmax2}}{S_{yr}}$			fibry2 = 8834	psi		
F _{bry} := (F _{bry1} ·1.33) if IBC = F _{bry1} otherwise	= 1		Fbry = 25000	psi		
Calculation Results:						
$Int_{r1} := \left(\frac{f_{brx1}}{F_{bry}}\right) + \left(\frac{f_{bry1}}{F_{bry}}\right)$	$Int_{\Gamma 1}=0.33$					
$Int_{r2} := \frac{f_{bry2}}{F_{bry}}$	$Int_{r2} = 0.35$					
RAILS := $ "OK" \text{ if } \frac{\max(\Delta_{yr1}, \Delta_{zr1})}{\Delta_{zr1}}$	$\frac{\Delta_{xr1}, \Delta_{yr2}}{\text{allr}} \leq 1 \land \left(\frac{\text{f}_{brx1}}{\text{F}_{bry}}\right)$	$+\left(\frac{f_{bry1}}{F_{bry}}\right) \le 1 \land \frac{f_{br}}{F_{br}}$	$\frac{y^2}{ry} \le 1$	RAILS = "C	<u>OK"</u>	
	105 School Creek Trail	Project Description		Job No		-02-15H
<u>RICE</u>	Luxemburg, WI 54217			Engine		et No: C1 A
ENGINEERING	Phone: (920)845-1042 Fax: (920)845-1048	R0001 - RM	R Standard Calc			
Termilater DEL MC 5707	rax. (920)045-1040		Commune one	Chik D		

Chk By:

Date:

www.rice-inc.com

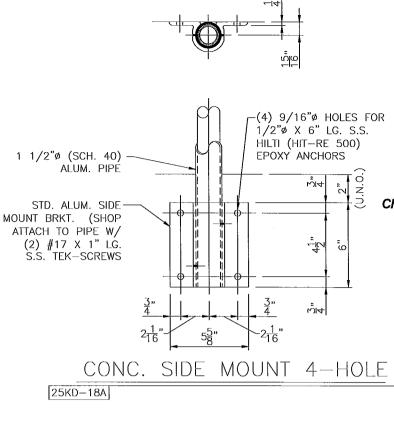
REI-MC-5707

Template:

1 . . .

,

Post Analysis:	$\mathbf{E}_{\mathbf{p}} := \mathbf{E}_{\mathbf{r}}$	Gu	ardrail	"C" An	alysis SHT
$\Delta_{xp1} \coloneqq \frac{W_h \cdot L \cdot \left(h - L_{st}\right)^3}{3 \cdot E_p \cdot \left(I_{xp}\right)}$		$\Delta_{xp1} = 0$	0.701	in	C1 B
$\Delta_{xp2} \coloneqq \frac{P \cdot 0.85 \cdot (h - L_{st})^3}{3 \cdot E_P \cdot (I_{xp})}$		$\Delta_{xp2} = 0.3$	397	in	
Max Deflection:					
$\Delta_{\text{tot}} \coloneqq \frac{W_{\text{h}} \cdot L \cdot (\text{h} - L_{\text{st}})^{3}}{3 \cdot E_{\text{p}} \cdot I_{\text{xp}}} + \frac{W_{\text{h}} \cdot L \cdot \left[\text{h}^{3} - (\text{h}^{3} - $	$\frac{(\mathbf{h} - \mathbf{L}_{st})^3}{(\mathbf{E}_{p}, \mathbf{I}_{st})]}$	$\Delta_{\text{tot}} = 1$.995	in	
$\Delta_{\text{allp}} \coloneqq \frac{h}{12}$		$\Delta_{allp} = 2$	3.67	in	Per ASTM E985
Case 1 - Uniform Load:					
$\mathbf{M}_{xp} := \left(\mathbf{W}_{h'} \mathbf{L} \cdot \mathbf{h} \right) + \mathbf{W}_{v'} \mathbf{L} \cdot \Delta_{tot}$	$M_{xpmax} \coloneqq 0.5 \cdot M_{xp} \cdot q1 + M_{xp} q2 + M_{xp} \cdot q3$	M _{xpmax}	= 13200	lb∙in	
$M_{xp2} := W_h \cdot L \cdot (h - L_{st}) + W_v \cdot L \cdot \Delta_{xp1}$	$M_{xpmax2} \coloneqq 0.5 \cdot M_{xp2} \cdot q1 + M_{xp2}q2 + M_{xp2} \cdot q3$	M _{xpmax}	2 = 8400	lb∙in	
Case 2 - Point Load:					
$M_{\text{xpmax4}} := P \cdot (h - L_{\text{st}}) \cdot 0.85$		M _{xpmax}	4 = 4760	lb∙in	
$M_{xpmax3} := (P \cdot h \cdot 0.85)$		M _{xpmax}	3 = 7480	lb∙in	
Max Post Stress:					
$f_{bpx} \coloneqq \frac{max(M_{xpmax2}, M_{xpmax4})}{S_{xp}}$		$f_{bpx} = 2$	5767	psi	
$F_{bpx} := \begin{cases} (F_{bpx1} \cdot 1.33) & \text{if } IBC = 1 \\ F_{bpx1} & \text{otherwise} \end{cases}$		F _{bpx} = 2	5000	psi	
Max Post/Stub Combined Stre	ss:				
$f_{bpx2} := max(M_{xpmax}, M_{xpmax3}) \cdot \frac{1}{(I_{xp} + I_{xpmax3})}$	Ixp Ist)·Sxp	f _{bpx2} = 2	25934	psi	
Max Stub Stress:		F _{bpx} = 2	.5000	psi	
$f_{bst} := max(M_{xpmax}, M_{xpmax3}) \cdot \frac{I_{st}}{(I_{xp} + I_{st})}$	st)·Sst	$f_{bst} = 21$	185	psi	
Calculation Results:		$F_{bst} = 2$	5000	psi	
(f _{bpx} f _{bpx2} f _{bst})					


Int _{p1} := max	$\left(rac{f_{bpx}}{F_{bpx}} ight)$	Fbpx2 Fbpx	$\left(\frac{f_{bst}}{F_{bst}}\right)$
mpl .= max	F _{bpx}	Fbpx	Fbst

 $Int_{p1} = 1.04$ 4% Over OK

4

POSTS :=	"OK" if $Int_{p1} \le 1.04 \land \frac{max(\Delta_{xp1}, \Delta_{xp2}, \Delta_{tot})}{\Delta_{allp}} \le 1$	POSTS = "OK"
	"FAIL" otherwise	
	105 Sebael Creek Treil In the state	

<u>RICE</u> ENGINEERING		105 School Creek Trail	Project Description:	Job No:		R11-02-15E	[
		Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	C1 B
ENGINEEKING	Fax: (920)845-1048	Date:		2/23/11	Rev:		
Template:	REI-MC-5707	w w w .rice-inc.com		Chk By:		Date:	

Side Mount	SHT
Anchorage	C2

 $M_{max} := 13200 + R_{max} \cdot 3 = 14100$ lb·in

Chk Extruded Aluminum Bracket:

$$P := \frac{M_{max}}{L1} + R_{max} \qquad P = 2650 \quad lb$$

$$M_{pl} := \frac{P}{2} \cdot 0.688$$
 $M_{pl} = 912$ in lb

$$t_{req} := \sqrt{\frac{6 \cdot M_{pl}}{28000 \cdot L1}}$$
 $t_{req} = 0.18$ in

$$I := \frac{t_{req}}{0.25} \qquad \qquad I = 0.72$$

Use Side Mount Bracket, As Shown 6105-T5 alloy

Chk Anchor Bolts: (Assume f'c = 4000 psi Conc.)

$V_b := \frac{R_{max}}{4}$	V _b = 75	lb
$T_b := \frac{M_{max}}{L2 \cdot 2 \cdot 0.85} + \frac{R_{max}}{4}$	T _b = 1655	lb

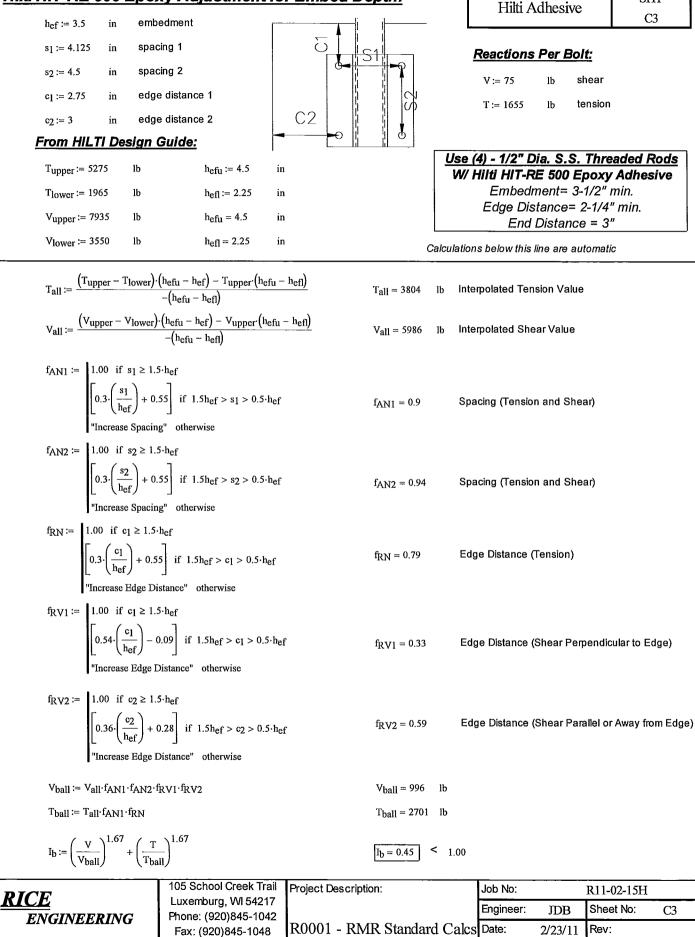
See Next Sheet for Calculation

Use (4) - 1/2" Dia. S.S. Threaded Rods With Hilti HIT-RE 500 Epoxy Adhesive Embedment = 3-1/2" (min.) Edge = 2-3/4" End = 3"

Chk TEK Screws:

$$V := \frac{R_{max}}{(2)} \qquad V = 150 \qquad lb$$

 $V_{all} = 715$ lb

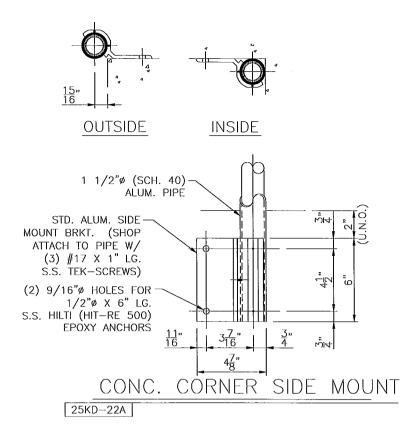

$$I_2 := \left(\frac{V}{V_{all}}\right)$$

 $I_2 = 0.21 < 1.0$

Use (2) - #17 S.S. TEK Screws	
300 Series S.S.	
ITW Buildex or Better	

<u>RICE</u> Engineering	105 School Creek Trail	Project Description:	Job No: R11-02-15H			
	Luxemburg, WI 54217 Phone: (920)845-1042	R0001 - RMR Standard Calcs	Engineer:	JDB	Sheet No:	C2
			Date:	2/23/11	Rev:	
Template:	www.rice-inc.com		Chk By:		Date:	

Hilti HIT-RE 500 Epoxy Adjustment for Embed Depth:


Chk By:

Date:

SHT

Template:

www.rice-inc.com

	Corner Side Mount		SHT		
	Corner Side Mount Anchorage		C4		
$R_{max} := 97$ $M_{max} := 0$	lb Reactions from (Corner Post M				
L1 := 6	in	a Pin Connec	tion)		
L2 := 5.25	in				

Chk Extruded Aluminum Bracket:

$$P := \frac{M_{max}}{L1} + R_{max} \qquad P = 97 \qquad lb$$

$$M_{pl} := \frac{P}{2} \cdot 0.688$$
 $M_{pl} = 33$ in lb

$$t_{req} := \sqrt{\frac{6 \cdot M_{pl}}{28000 \cdot L1}} \qquad t_{req} = 0.03 \qquad \text{in}$$

$$I := \frac{t_{req}}{0.25} \qquad \qquad I = 0.14$$

Use Side Mount Bracket, As Shown 6105-T5 alloy

Chk Anchor Bolts: (Assume fc = 4000 psi Conc.)

$$V_b := \frac{R_{max}}{2}$$
 $V_b = 49$ lb
 M_{max} R_{max} m_{max} to the

$$T_b := \frac{max}{L2 \cdot 1 \cdot 0.85} + \frac{max}{2}$$
 $T_b = 49$ lb

See Next Sheet for Calculation

Use (2) - 1/2" Dia. S.S. Threaded Rods W/ Hilti HIT-RE 500 Epoxy Adhesive Embedment= 3-1/2" min. Edge Distance= 2-3/4" min. End Distance = 2-1/2"

Chk TEK Screws:

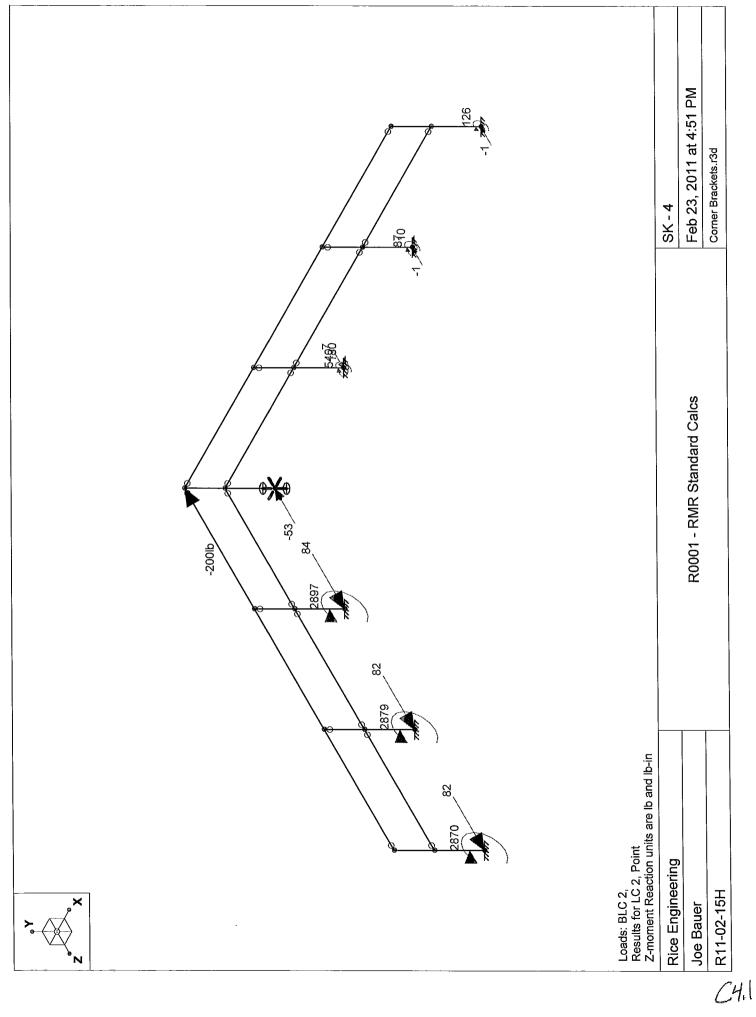
V :=

$$\frac{R_{max}}{(3)} \qquad \qquad V = 32$$

$$V_{all} := 2148 \cdot 0.333$$
 $V_{all} = 715$ lb

$$T := \frac{M_{max}}{L2} + \frac{R_{max}}{(2)} \qquad T = 49 \qquad b$$

$$T_{all} := 2065 \cdot 0.33$$
 $T_{all} = 681$ lb


 $I_2 := \left(\frac{V}{V_{all}}\right)^2 + \left(\frac{T}{T_{all}}\right)^2$

 $I_2 = 0.01 < 1.0$

lb

Use (3) - #17 S.S. TEK Screws
300 Series S.S.
ITW Buildex or Better

<u>RICE</u> Engineering	105 School Creek Trail	Project Description:	Job No: R11-02-15H			
	Luxemburg, WI 54217 Phone: (920)845-1042	R0001 - RMR Standard Calcs	Engineer:	JDB	Sheet No:	C4
			Date:	2/23/11	Rev:	
Template:	www.rice-inc.com		Chk By:		Date:	

4.100	SK - 5	Feb 23, 2011 at 4:51 PM	Corner Brackets.r3d
		R0001 - RMR Standard Calcs	
Z Z X Z L X L T II L D D D D D D D D D D D D D D D D D	Z-moment reaction units are to and to-in Rice Engineering	Joe Bauer	R11-02-15H

•

Hilti HIT-RE 500 Epoxy Adjustment for Embed Depth:

$h_{ef} := 3.5$	in	embedment
s ₂ := 4.5	in	spacing 2
cı := 2.75	in	edge distance 1
c ₂ := 2.5	in	edge distance 2

From HILTI Design Guide:

T _{upper} := 5275	lb	h _{efu} := 4.5	in
$T_{lower} := 1965$	lb	hefl := 2.25	in
V _{upper} ≔ 7935	lb	$h_{efu} = 4.5$	in
Vlower := 3550	lb	$h_{efl} = 2.25$	in

$T_{all} := \frac{(T_{upper} - T_{lower}) \cdot (h_{efu} - h_{ef}) - T_{upper} \cdot (h_{efu})}{(h_{efu} - h_{ef})}$	u – hefl)
$-(h_{efu} - h_{efl})$	
$V_{all} := \frac{(V_{upper} - V_{lower}) \cdot (h_{efu} - h_{ef}) - V_{upper} \cdot (h_{efu})}{(h_{efu} - h_{ef})}$	efu – h _{efl})
$v_{all} = -(h_{efu} - h_{efl})$	

fAN1 := 1.0

fAN2 ≔	1.00 if $s_2 \ge 1.5 \cdot h_{ef}$
	$\left[0.3 \cdot \left(\frac{s_2}{h_{ef}}\right) + 0.55\right] \text{ if } 1.5h_{ef} > s_2 > 0.5 \cdot h_{ef}$
	"Increase Spacing" otherwise

$$f_{RN} := \begin{bmatrix} 1.00 & \text{if } c_1 \ge 1.5 \cdot h_{ef} \\ \\ \begin{bmatrix} 0.3 \cdot \left(\frac{c_1}{h_{ef}} \right) + 0.55 \end{bmatrix} & \text{if } 1.5 h_{ef} > c_1 > 0.5 \cdot h_{ef} \\ \\ \text{"Increase Edge Distance"} & \text{otherwise} \\ \end{bmatrix}$$

$$\begin{split} f_{RV1} &\coloneqq \begin{bmatrix} 1.00 & \text{if } c_1 \geq 1.5 \cdot h_{ef} \\ & \left[0.54 \cdot \left(\frac{c_1}{h_{ef}} \right) - 0.09 \right] & \text{if } 1.5h_{ef} > c_1 > 0.5 \cdot h_{ef} \\ & \text{"Increase Edge Distance"} & \text{otherwise} \\ \end{split}$$

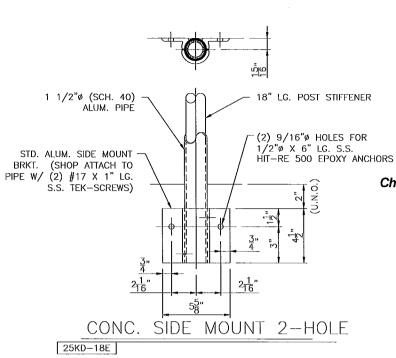
 $f_{RV2} := 1.00$ if $c_2 \ge 1.5 \cdot h_{ef}$ $\left(\frac{c_2}{h_{ef}}\right)$ 0.36-+ 0.28 if $1.5h_{ef} > c_2 > 0.5 \cdot h_{ef}$ "Increase Edge Distance" otherwise

 $v_{ball} \coloneqq v_{all} \cdot f_{AN1} \cdot f_{AN2} \cdot f_{RV1} \cdot f_{RV2}$ $V_{ball} = 1006 \quad lb$ $T_{ball} := T_{all} \cdot f_{AN1} \cdot f_{RN}$ $T_{ball} = 2989$ lb

 $I_{b} := \left(\frac{V}{V_{ball}}\right)^{1.67} + \left(\frac{T}{T_{ball}}\right)^{1.67}$ $I_{b} = 0.01$ < 1.00

DICE	105 School Creek Trail	Project Description:	Job No:		R11-02-15H	
<u>RICE</u> Engineering	Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	C5
EINGIINEEKIING		R0001 - RMR Standard Calcs	Date:	2/23/11	Rev:	
Template:	www.rice-inc.com		Chk By:		Date:	

 $f_{RV2} = 0.54$


SHT Hilti Adhesive C5

Reactions Per Bolt:

V:= 49	lb	shear
T := 49	lb	tension

<u>Use (2) - 1/2" Dia. S.S. Threaded Rods</u> W/ Hilti HIT-RE 500 Epoxy Adhesive Embedment= 3-1/2" min. Edge Distance= 2-3/4" min. End Distance = 2-1/2" Calculations below this line are automatic					
$T_{all} = 3804$	lb	Interpolated Tension Value			
V _{all} = 5986	lb	Interpolated Shear Value			
f _{AN1} = 1		Spacing (Tension and Shear)			
f _{AN2} = 0.94		Spacing (Tension and Shear)			
f _{RN} = 0.79		Edge Distance (Tension)			
f _{RV1} = 0.33		Edge Distance (Shear Perpendicular to Edge)			

Edge Distance (Shear Parallel or Away from Edge)

R_{max} := 300 lb

 $M_{max} := 13200 + R_{max} \cdot 3 = 14100$ lb·in

L1 := 4.5 in

L2 := 3 in

Chk Extruded Aluminum Bracket:

$$P := \frac{M_{max}}{L1} + R_{max} \qquad P = 3433 \quad lb$$

$$M_{pl} := \frac{P}{2} \cdot 0.688$$
 $M_{pl} = 1181$ in lb

$$t_{req} := \sqrt{\frac{6 \cdot M_{pl}}{28000 \cdot L1}} \qquad t_{req} = 0.24 \qquad \text{in}$$

$$I := \frac{t_{req}}{0.25} \qquad \qquad I = 0.95$$

Chk Anchor Bolts: (Assume f'c = 4000 psi Conc.)

Uniform Load

$$V_b := \frac{R_{max}}{2} \qquad \qquad V_b = 150 \qquad lb$$

$$T_b := \frac{M_{max}}{L2 \cdot 2 \cdot 0.85} + \frac{R_{max}}{2}$$
 $T_b = 2915$ lb

Concentrated Load

$$V_{b2} := \frac{200 \cdot 0.85}{2}$$
 $V_{b2} = 85$ lb

$$T_{b2} := \frac{200 \cdot 0.85 \cdot 47}{1.5 \cdot 2 \cdot 0.85} + \frac{200 \cdot 0.85}{2} \qquad T_{b2} = 3218 \qquad lb$$

See Next Sheet for Calculation

Use (1) - 1/2" Dia. S.S. Threaded Rods With Hilti HIT-RE 500 Epoxy Adhesive Embedment = 4-1/2" Edge = 3-1/2" End = 3" Use Side Mount Bracket, As Shown 6105-T5 alloy

Chk TEK Screws:

$$V := \frac{R_{max}}{(2)} \qquad \qquad V = 150 \qquad lb$$

$$V_{all} := 2148 \cdot 0.333$$
 $V_{all} = 715$ lb

$$I_2 := \left(\frac{V}{V_{all}}\right) \qquad \qquad I_2 = 0.21 < 1.0$$

Use (2) - #17 S.S. TEK Screws	
300 Series S.S.	
ITW Buildex or Better	

RICE	105 School Creek Trail	Project Description:	Job No:		R11-02-15H	
ENGINEERING	Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	C6
LINGINEEKIING		R0001 - RMR Standard Calcs	Date:	2/23/11	Rev:	
Template:	w w w .rice-inc.com		Chk By:		Date:	-

Hilti HIT-RE 500 Epoxy Adjustment for Embed Depth:

$h_{ef} := 4.5$	in	embedment
s1 := 4.125	in	spacing 1
c1 := 3.5	in	edge distance 1
c ₂ := 3	in	edge distance 2

From HILTI Design Guide:

T _{upper} := 5275	lb	$h_{efu} := 4.5$	in
T _{lower} := 1965	lb	h _{efl} := 2.25	in
V _{upper} := 7935	lb	$h_{efu} = 4.5$	in
V _{lower} := 3550	lb	$h_{efl} = 2.25$	in

$$\begin{split} T_{all} &\coloneqq \frac{\left(T_{upper} - T_{lower}\right) \cdot \left(h_{efu} - h_{ef}\right) - T_{upper}\left(h_{efu} - h_{efl}\right)}{-\left(h_{efu} - h_{efl}\right)} \\ V_{all} &\coloneqq \frac{\left(V_{upper} - V_{lower}\right) \cdot \left(h_{efu} - h_{ef}\right) - V_{upper}\left(h_{efu} - h_{efl}\right)}{-\left(h_{efu} - h_{efl}\right)} \end{split}$$

fAN2 := 1.0

$$f_{RN} := \begin{bmatrix} 1.00 & \text{if } c_1 \ge 1.5 \cdot h_{ef} \\ \\ \begin{bmatrix} 0.3 \cdot \left(\frac{c_1}{h_{ef}} \right) + 0.55 \end{bmatrix} & \text{if } 1.5 h_{ef} > c_1 > 0.5 \cdot h_{ef} \\ \\ \text{"Increase Edge Distance" otherwise} \end{bmatrix}$$
 Edge Distance (Tension)

 $f_{RV1} := \begin{bmatrix} 1.00 & \text{if } c_1 \ge 1.5 \cdot h_{ef} \\ \hline & & & & \\ \hline & & & & & \\ \end{bmatrix}$

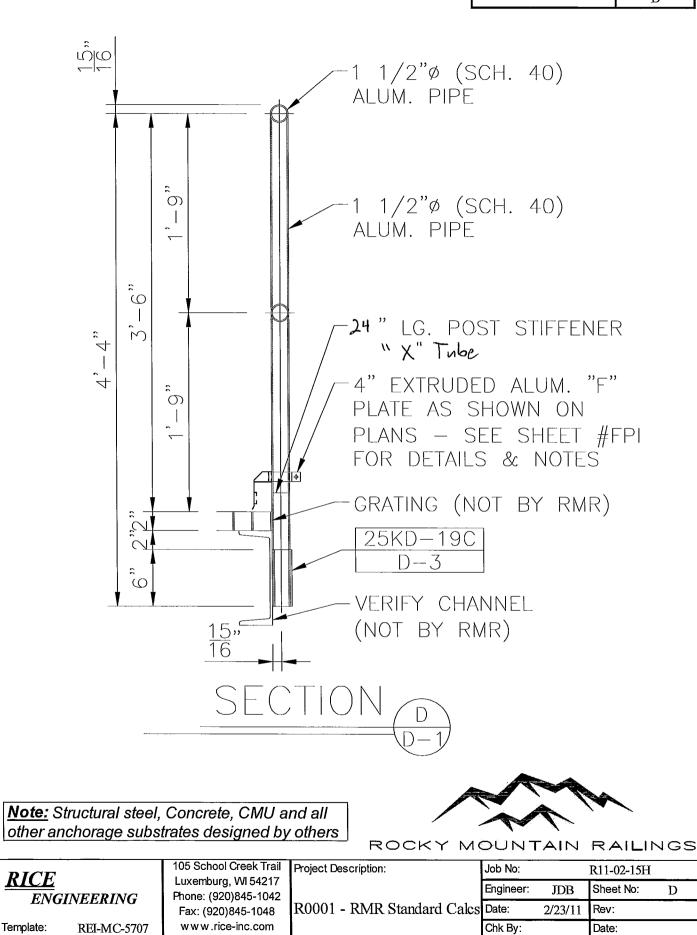
$$\begin{bmatrix} 0.54 \cdot \left(\frac{c_1}{h_{ef}}\right) - 0.09 \end{bmatrix} \text{ if } 1.5h_{ef} > c_1 > 0.5 \cdot h_{ef} \qquad \qquad f_{RV1} = 0.33 \qquad \text{Edge Distance (Shear Formatting in the second se$$

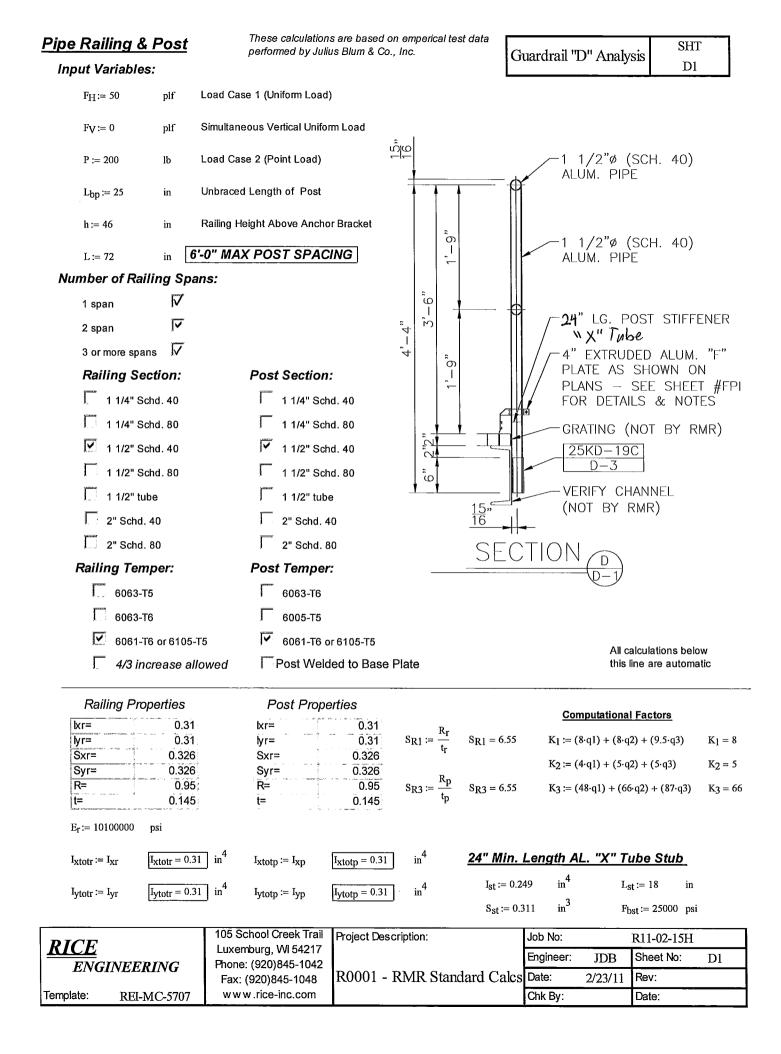
 $f_{RV2} := 1.00 \text{ if } c_2 \ge 1.5 \cdot h_{ef}$ $\left[0.36 \cdot \left(\frac{c_2}{h_{ef}}\right) + 0.28\right] \text{ if } 1.5h_{ef} > c_2 > 0.5 \cdot h_{ef}$ "Increase Edge Distance" otherwise

 $V_{ball} \coloneqq V_{all} \cdot f_{AN1} \cdot f_{AN2} \cdot f_{RV1} \cdot f_{RV2}$ $T_{ball} := T_{all} \cdot f_{AN1} \cdot f_{RN}$ $T_{ball} = 3409$ lb

$I_{b} := \left(\frac{V}{V_{ball}}\right)^{1.67} + \left(\frac{T}{T_{ball}}\right)^{1.67}$	$I_{b} = 0.92$ < 1.00	
405 Oct		

RICE	105 School Creek Trail	Project Description:	Job No:		R11-02-15H	
<u>MCL</u> ENGINEERING	Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	C7
LINGIINLLKIING		R0001 - RMR Standard Calcs	Date:	2/23/11	Rev:	
Template:	www.rice-inc.com		Chk By:	-	Date:	_


SHT Hilti Adhesive C7


Reactions Per Bolt:

V:= 85	lb	shear
T := 3218	lb	tension

Use () - 1/2" Dia. S.S. Threaded Rods W/ Hilti HIT-RE 500 Epoxy Adhesive Embedment= 3-1/2" min.

	C.		Edge Distance= 2-1/4" min. End Distance = 3" lations below this line are automatic
		aicui	
	T _{all} = 5275	lb	Interpolated Tension Value
<u>)</u>	V _{all} = 7935	lb	Interpolated Shear Value
	f _{AN1} = 0.83		Spacing (Tension and Shear)
	f _{AN2} = 1		Spacing (Tension and Shear)
	f _{RN} = 0.78		Edge Distance (Tension)
	$f_{\rm RV1} = 0.33$		Edge Distance (Shear Perpendicular to Edge)
	$f_{RV2} = 0.52$		Edge Distance (Shear Parallel or Away from Edge)
	V _{ball} = 1123	lb	

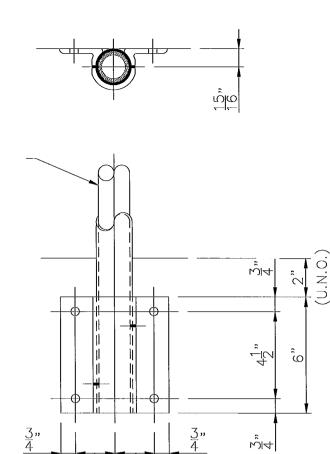
Railing Analysis:	$W_h := \frac{F_H}{12}$	$W_V := \frac{F_V}{12}$		Guardrail "D" Analysis D1 A
Case 1 Uniform Load:				
$\Delta_{yr1} \coloneqq \frac{5 \cdot W_h \cdot L^4}{384 \cdot E_r \cdot I_{ytotr}}$			$\Delta_{yr1} = 0.466$	in Modeled as a simple span
$\Delta_{\mathbf{Xr1}} \coloneqq \frac{5 \cdot \mathbf{W_V} \cdot \mathbf{L}^4}{384 \cdot \mathbf{E_r I_{\mathbf{Xtotr}}}}$			$\Delta_{\rm XII} = 0$	in
$\Delta_{allr} \coloneqq \frac{L}{96}$			$\Delta_{allr} = 0.75$	in Per ASTM Specification E985
$M_{yrmax} \coloneqq \frac{W_{h} L^2}{K_1}$			M _{yrmax} = 2700	lb-in
$M_{xrmax} \coloneqq \frac{W_{v} L^2}{K_1}$			M _{Xrmax} = 0	lb-in
$f_{bry1} \coloneqq \frac{M_{yrmax}}{S_{yr}}$			f _{bry1} = 8282	psi
$f_{brx1} \coloneqq \frac{M_{xrmax}}{S_{xr}}$			$f_{DTX1} = 0$	psi
Case 2 - Point Load:				
$\Delta_{yr2} \coloneqq \frac{P \cdot L^3}{K_3 \cdot E_r I_{ytotr}}$			$\Delta_{yr2} = 0.361$	in
$M_{yrmax2} \coloneqq \frac{P \cdot L}{K_2}$			M _{yrmax2} = 2880	lb-in
$f_{bry2} := \frac{M_{yrmax2}}{S_{yr}}$			fbry2 = 8834	psi
$F_{bry} := (F_{bry1} \cdot 1.33)$ if IBC = F_{bry1} otherwise	1		F _{bry} = 25000	psi
Calculation Results:				

Calculation Results:_

$Int_{r1} := \left(\frac{fbrx1}{Fbry}\right) + \left(\frac{fbry1}{Fbry}\right)$	$Int_{r1} = 0.33$						
$Int_{r2} := \frac{f_{bry2}}{F_{bry}}$	$Int_{f2}=0.35$						
$\text{RAILS} := \left \begin{array}{c} \text{"OK"} & \text{if } \frac{\max\left(\Delta_{\text{Yr1}}, \Delta_{\text{Xr1}}, \Delta_{\text{Yr2}}\right)}{\Delta_{\text{allr}}} \le 1 \land \left(\frac{\text{fb}_{\text{fbry1}}}{\text{Fbry}}\right) + \left(\frac{\text{fb}_{\text{fbry1}}}{\text{Fbry}}\right) \le 1 \land \frac{\text{fb}_{\text{fbry2}}}{\text{Fbry2}} \le 1 \\ \text{"FAIL"} & \text{otherwise} \end{array} \right \le 1 \land \left(\frac{\text{fb}_{\text{Fbry1}}}{\text{Fbry2}}\right) \le 1 \land \frac{\text{fb}_{\text{fbry2}}}{\text{Fbry2}} \le 1 \\ \text{FAIL"} & \text{otherwise} \end{array}$							
		Project Description:		Job No:		R11-02-15H	I.
<u>RICE</u> ENGINEERING	Luxemburg, WI 54217 Phone: (920)845-1042			Engineer:	JDB	Sheet No:	D1 A
EINGLINEEKIING	Fax: (920)845-1048	R0001 - RMR Standard	Calcs	Date:	2/23/11	Rev:	
Template: REI-MC-5707	w w w .rice-inc.com			Chk By:		Date:	

Post Analysis:	$E_p := E_r$	Guardrail	"D" An	alysis D1 B
$\Delta_{xp1} \coloneqq \frac{W_h \cdot L \cdot (h - L_{st})^3}{3 \cdot E_p \cdot (I_{xp})}$		$\Delta_{xp1} = 0.701$	in	
$\Delta_{xp2} := \frac{P \cdot 0.85 \cdot \left(h - L_{st}\right)^3}{3 \cdot E_{p'} \cdot \left(I_{xp}\right)}$		$\Delta_{\rm Xp2} = 0.397$	in	
Max Deflection:				
$\Delta_{tot} \coloneqq \frac{W_{h} \cdot L \cdot \left(h - L_{st}\right)^{3}}{3 \cdot E_{p} \cdot I_{xp}} + \frac{W_{h} \cdot L \cdot \left[h^{3} - \left(h^{3} - \frac{1}{3}\right)^{3} + \frac{W_{h} \cdot L \cdot \left[h^{3} - \frac{1}{3}\right]^{3} + \frac{1}{3} \cdot \left[h^{3} - \frac{1}{3}\right]^{3}}{3 \cdot \left[h^{3} - \frac{1}{3}\right]^{3} + \frac{1}{3} \cdot \left[h^{3} - 1$	$\frac{\left[\mathbf{h} - \mathbf{L}_{st}\right]^{3}}{\left[\left(\mathbf{E}_{p} \cdot \mathbf{I}_{st}\right)\right]}$	$\Delta_{\text{tot}} = 2.036$	in	
$\Delta_{\text{allp}} := \frac{h}{12}$		$\Delta_{\text{allp}} = 3.83$	in	Per ASTM E985
Case 1 - Uniform Load:				
$\mathbf{M}_{\mathbf{X}\mathbf{p}} \coloneqq \left(\mathbf{W}_{\mathbf{h}} \cdot \mathbf{L} \cdot \mathbf{h} \right) + \mathbf{W}_{\mathbf{V}} \cdot \mathbf{L} \cdot \Delta_{\mathbf{tot}}$	$M_{xpmax} \coloneqq 0.5 \cdot M_{xp} \cdot q1 + M_{xp}q2 + M_{xp} \cdot q3$	M _{xpmax} = 13800	lb∙in	
$\mathbf{M_{xp2}} \coloneqq \mathbf{W_h} \cdot \mathbf{L} \cdot \left(\mathbf{h} - \mathbf{L_{st}}\right) + \mathbf{W_v} \cdot \mathbf{L} \cdot \boldsymbol{\Delta_{xp1}}$	$M_{xpmax2} \coloneqq 0.5 \cdot M_{xp2} \cdot q1 + M_{xp2} q2 + M_{xp2} \cdot q3$	$M_{xpmax2} = 8400$	lb∙in	
_ Case 2 - Point Load:				
$\mathbf{M}_{\text{xpmax4}} \coloneqq \mathbf{P} \cdot (\mathbf{h} - \mathbf{L}_{\text{st}}) \cdot 0.85$		M _{xpmax4} = 4760	lb∙in	
M _{xpmax3} :== (P·h·0.85)		M _{xpmax3} = 7820	lb∙in	
Max Post Stress:				
$f_{bpx} \coloneqq \frac{max(M_{xpmax2}, M_{xpmax4})}{S_{xp}}$		f _{bpx} = 25767	psi	
$F_{bpx} := \left((F_{bpx1} \cdot 1.33) \text{ if } IBC = 1 \right)$		$F_{bpx} = 25000$	psi	
F_{bpx1} otherwise				
Max Post/Stub Combined Stre	955:			
$f_{bpx2} := max(M_{xpmax}, M_{xpmax3}) \cdot \frac{1}{(I_{xp} + I_{xpmax3})}$	I_{xp} + I_{st})·S _{xp}	f _{bpx2} = 23475	psi	
Max Stub Stress:		F _{bpx} = 25000	psi	
$f_{bst} := max(M_{xpmax}, M_{xpmax3}) \cdot \frac{I_s}{(I_{xp} + I_s)}$	t Ist)·Sst	f _{bst} = 19765	psi	
Calculation Results:		$F_{bst} = 25000$	psi	
$Int_{p1} := max \left(\frac{f_{bpx}}{F_{bpx}}, \frac{f_{bpx2}}{F_{bpx}}, \frac{f_{bst}}{F_{bst}} \right)$		Int _{p1} = 1.03 3% C	Over OK	

POSTS := "OK" if $Int_{p1} \le 1.02$ "FAIL" otherwise	$_{34 \wedge} \frac{\max(\Delta_{xp1}, \Delta_{xp2}, \Delta_{tot})}{\Delta_{allp}}$	r ≤ 1 PO	STS = "OK"			
RICE	105 School Creek Trail	Project Description:	Job No:		R11-02-15H	ł
<u>KICE</u> ENGINEERING	Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	D1 B
 LINGINEEKIING	Fax: (920)845-1048	R0001 - RMR Standard Calcs	Date:	2/23/11	Rev:	


Chk By:

Date:

REI-MC-5707

Template:

www.rice-inc.com

Side Mount	SHT
Anchorage	D2

$$R_{max} := 300$$
 lb
 $M_{max} := 13800 + R_{max} \cdot 3 = 14700$ lb in
L1 := 6 in
L2 := 5.25 in

Chk Extruded Aluminum Bracket:

$$P := \frac{M_{max}}{L1} + R_{max} \qquad P = 2750 \quad lb$$

$$M_{pl} := \frac{P}{2} \cdot 0.688$$
 $M_{pl} = 946$ in lb

$$t_{req} := \sqrt{\frac{6 \cdot M_{pl}}{28000 \cdot L1}}$$
 $t_{req} = 0.18$ in

$$I := \frac{t_{req}}{0.25} \qquad \qquad I = 0.74$$

Use Side Mount Bracket, As Shown 6105-T5 alloy

Chk Anchor Bolts:

2 3/64

$V_b := \frac{R_{max}}{4} \qquad \qquad V_b = 75$

2 3/64"

$$T_b := \frac{M_{max}}{L_2 \cdot 2 \cdot 0.85} + \frac{R_{max}}{4}$$
 $T_b = 1722$ lb

 $V_{ball} := 0.196.23000$ $V_{ball} = 4508$

$$T_{\text{ball}} \coloneqq 0.142 \cdot 40000 \cdot \frac{0.1875}{0.341} \qquad T_{\text{ball}} = 3123$$

5<u>5</u>"

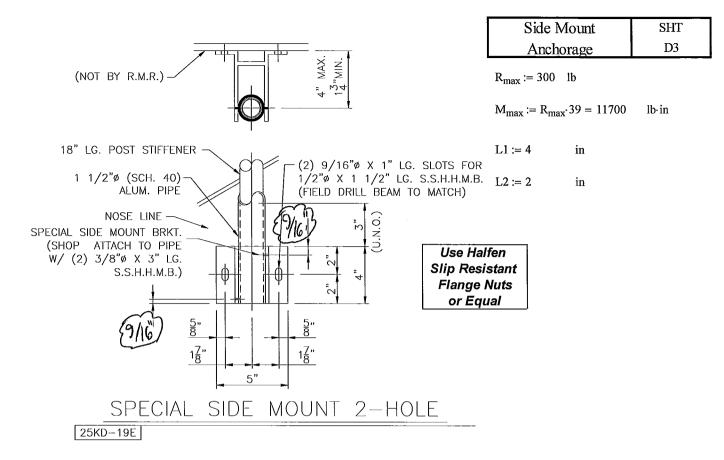
$$I := \left(\frac{V_b}{V_{ball}}\right)^2 + \left(\frac{T_b}{T_{ball}}\right)^2 \qquad I = 0.3 < 1.0$$

Chk TEK Screws:

$$V := \frac{R_{max}}{(2)} \qquad V = 150 \qquad lb$$

$$V_{all} := 2148 \cdot 0.333$$
 $V_{all} = 715$ lb

$$I_2 := \begin{pmatrix} V \\ V_{all} \end{pmatrix} \qquad \qquad I_2 = 0.21 < 1.0$$


<u>Use (2) - #17 S.S. TEK Screws</u> 300 Series S.S. ITW Buildex or Better

Use (4) - 1/2" Dia. S.S. Thru Bolts or 3/16" Min. Thread Engagement Cond "CW", Fy= 65 ksi minimum Structural Steel Channel Designed By Others

RICE		105 School Creek Trail	Project Description:	Job No:		R11-02-15H	
	INEERING	Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	D2
ENG			R0001 - RMR Standard Calcs	Date:	2/23/11	Rev:	
Template:	REI-MC-5741	w w w .rice-inc.com		Chk By:		Date:	

lb

lb

Chk Post Attachment to Bracket:

$V := \frac{M_{max}}{+} + \frac{R_{max}}{+}$	V = 4220	lb
$2.875 \cdot (1)$ (2)		

$$V_{all} := 0.110 \cdot 23000 \cdot (2)$$
 $V_{all} = 5060$ lb

Use (2) - 3/8" Dia. S.S. Thru-Bolts @ 2-7/8" O.C. 300 Series S.S.

Chk Extruded Aluminum Bracket:

$$P := \frac{M_{max}}{L1} + R_{max} \qquad P = 3225 \qquad lb$$
$$M_{pl} := \frac{P}{2} \cdot 0.7 \qquad M_{pl} = 1129 \quad in \cdot lb$$
$$t_{req} := \sqrt{\frac{6 \cdot M_{pl}}{28000 \cdot L1}} \qquad t_{req} = 0.25 \quad in$$

Chk Anchor Bolts:

$$V_b := \frac{R_{max}}{2} \qquad \qquad V_b = 150 \qquad lb$$

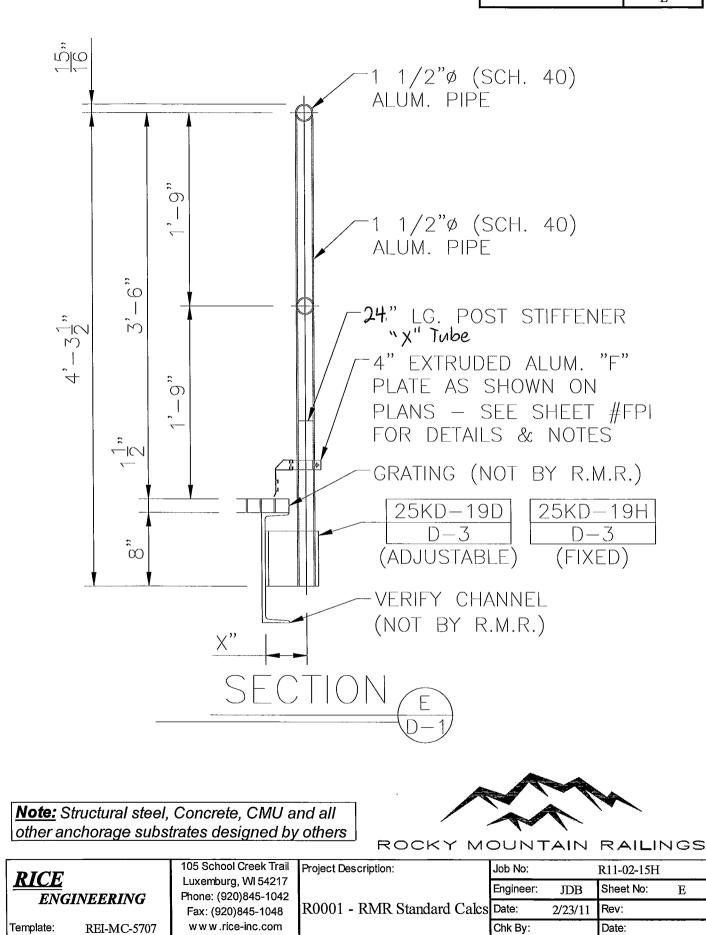
$$T_{b} := \frac{M_{max}}{L2 \cdot 2} + \frac{R_{max}}{2}$$
 $T_{b} = 3075$ lb

$$V_{all} := 0.196 \cdot 23000$$
 $V_{all} = 4508$ lb

$$T_{all} := 0.142 \cdot 40000 \cdot \frac{0.25}{0.456}$$
 $T_{all} = 3114$ lb

$$I := \left(\frac{V_b}{V_{all}}\right)^2 + \left(\frac{T_b}{T_{all}}\right)^2 \qquad I =$$

I = 0.98 < 1.0


 I := $\frac{t_{req}}{0.25}$ I = 0.98

 Use Side Mount Bracket, 4
 Long

 6105-T5 alloy
 Cond "CW", Fy= 65 ksi minimum

 Steel Stringers Designed By Others

<u>RICE</u> Engineering			5 School Creek Trail Project Description:		Job No: R11-02		
		Luxemburg, WI 54217 Phone: (920)845-1042	R0001 - RMR Standard Calcs	Engineer:	JDB	Sheet No:	D3
				Date:	2/23/11	Rev:	-
Template:	REI-MC-5741	www.rice-inc.com		Chk By:		Date:	

Pipe Railing & Post	These calculations performed by Juliu				uardrail "E" Analys	SHT	
Input Variables:					y	E1	
$F_H \coloneqq 50$ plf l	_oad Case 1 (Uniform Load)						
$F_V := 0$ plf S	Simultaneous Vertical Unifon]				
P := 200 lb l	Load Case 2 (Point Load)	<u>)</u> 			-1 1/2"ø (S ALUM. PIPE	CH. 40)	
$L_{bp} := 24.5$ in U	Unbraced Length of Post	-					
h:= 46.5 in F	Railing Height Above Top Ar	ichor Bolt	" 0				
L := 72 in 6'-	0" MAX POST SPACI	NG			ALUM. PIPE	Сп. 40)	
Number of Railing Spar	ns:		- 1º				
1 span 🗸 🗸		л [‡] с				ST STIFFENI	ER
2 span		4,-3 <u>7</u> ,			/ -4" EXTRUDE	be Ed alum. '	'F"
3 or more spans		4	້ ດ		/ / PLATE AS S	HOWN ON	
•	Deat Continu		÷		PLANS – S	S & NOTES	frei S
Railing Section:	Post Section:		- ⁷	<u> </u>	GRATING (N	OT BY R.M	.R.)
1 1/4" Schd. 40	1 1/4" Scho			= मर्म	25KD-19		
1 1/4" Schd. 80	1 1/4" Scho	d. 80	ΞΩ	T	ADJUSTABL	D, _E) (FIXE	3 D)
V 1 1/2" Schd. 40	Y 1 1/2" Scho	1.40	• •	[.07
1 1/2" Schd. 80	1 1/2" Sch	d. 80			VERIFY CHA (NOT BY R.		
1 1/2" tube	1 1/2" tube	1		X"	-	,	
C 2" Schd. 40	2" Schd. 4)		SEC	TION		
☐ 2" Schd. 80	2" Schd. 8		<u></u>				
Railing Temper:	Post Temper:	,					
6063-T5	6063-T6						
Б 6063-т6	6005-T5						
6061-T6 or 6105-T	5 🔽 6061-T6 oi	· 6105-T5					
☐ 4/3 increase allo	_		ate			culations belo ne are automa	
Railing Properties	Post Prope	rties			Computational	Factors	
kr= 0.31	kr=	0.31	$S_{R1} := \frac{R_{f}}{t_{r}}$	8-1-655			V. 9
lyr= 0.31 Sxr= 0.326	lyr= Sxr=	0.31 0.326	$s_{RI} = \frac{t_r}{t_r}$	S _{R1} = 6.55	$K_1 := (8 \cdot q_1) + (8 \cdot q_2)$		K ₁ = 8
Syr= 0.326	Syr=	0.326	Rn		$K_2 := (4 \cdot q_1) + (5 \cdot q_2)$		K ₂ = 5
R= 0.95 t= 0.145	R= t=	0.95 0.145	$s_{R3} \coloneqq \frac{R_p}{t_p}$	S _{R3} = 6.55	$K_3 := (48 \cdot q_1) + (66 \cdot q_2)$	q2) + (87·q3)	K3 = 66
E _r := 10100000 psi	Antes Robert and Antes Antes Antes Antes Antes Antes						
$I_{xtotr} := I_{xr}$ $I_{xtotr} = 0.31$	$\int in^4 I_{xtotp} := I_{xp}$	$I_{xtotp} = 0.31$	in ⁴	24" Min. I	Length AL. "X" Tu	be Stub	
$I_{ytotr} := I_{yr}$ $I_{ytotr} = 0.31$	in ⁴ I _{ytotp} := I _{yp}	Iytotp = 0.31	in ⁴	I _{st} := 0.24	49 in ⁴ L _{st}	:= 19 in	
	չյար․ չյր	-Juch 2.21		S _{st} := 0.3	ill in ³ F _{bs}	t:= 25000 psi	
	105 School Creek Trail	Project Descri	iption:		Job No: I	R11-02-15H	
<u>RICE</u>	Luxemburg, WI 54217					Sheet No:	E1
ENGINEERING	Phone: (920)845-1042 Fax: (920)845-1048	R0001 - R	MR Standa	ard Calcs		Rev:	
Template: REI-MC-5707	w w w .rice-inc.com					Date:	

.

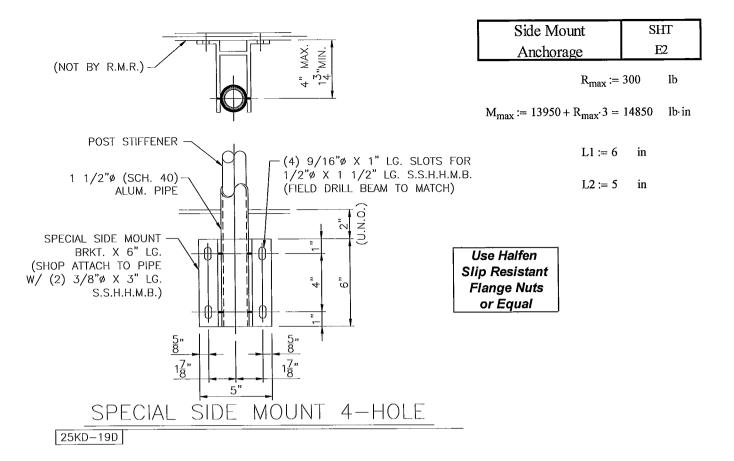
Ra	ailing Analysis:	$W_h \coloneqq \frac{F_H}{12}$	$W_V := \frac{FV}{12}$		Guardrail "E" Analysis SHT E1 A
С	ase 1 Uniform Load:				
	$\Delta_{yr1} \coloneqq \frac{5 \cdot W_h \cdot L^4}{384 \cdot E_r \cdot I_{ytotr}}$			$\Delta_{yr1} = 0.466$	in Modeled as a simple span
	$\Delta_{xr1} \coloneqq \frac{5 \cdot W_V \cdot L^4}{384 \cdot E_r \cdot I_{xtotr}}$			$\Delta_{\rm Xr1} = 0$	in
	$\Delta_{allr} \coloneqq \frac{L}{96}$			$\Delta_{\text{allr}} = 0.75$	in Per ASTM Specification E985
	$M_{yrmax} \coloneqq \frac{W_{h} L^2}{K_1}$			M _{yrmax} = 2700	lb∙in
	$M_{xrmax} \coloneqq \frac{W_{v} \cdot L^2}{K_1}$			M _{xrmax} = 0	lb∙in
>	$f_{bry1} \coloneqq \frac{M_{yrmax}}{S_{yr}}$			f _{bry1} = 8282	psi
	$f_{brx1} \coloneqq \frac{M_{xrmax}}{S_{xr}}$			$f_{\text{DTX}1} = 0$	psi
C	Case 2 - Point Load:				
C	$\Delta_{yr2} := \frac{P \cdot L^3}{K_3 \cdot E_r \cdot I_{ytotr}}$			$\Delta_{\rm yr2} = 0.361$	in
	$M_{yrmax2} \coloneqq \frac{P \cdot L}{K_2}$			M _{yrmax2} = 2880	lb-in
	$f_{bry2} \coloneqq \frac{M_{yrmax2}}{S_{yr}}$			f _{bry2} = 8834	psi
	$F_{bry} := \begin{cases} (F_{bry1} \cdot 1.33) & \text{if IBC} \\ F_{bry1} & \text{otherwise} \end{cases}$	= 1		F _{bry} = 25000	psi
Ca	lculation Results:				
I	$nt_{r1} := \left(\frac{f_{brx1}}{F_{bry}}\right) + \left(\frac{f_{bry1}}{F_{bry}}\right)$	$Int_{r1} = 0.33$			

 $Int_{\Gamma 2} := \frac{f_{bry2}}{F_{bry}}$ $Int_{r2} = 0.35$ $\text{RAILS} := \left| \text{"OK"} \quad \text{if} \ \frac{\max\left(\Delta_{yr1}, \Delta_{xr1}, \Delta_{yr2}\right)}{\Delta_{allr}} \leq 1 \land \left(\frac{f_{brx1}}{F_{bry}}\right) + \left(\frac{f_{bry1}}{F_{bry}}\right) \leq 1 \land \frac{f_{bry2}}{F_{bry}} \leq 1$ RAILS = "OK" "FAIL" otherwise 105 School Creek Trail Project Description: Job No: R11-02-15H <u>RICE</u> Luxemburg, WI 54217 Engineer: Sheet No: JDB E1 A Phone: (920)845-1042 ENGINEERING R0001 - RMR Standard Calcs Date: Rev: Fax: (920)845-1048 2/23/11 www.rice-inc.com Chk By: **REI-MC-5707** Template: Date:

1

1.1.1

Post Analysis:	$\mathbf{E}_{\mathbf{p}} \coloneqq \mathbf{E}_{\mathbf{r}}$	G	uardrail	''E'' Ana	alysis SHT
$\Delta_{xp1} \coloneqq \frac{W_h \cdot L \cdot (h - L_{st})^3}{3 \cdot E_p \cdot (I_{xp})}$		Δ _{xp1} =	0.664	in	El B
$\Delta_{xp2} := \frac{P \cdot 0.85 \cdot (h - L_{st})^3}{3 \cdot E_p \cdot (I_{xp})}$		$\Delta_{xp2} = 0$.376	in	
Max Deflection:					
$\Delta_{tot} \coloneqq \frac{W_h \cdot L \cdot \left(h - L_{st}\right)^3}{3 \cdot E_p \cdot I_{xp}} + \frac{W_h \cdot L \cdot \left[1 - \frac{1}{3}\right]}{3 \cdot \left[\left(E_p\right)^2\right]}$	$\frac{\mathbf{a}^{2} - (\mathbf{h} - \mathbf{L}_{st})^{3}}{\mathbf{h}_{xp} + (\mathbf{E}_{p} \cdot \mathbf{I}_{st})]}$	$\Delta_{\text{tot}} = 2$	2.077	in	
$\Delta_{\text{allp}} \coloneqq \frac{h}{12}$		$\Delta_{allp} =$	3.88	in	Per ASTM E985
Case 1 - Uniform Load:					
$\mathbf{M}_{xp} \coloneqq \left(\mathbf{W}_{h} \cdot \mathbf{L} \cdot \mathbf{h} \right) + \mathbf{W}_{v} \cdot \mathbf{L} \cdot \Delta_{tot}$	$M_{xpmax} := 0.5 \cdot M_{xp} \cdot q1 + M_{xp} q2 + M_{xp} \cdot q3$	M _{xpmax}	_x = 13950	lb∙in	
$\mathbf{M}_{xp2} := \mathbf{W}_{h} \cdot \mathbf{L} \cdot \left(h - \mathbf{L}_{st}\right) + \mathbf{W}_{v} \cdot \mathbf{L} \cdot \Delta_{x}$	p1 $M_{xpmax2} := 0.5 \cdot M_{xp2} \cdot q1 + M_{xp2} q2 + M_{xp2} \cdot q3$	M _{xpma}	x2 = 8250	lb∙in	
Case 2 - Point Load:					
$M_{\text{xpmax4}} := P \cdot (h - L_{\text{st}}) \cdot 0.85$		M _{xpma}	_{x4} = 4675	lb-in	
$M_{xpmax3} := (P \cdot h \cdot 0.85)$		M _{xpma}	_{x3} = 7905	lb∙in	
Max Post Stress:					
$f_{bpx} \coloneqq \frac{max(M_{xpmax2}, M_{xpmax4})}{S_{xp}}$		f _{bpx} = 2	25307	psi	
$F_{bpx} := (F_{bpx1} \cdot 1.33)$ if IBC = 1		F _{bpx} =	25000	psi	
F_{bpx1} otherwise					
Max Post/Stub Combined	Stress:				
$f_{bpx2} := max(M_{xpmax}, M_{xpmax3})$	$\frac{I_{xp}}{(I_{xp} + I_{st}) \cdot S_{xp}}$	f _{bpx2} =	23730	psi	
Max Stub Stress:		F _{bpx} =	25000	psi	
$f_{bst} := max(M_{xpmax}, M_{xpmax3}) \cdot \overline{(I_{transform})}$	$\frac{I_{st}}{x_p + I_{st}) \cdot S_{st}}$	$f_{bst} = 1$	9980	psi	
Calculation Results:		Fbst = 2	25000	psi	

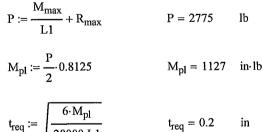

Int _{p1} := max	f _{bpx}	f _{bpx2}	fbst
mpi max	F _{bpx} '	F _{bpx} '	F _{bst}

 $Int_{p1} = 1.01$ 1% Over OK

ł

POSTS :="OK" if $Int_{p1} \le 1.014 \land \frac{max(\Delta_{xp1}, \Delta_{xp2}, \Delta_{tot})}{\Delta_{allp}} \le 1$ POSTS = "OK""FAIL" otherwise105 School Creek Trail
Lungerburg 101 5 4217Project Description:Job No:

RICE ENGINEERING Template: REI-MC-5707		105 School Creek Trail	Project Description:	Job No: R11-02-15H		F	
		Luxemburg, WI 54217 Phone: (920)845-1042 Fax: (920)845-1048 R	R0001 - RMR Standard Calcs	Engineer:	JDB	Sheet No:	E1 B
				Date:	2/23/11	Rev:	
		w w w .rice-inc.com		Chk By:		Date:	



Chk Post Attachment to Bracket:

$V := \frac{M_{max}}{4 \cdot (1)} + \frac{R_{max}}{(2)}$	V = 3863	lb
$V_{all} := 0.110 \cdot 23000 \cdot (2)$	$V_{all} = 5060$	lb

Use (2) - 3/8" Dia. S.S. Thru-Bolts @ 4" O.C. 300 Series S.S.

Chk Extruded Aluminum Bracket:

$$I := \frac{r_{req}}{0.25}$$

Use Side Mount Bracket, As Shown 6105-T5 alloy

I = 0.8

Chk Anchor Bolts:

$$V_b := \frac{R_{max}}{4} \qquad \qquad V_b = 75 \qquad lb$$

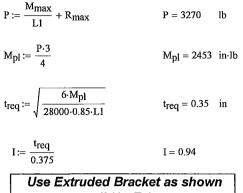
$$T_b := \frac{M_{max}}{L2 \cdot 2} + \frac{R_{max}}{4} \qquad T_b = 1560 \qquad lb$$

$$V_{all} := 0.196.23000$$
 $V_{all} = 4508$ lb

$$T_{all} := 0.142 \cdot 40000 \cdot \frac{0.1875}{0.456}$$
 $T_{all} = 2336$ lb

$$I := \left(\frac{V_b}{V_{all}}\right)^2 + \left(\frac{T_b}{T_{all}}\right)^2 \qquad I = 0.45 < 1.0$$

Use (4) - 1/2" Dia. S.S. Thru Bolts					
(or Drill & Tap - 3/16" Min. Thread Engagement)					
Cond "CW", Fy= 65 ksi minimum					
Steel Stringers Designed By Others					


<u>RICE</u> ENGINEERING Template: REI-MC-5741		105 School Creek Trail	Project Description:	Job No:	R11-02-15H		
		Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	E2
		Fax: (920)845-1042	R0001 - RMR Standard Calcs	Date:	2/23/11	Rev:	
		w w w .rice-inc.com		Chk By:		Date:	

Reactions:

Rmax := 300 lb L1 := 5 in

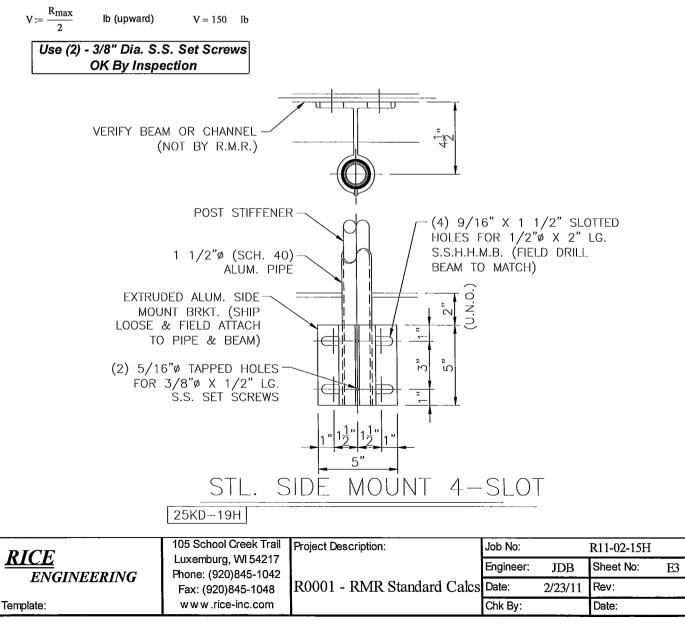
 $M_{max} := 13950 + R_{max} \cdot 3 = 14850$ lb∙in L2 := 4 in

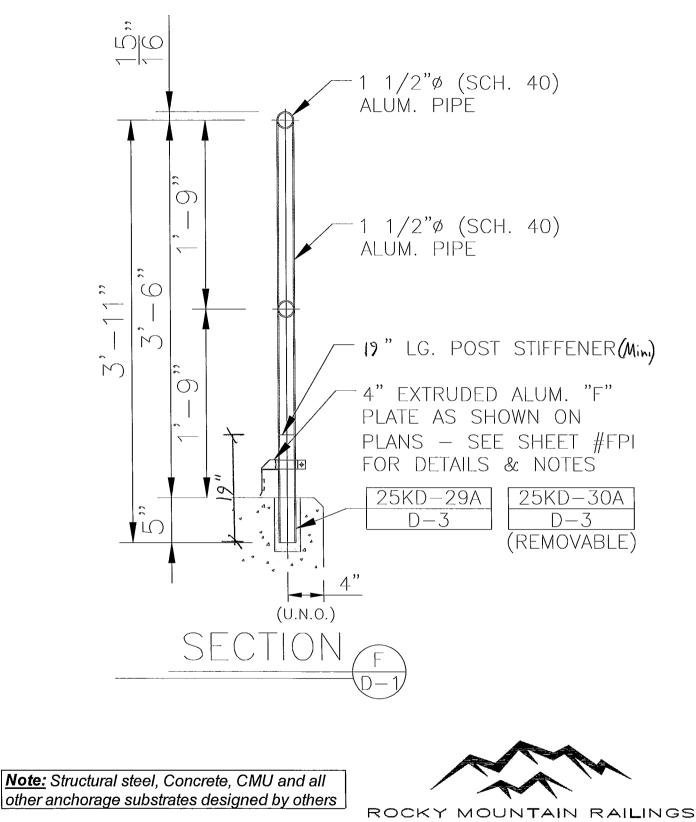
Chk Extruded Aluminum Bracket:

(6105-T5)

lb (upward)

V = 150 lb


Chk Fasteners:


SHT Side Mount Anchor E3

Chk Anchor Bolts (Structural Steel By Others):

$V_b := \frac{R_{max}}{4}$	V _b = 75	lb
$T_{b} := \frac{M_{max}}{L2 \cdot 2} + \frac{R_{max}}{4}$	T _b = 1931	lb
V _{all} := 0.196-23000	$V_{all} = 4508$	lb
$T_{all} := 0.142 \cdot 40000 \cdot \frac{0.1875}{0.456}$	$T_{all} = 2336$	lb
$I := \left(\frac{V_b}{V_{all}}\right)^2 + \left(\frac{T_b}{T_{all}}\right)^2$	I = 0.68 < 1.0	

<u>Use (4) - 1/2-13 S.S. Bolts</u>					
 <u>Drill & Tap or Thru-Bolt</u>					
Min. Thread Engagement = 3/16"					
(300 Series S.S., Cond. CW, Fy = 65 ksi)					

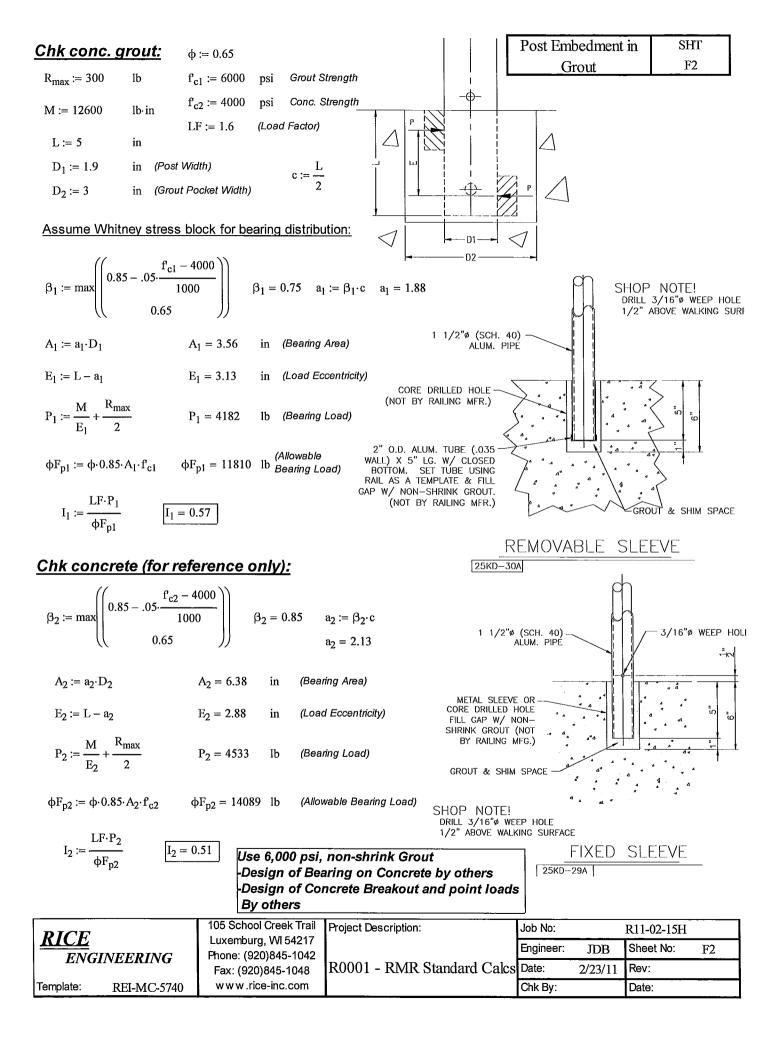
<u>RICE</u> ENGINEERING		105 School Creek Trail	Project Description:	Job No:		R11-02-15H	
		Luxemburg, Wł 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	F
				Date:	2/23/11	Rev:	
Template:	REI-MC-5707	w w w .rice-inc.com		Chk By:		Date:	

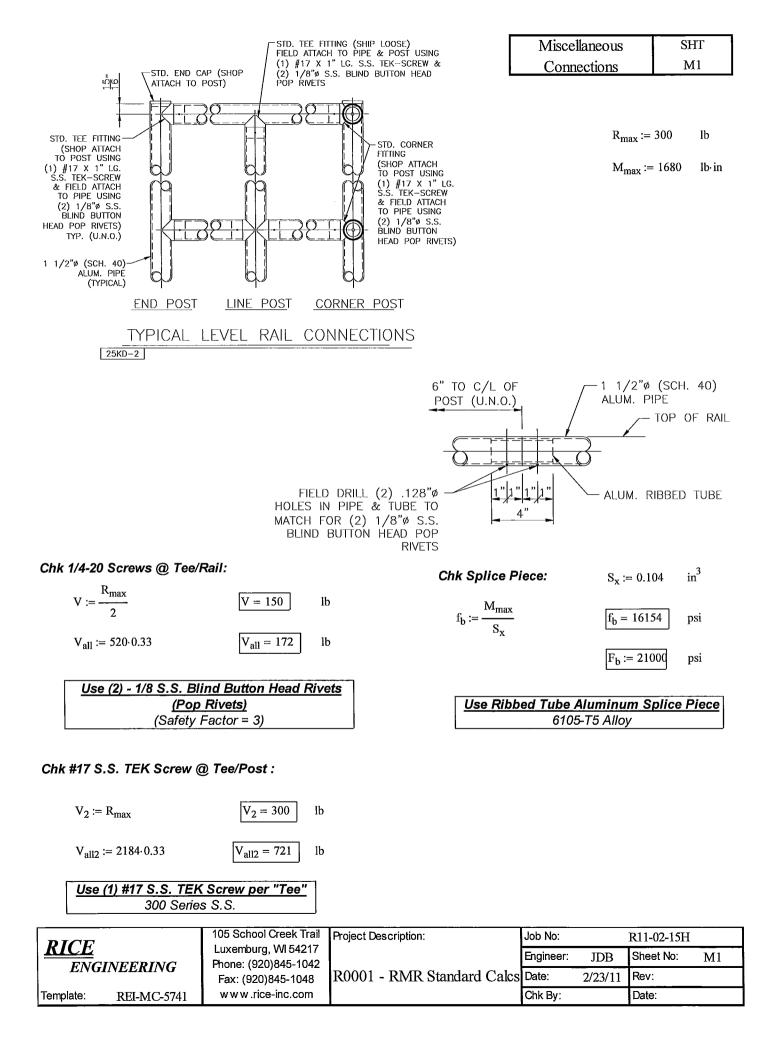
Pipe Railing & Post Input Variables:	These calculations are based of performed by Julius Blum & Co		Guardrail "F" Analy	ysis SHT F1
$F_{H} := 50$ plf	Load Case 1 (Uniform Load)			
F _V := 0 plf	Simultaneous Vertical Uniform Load			
P := 200 lb	Load Case 2 (Point Load)	۶		
$L_{bp} := 21$ in	Unbraced Length of Post		∕─1 1/2"ø (SC	CH. 40)
h := 42 in	Railing Height		ALUM. PIPE	,
L := 72 in [6'-0" MAX POST SPACING	<u> </u>		
Number of Railing Sp	oans:	の 	1 1/2"ø (S0	CH 40)
1 span 📝			ALUM. PIPE	511. 40)
2 span		<u>3</u> ,−1,°	_	
3 or more spans			/ 19 " LG. POS	ST STIFFENER
Railing Section:	Post Section:	,́М "О	/ "	D ALUM. "F"
. 1 1/4" Schd. 40	1 1/4" Schd. 40		/ PLATE AS S	HOWN ON
☐ 1 1/4" Schd. 80	☐ 1 1/4" Schd. 80		✓ PLANS – SI ■ FOR DETAILS	EE SHEET #FPI S & NOTES
✓ 1 1/2" Schd. 40	✓ 1 1/2" Schd. 40		25KD-29A	
1 1/2" Schd. 80	1 1/2" Schd. 80		D-3	D3 (REMOVABLE)
1 1/2" tube	1 1/2" tube	1	· . 4"	
2" Schd. 40	2" Schd. 40	F (U.	.N.O.)	
2" Schd. 80	2" Schd. 80	SECTI	ONF	
Railing Temper:	Post Temper:		U-I	
б063-т5	6063-T6			
6063-T6	6005-T5			
6061-T6 or 610	5-T5 6061-T6 or 6105-T5			
☐ 4/3 increase a		Plate		liculations below ne are automatic
Railing Properties	Post Properties			
kr= 0.3		~	<u>Computational</u>	Factors
lyr= 0.3	1 lyr= 0.31	$S_{R1} := \frac{R_r}{t_r}$ $S_{R1} = 6.55$	$K_1 := (8 \cdot q1) + (8 \cdot q2)$	$(9.5 \cdot q3)$ $K_1 = 8$
Sxr= 0.32 Syr= 0.32		4	$K_2 := (4 \cdot q1) + (5 \cdot q2)$	$K_2 = 5$
R = 0.9 t= 0.14	5 R= 0.95	$S_{R3} := \frac{R_p}{t_p} \qquad S_{R3} = 6.55$	K3 := (48·q1) + (66·	$(q2) + (87 \cdot q3)$ $K_3 = 66$
$E_r := 10100000$ psi				
	$\overline{31}$ in $I_{xtoth} := I_{xp}$ $\overline{I_{xtoth}} = 0.31$] in ⁴ <u>19" Min.</u>	Longth AL Dikk-	d Tubo Stub
$I_{xtotr} := I_{xr}$ $I_{xtotr} = 0$	$I_{xtotp} := I_{xp}$ $I_{xtotp} = 0.31$		Length AL. Ribbed	
$I_{ytotr} := I_{yr}$ $I_{ytotr} = 0$.31 in $I_{ytotp} := I_{yp}$ $I_{ytotp} = 0.31$	$\int in^4 \qquad I_{st} := 0.1$ $S_{st} := 0.2$	2	t := 14 in st := 25000 psi
r				· · · · · · · · · · · · · · · · · · ·
RICE	105 School Creek Trail Project Des Luxemburg, WI 54217	cription:		R11-02-15H
ENGINEERING	Phone: (920)845-1042	DMD Standard Cal-	Engineer: JDB	Sheet No: F1
Template: REI-MC-5707	(,	RMR Standard Calcs	Date: 2/23/11 Chk By:	Rev: Date:
1011010. KEI-IVIC-3/0/			Sincey.	Date.

.

Railing Analysis:	$W_h := \frac{F_H}{12}$	$W_{\mathbf{V}} \coloneqq \frac{F_{\mathbf{V}}}{12}$		Guardrail "F" Analysis F1 A
Case 1 Uniform Load:			I	
$\Delta_{yr1} \coloneqq \frac{5 \cdot W_h \cdot L^4}{384 \cdot E_r \cdot I_{ytotr}}$			$\Delta_{yr1} = 0.466$	in Modeled as a simple span
$\Delta_{xr1} \coloneqq \frac{5 \cdot W_v \cdot L^4}{384 \cdot E_r \cdot I_{xtotr}}$			$\Delta_{\rm Xr1} = 0$	in
$\Delta_{\text{allr}} \coloneqq \frac{L}{96}$			$\Delta_{allr} = 0.75$	in Per ASTM Specification E985
$M_{yrmax} := \frac{W_{h} \cdot L^2}{K_1}$			M _{yrmax} = 2700	lb∙in
$M_{xrmax} \coloneqq \frac{W_{v} L^2}{K_1}$			M _{xrmax} = 0	lb-in
>				
$f_{bry1} := \frac{M_{yrmax}}{S_{yr}}$			f _{bry1} = 8282	psi
$f_{brx1} := \frac{M_{xrmax}}{S_{xr}}$			$f_{brx1} = 0$	psi
Case 2 - Point Load:				
$\Delta_{yr2} \coloneqq \frac{P \cdot L^3}{K_3 \cdot E_r \cdot I_{ytotr}}$			$\Delta_{yt2} \approx 0.361$	in
$M_{yrmax2} := \frac{P \cdot L}{K_2}$			M _{yrmax2} = 2880	lb-in
$f_{bry2} := \frac{M_{yrmax2}}{S_{yr}}$			f _{bry2} = 8834	psi
$F_{bry} := \begin{cases} (F_{bry1} \cdot 1.33) & \text{if IBC} \\ F_{bry1} & \text{otherwise} \end{cases}$	= 1		F _{bry} = 25000	psi
Calculation Results:_				

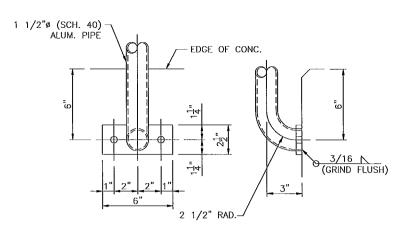
$Int_{\Gamma 1} := \left(\frac{f_{brx1}}{F_{bry}}\right) + \left(\frac{f_{bry1}}{F_{bry}}\right)$	$Int_{r1} = 0.33$					
$Int_{r2} := \frac{f_{bry2}}{F_{bry}}$	$Int_{r2} = 0.35$					
RAILS := "OK" if $\frac{\max(\Delta_{yr1}, \Delta_{ar1}, \Delta_{ar1}$	$\Delta_{xr1}, \Delta_{yr2} \le 1 \land \left(\frac{f_{brx1}}{F_{bry}} \right)$	$+\left(\frac{\text{fbry1}}{\text{Fbry}}\right) \le 1 \land \frac{\text{fbry2}}{\text{Fbry}} \le 1 \qquad \boxed{\text{RA}}$	ILS = "OK"			
DICE		Project Description:	Job No:		R11-02-15H	[
<u>RICE</u>	Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	F1 A
ENGINEERING Phone: (920)845-1042 Fax: (920)845-1048 R0001 - RMR Standard Ca		R0001 - RMR Standard Calcs	Date:	2/23/11	Rev:	
Template: REI-MC-5707	www.rice-inc.com		Chk By:		Date:	


Post Analysis:	$\mathbf{E}_p\coloneqq \mathbf{E}_r$	Guardrail '	'F" Analysis	SHT
$\Delta_{xp1} \coloneqq \frac{W_h \cdot L \cdot (h - L_{st})^3}{3 \cdot E_p \cdot (I_{xp})}$		Δ _{xp1} = 0.701	in	F1 B
$\Delta_{xp2} \coloneqq \frac{P \cdot 0.85 \cdot (h - L_{st})^3}{3 \cdot E_p \cdot (I_{xp})}$		$\Delta_{xp2} = 0.397$	in	
Max Deflection:				
$\Delta_{\text{tot}} := \frac{W_{\text{h}} \cdot L \cdot (\text{h} - L_{\text{st}})^3}{3 \cdot E_{\text{p}} \cdot I_{\text{xp}}} + \frac{W_{\text{h}} \cdot L \cdot \left[\text{h}^3 - (\text{h}^3 - (\text{h}$	$\frac{(\mathbf{L}_{st})^{3}}{(\mathbf{E}_{p} \cdot \mathbf{I}_{st})}$	$\Delta_{\text{tot}} = 1.768$	in	
$\Delta_{\text{allp}} \coloneqq \frac{h}{12}$		$\Delta_{\text{allp}} = 3.5$	in Per.	4STM E985
Case 1 - Uniform Load:				
$\mathbf{M}_{xp} \coloneqq \left(\mathbf{W}_{h} \cdot \mathbf{L} \cdot \mathbf{h} \right) + \mathbf{W}_{v} \cdot \mathbf{L} \cdot \boldsymbol{\Delta}_{tot}$	$M_{xpmax} \coloneqq 0.5 \cdot M_{xp} \cdot q1 + M_{xp}q2 + M_{xp} \cdot q3$	$M_{xpmax} = 12600$	lb∙in	
$M_{xp2} := W_{h} \cdot L \cdot (h - L_{st}) + W_{v} \cdot L \cdot \Delta_{xp1}$	$M_{xpmax2} := 0.5 \cdot M_{xp2} \cdot q1 + M_{xp2} q2 + M_{xp2} \cdot q3$	$M_{xpmax2} = 8400$	lb∙in	
Case 2 - Point Load:				
$M_{xpmax4} := P \cdot (h - L_{st}) \cdot 0.85$		$M_{xpmax4} = 4760$	lb∙in	· · · · · · · · · · · · · · · · · · ·
$M_{xpmax3} := (P \cdot h \cdot 0.85)$		M _{xpmax3} = 7140	lb∙in	
Max Post Stress:				
$f_{bpx} \coloneqq \frac{\max(M_{xpmax2}, M_{xpmax4})}{S_{xp}}$		f _{bpx} = 25767	psi	
$F_{bpx} := \left((F_{bpx1} \cdot 1.33) \text{ if } IBC = 1 \right)$		F _{bpx} = 25000	psi	
F _{bpx1} otherwise				
Max Post/Stub Combined Stre	SS:			
$f_{bpx2} := \max(M_{xpmax}, M_{xpmax3}) \cdot \frac{1}{(I_{xp} + I_{xpmax3})}$	xp I _{st})·S _{xp}	f _{bpx2} = 24755	psi	
Max Stub Stress:		F _{bpx} = 25000	psi	
$f_{bst} := max(M_{xpmax}, M_{xpmax3}) \cdot \frac{I_{st}}{(I_{xp} + I_{st})}$	t)·Set	$f_{bst} = 20222$	psi	
	λη υι	F _{bst} = 25000	psi	
Calculation Results:				


Int _{p1} := max	fbpx	fbpx2	fbst
mpi max	Fbpx '	F _{bpx} '	F _{bst}

 $Int_{p1} = 1.03$ 3% Over OK

POSTS :=	"OK" if $Int_{p1} \le 1.0$	$0.034 \wedge \frac{\max(\Delta_{xp1}, \Delta_{xp2}, \Delta_{tot})}{\Delta_{allp}}$	- ≤ 1	POSTS = "OK"	
	"FAIL" otherwise				
RICE		105 School Creek Trail	Project Description:	Job No:	R11-02-15H
		Luxembura, WI 54217			


			Project Description:	Job No:]		R11-02-15H	
ENCINEERING Phone: (920)845-1042	Engineer: JDB SI		Sheet No:	F1 B			
		R0001 - RMR Standard Calcs	Date:	2/23/11	Rev:		
Template:	REI-MC-5707	www.rice-inc.com		Chk By:		Date:	

		SK - 1	Feb 23, 2011 at 3:13 PM	6 ft Splice Loads.r3d
SIGNATION STATES			R0001 - RMR Standard Calcs	
No N	Loads: BLC 1, 50 PLF Results for LC 1, 50 PLF Member z Bending Moments (Ib-in)	Rice Engineering	Joe Bauer	R11-02-15H

ASSUME GROUT FILLED CMU **DESIGNED BY OTHERS**

WALL RAIL LINE POST

CUSTOMER NOTE! FILL VOID CAVITY IN CMU WITH GROUT @ ALL RAIL MOUNTING LOCATIONS.

Wall Rail Post Bracket SHT Analysis M2

(Reaction From RISA Model)

 $R_{max} := 113$ lb

 $M_{max} := 2287$ lb·in

Chk weld to base plate:

tw:= 0.1875	in (thickness of weld)
tw 0.1075	in (anoidio or noid)

in (stub depth) d := 1.9

$\mathbf{A}_{\mathbf{W}} \coloneqq \mathbf{t}_{\mathbf{W}}(\boldsymbol{\pi} \cdot \mathbf{0.5 \cdot d})$	$A_{W} = 0.56$	in ²

$$T := \frac{M_{max}}{d} \qquad T = 1204 \qquad lb$$

$$f_W := \frac{T}{A_W}$$
 $f_W = 2151$ psi

$F_{W} := 6500$ psi

Use 3/16" weld all around as noted 5356 filler alloy

Chk Bolts to Grout Filled CMU:

 $\overline{T_{all}}$

$V_b := \frac{\kappa_{max}}{2}$	$V_{b} = 57$	lb
7		

$$T_b := \frac{M_{max}}{2 \cdot (0.5 \cdot D2)}$$
 $T_b = 915$ lb

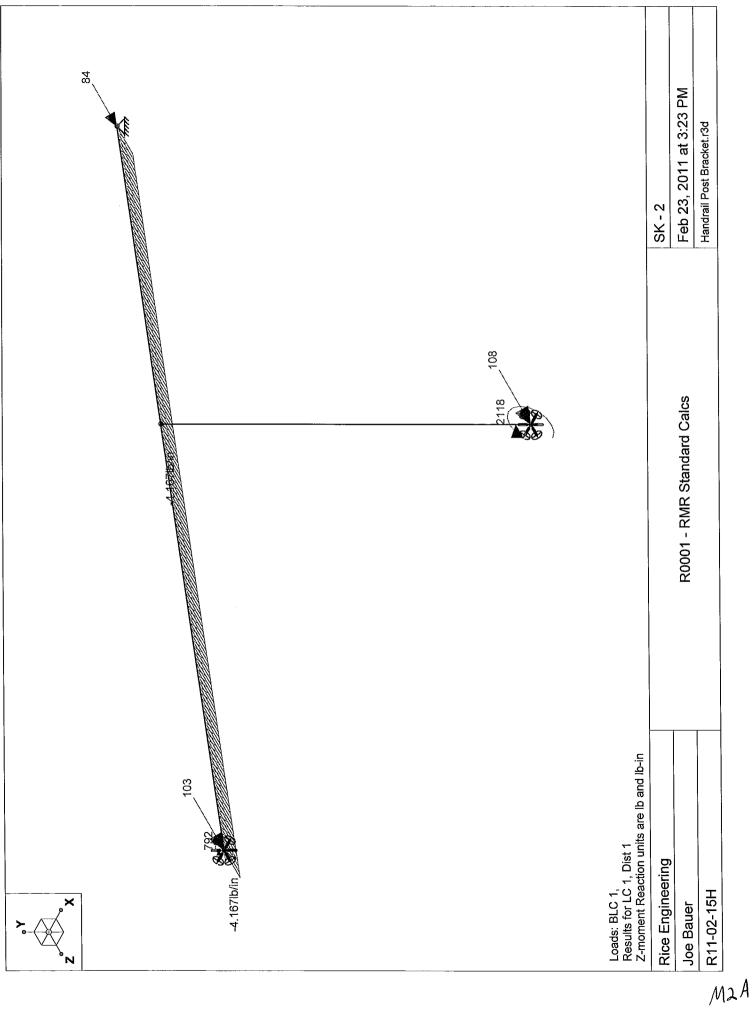
 $T_{all} := min(1100, 1975.0.5)$ $T_{all} = 988$ lb

 $V_{all} := \min(1419, 2756.0.5)$ Vall = 1378 lb 1.67Тb Vb

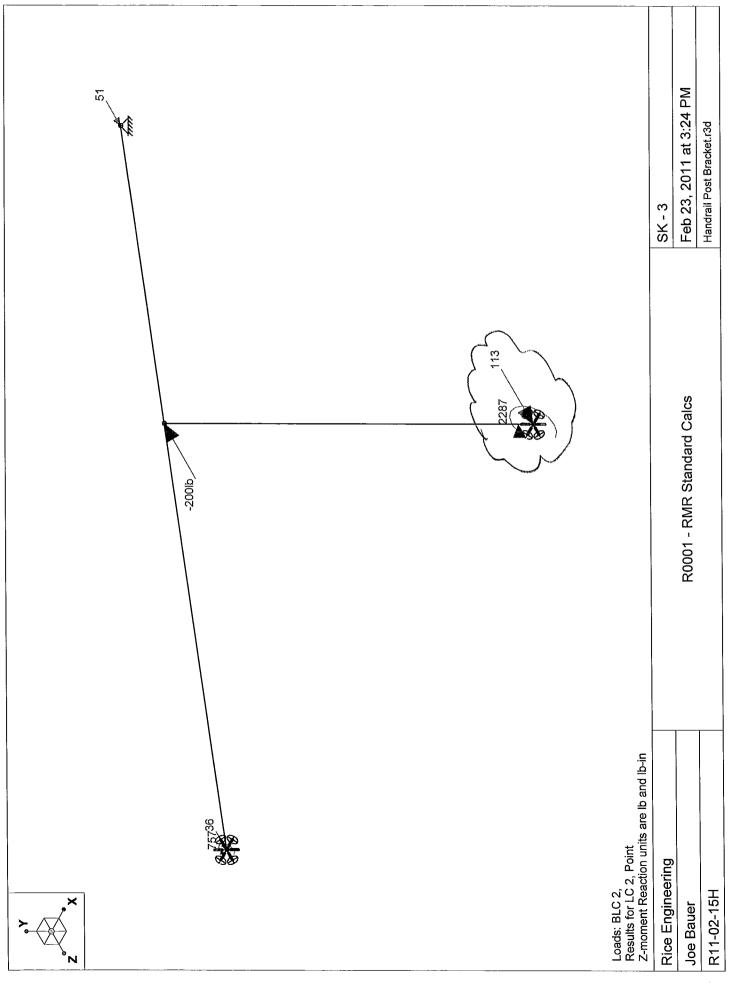
Vall

 $I_{b} = 0.88$

Note: Anchor Type Size t Sib := 1 Embedment Use (2) - 3/8" Dia. S.S. Threaded Rods W/ Hilti HIT-HY 150 MAX Adhesive Edge Distance: 4" End Distance: 4" Embedment: 3-3/8"


RICE	105 School Creek Trail	Project Description:	Job No:		R11-02-15H	
<u>ENGINEERING</u>	Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	M2
ENGINEEKING		R0001 - RMR Standard Calcs	Date:	2/23/11	Rev:	
Template:	w w w .rice-inc.com		Chk By:		Date:	

Chk Aluminum Base Plate:


25KD-35A

L1 := 6	in	D1 :=	1	in	
L2 := 2.5	in	D2:= 3	2.5	in	
t:≕ 0.5	in				
L := L1 – (2	.∙D1)		L = 4		in
$P := \frac{M_{max}}{d}$			P = 1204	4	lb
$M_{p1} := 0.5$	₽•1		M _{p1} = 6	i02	in∙lb
M _{pl2} := 0.5	·P·(1.05)		M _{pl2} =	632	in∙lb
$t_{req1} := \sqrt{\frac{1}{(1+1)^2}}$	M _{p1} ·6 12000)·L2		$t_{req1} = 0$	0.347	in
$t_{req2} := \sqrt{\frac{1}{2}}$	M _{pl2} .6 28000)·L2		$t_{req2} = 0$	0.233	in
$I_2 := \frac{\max(t_1)}{t_2}$	req1,t _{req2}) t		I2 = 0.69	9	

Use 1/2" x 6" x 2-1/2" AL Plate 6061-T6 alloy

•

Pipe Handrail

These calculations are based on emperical test data performed by Julius Blum & Co., Inc.

Wall or Grab RailSHTAnalysisM3

Input Variables:

L := 60	in	MAX BRACKET SPACING (cl to cl)
P := 200	lb	Load Case 2 (Point Load)
F V := 0	lb ft	Simultaneous Vertical Uniform Load
$F_{\text{H}} \coloneqq 50$	$\frac{lb}{ft}$	Load Case 1 (Uniform Load)

Number of Railing Spans:

1 span	∇
2 span	~
3 or more spans	∇

Railing Section:

- ✓ 1 1/2" Schd. 40
- 1 1/2" Schd. 80
- 「 1 1/2" tube
- 2" Schd. 40
- 2" Schd. 80

Railing Temper:

- 6105-T5 or 6061-T6
- Г 6063-т5

4/3 increase allowed

v	{ [[]]] }

All calculations below this line are automatic

Railing Prop					Computational Factors	
bxr= lyr=	0.31 0.31				$K_1 := (8 \cdot q1) + (8 \cdot q2) + (9.5 \cdot q3)$	K1 = 8
Sxr= Syr=	0.326 0.326				$K_2 := (4 \cdot q1) + (5 \cdot q2) + (5 \cdot q3)$	K ₂ = 5
R= t=	0.95 0.145				$K_3 := (48 \cdot q1) + (66 \cdot q2) + (87 \cdot q3)$	K3 = 66
E _r := 10100000 p	osi					
$I_{xtotr} := I_{xr}$	$I_{\text{xtotr}} = 0.31$	in ⁴	7			
I _{ytotr} := I _{yr}	$I_{ytotr} = 0.31$	in ⁴	$s_{R1} \coloneqq \frac{R_r}{t_r}$	S _{R1} = 6.55		

DICE		105 School Creek Trail	Project Description:	Job No:		R11-02-15H	
RICE	INEERING	Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	M3
			R0001 - RMR Standard Calcs	Date:	2/23/11	Rev:	
Template:	REI-MC-5702	www.rice-inc.com		Chk By:		Date:	

Railing Analysis:	$W_h := \frac{F_H}{12}$	$W_{\mathbf{V}} := \frac{F_{\mathbf{V}}}{12}$]	Wall or Grab Rail	SHT
Case 1 Uniform Load:	12	12	l	Analysis	M3 A
$\Delta_{yr1} := \frac{5 \cdot W_h \cdot L^4}{384 \cdot E_r I_{ytotr}}$			$\Delta_{yr1} = 0.225$	in Modeled as a sin	nple span
$\Delta_{\mathbf{X}\Gamma1} \coloneqq \frac{5 \cdot \mathbf{W}_{\mathbf{V}} \cdot \mathbf{L}^{4}}{384 \cdot \mathbf{E}_{\Gamma} \mathbf{I}_{\mathbf{X} \mathbf{t} 0 \mathbf{T}}}$			$\Delta_{\rm xr1} = 0$	in	
$\Delta_{\text{allr}} \coloneqq \frac{L}{96}$			$\Delta_{allr} = 0.63$	in Per ASTM E985	
$M_{yrmax} \coloneqq \frac{W_{h} \cdot L^2}{K_1}$			M _{yrmax} = 1875	lb∙in	
$M_{xrmax} \coloneqq \frac{W_{v} \cdot L^2}{K_1}$			M _{xrmax} = 0	lb-in	
>					
$f_{bry1} \coloneqq \frac{M_{yrmax}}{S_{yr}}$			f _{bry1} = 5752	psi	
$f_{brx1} := \frac{M_{xrmax}}{S_{xr}}$			$f_{brx1} = 0$	psi	
Case 1 Point Load:					
$\Delta_{yr2} := \frac{P \cdot L^3}{K_3 \cdot E_r \cdot I_{ytotr}}$			$\Delta_{yr2} = 0.209$	in	
$M_{yrmax2} \coloneqq \frac{P \cdot L}{K_2}$			M _{yrmax2} = 2400	lb∙in	
$f_{bry2} := \frac{M_{yrmax2}}{S_{yr}}$			fbry2 = 7362	psi	
$F_{bry} := (F_{bry1} \cdot 1.34)$ if IBC	C = 1		F _{bry} = 25000	psi	

F_{bry1} otherwise

Calculation Results:_____

$$Int_{r1} := \left(\frac{f_{brx1}}{F_{bry}}\right) + \left(\frac{f_{bry1}}{F_{bry}}\right) \qquad Int_{r1} = 0.23$$

$$Int_{r2} := \frac{f_{bry2}}{F_{bry}} \qquad Int_{r2} = 0.29$$

$$RAILS := \left| {}^{"}OK" \quad if \quad \frac{max(\Delta yr1, \Delta xr1, \Delta yr2)}{\Delta_{allr}} \le 1 \land \left(\frac{f_{brx1}}{F_{bry}}\right) + \left(\frac{f_{bry1}}{F_{bry}}\right) \le 1 \land \frac{f_{bry2}}{F_{bry}} \le 1$$

$$RAILS := \left| {}^{"}OK" \quad if \quad \frac{max(\Delta yr1, \Delta xr1, \Delta yr2)}{\Delta_{allr}} \le 1 \land \left(\frac{f_{bry1}}{F_{bry}}\right) \le 1 \land \frac{f_{bry2}}{F_{bry}} \le 1$$

$$RAILS := \left| {}^{"}OK" \quad if \quad \frac{max(\Delta yr1, \Delta xr1, \Delta yr2)}{\Delta_{allr}} \le 1 \land \left(\frac{f_{bry1}}{F_{bry}}\right) \le 1 \land \frac{f_{bry2}}{F_{bry}} \le 1$$

RICE		105 School Creek Trail	Project Description:	Job No:		R11-02-15	ł
	INFEDINC	Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	M3 A
ENGINEERING		R0001 - RMR Standard Calcs	Date:	2/23/11	Rev:		
Template:	REI-MC-5702	w w w .rice-inc.com		Chk By:	• ··· •· •· •· •· •· •· •· •· •· •· •· •	Date:	· · · · · · · · · ·

¥

ì

In	p	u	ts	:
	Γ.	~		

L _S := 60	in	(bracket span)	A := 3.0	in
w _h := 0	plf	(horiz uniform load)	B := 2.125	in
w _v := 50	plf	(vert uniform load)	C := 2.5	in
P := 200	lb	(conc. load)	D:= 1.0	in
F _b := 28000	psi	(Allowable Stress)	H:= 4.25	in
			L := 2	in
122000				

t := 0.25

in

Horizontal Uniform Loading:

$\mathbf{R}_{1} \coloneqq \frac{\mathbf{w}_{\mathbf{h}} \cdot \mathbf{L}_{\mathbf{S}}}{12}$	R ₁ = 0	lbs
$M_1 := B \cdot R_1$	$M_1 = 0$	in-lb

Vertical Uniform Loading:

$R_2 := \frac{w_V \cdot L_S}{12}$	$R_2 = 250$	lbs
$M_2 := C \cdot R_2$	M ₂ = 625	in-lb
$M_{b1} \coloneqq M_1 + M_2$	$M_{b1} = 625$	in-Ib

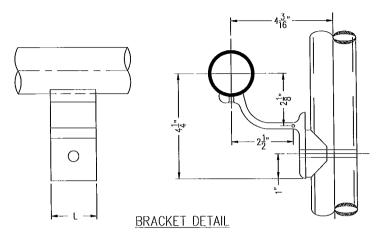
Concentrated Loading:

$M_{b2} := P \cdot B$	$M_{b2} = 425$	in-lb	Anchorage to Post	(Horizontal Load Case):
			$M_3 := H \cdot P$	$M_3 = 850 \qquad \text{ in-lb}$
$M_b := \max(M_{b1}, M_{b2})$	M _b = 625	in-lb	$T_p \coloneqq \frac{M_3}{0.85D} + P$	$T_{p} = 1200$ lbs
$F_{b1} := (F_{b} \cdot 1.34)$ if IBC = 1			$V := \max(R_2, 200)$	V = 250 lbs
$F_{b1} := \begin{pmatrix} F_{b} \cdot 1.34 \end{pmatrix} \text{ if IBC} = 1$ $F_{b} \text{ otherwise}$			$T_{all} := 3100 \cdot \frac{0.145}{0.341}$	$T_{all} = 1318$ lbs
				$V_{all} := 1614$ lbs
$t_{req} := \sqrt{\frac{6M_b}{F_{b1} \cdot L}}$	$t_{req} = 0.26$	in	$I_{b} := \left(\frac{T_{p}}{T_{all}}\right)^{2} + \left(\frac{V}{V_{all}}\right)^{2}$	$I_b = 0.85$
Interaction:			<u>Use (1) - 3/8" Di</u> Cond "CW	i <mark>a. S.S. Thru Bolts</mark> ™, Fy= 65 ksi

In

 $I \coloneqq \frac{t_{req}}{t}$

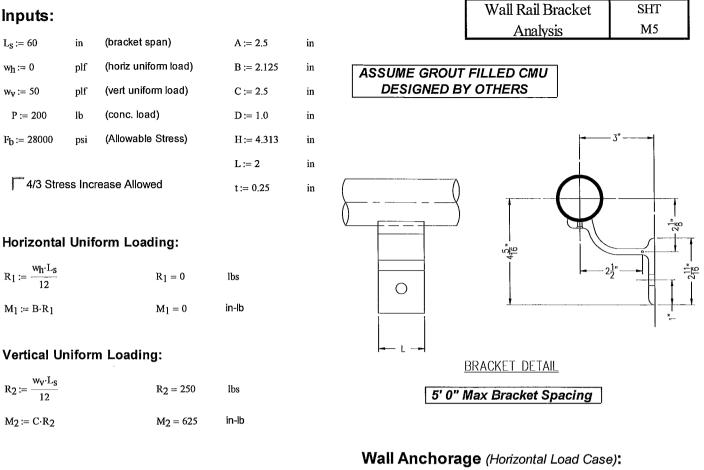
I = 1.04 <<u>< 5% Over OK</u>


Use Aluminum Rail Bracket, 6105-T5 or 6061-T6 Alloy, 2" Long

Bracket to Grab Rail Screws:

Use (2) #1/4-20 S.S. Fasteners "OK" per inspection

	105 School Creek Trail	Project Description:	Job No:		R11-02-15H	
RICE	Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	M4
ENGINEERING	Fax: (920)845-1048	R0001 - RMR Standard Calcs	Date:	2/23/11	Rev:	
Template:	w w w .rice-inc.com		Chk By:		Date:	


Grab Rail Bracket	SHT
Analysis	M4

5' 0" Max Bracket Spacing

Anchorage	to Post	(Horizontal Load Case):
Alloholage		

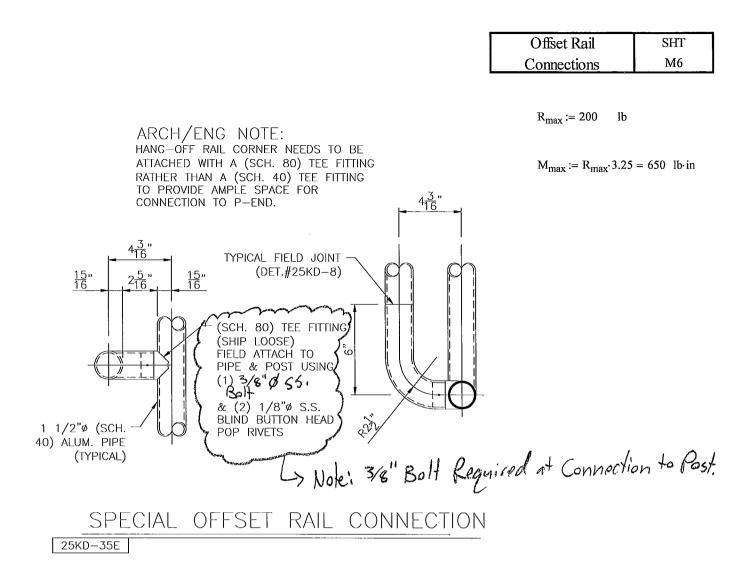
Inputs:

Concentrated Loading:

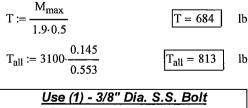
$M_4 := \max(P \cdot H, R_1 \cdot H, R_2 \cdot A)$ $M_4 = 863$ in-lb in-lb $T_p := \frac{M_4}{D_1 0.85} + P$ $M_3 := P \cdot max(B, C)$ $M_3 = 500$ $T_{p} = 1215$ lbs $V := max(R_2, 200)$ V = 250 lbs $M_b := \max(M_1, M_2, M_3)$ $M_{b} = 625$ in-lb Tall := 1319 lbs $V_{all} := 2181$ lbs Anchor Size, h Type q Zembedment, $I_{b} := \left(\frac{T_{p}}{T_{all}}\right)^{1.67} + \left(\frac{V}{V_{all}}\right)^{1.67}$ $F_{b1} := (F_{b} \cdot 1.34)$ if IBC = 1 $I_{b} = 0.9$ Fb otherwise Use (1) - 1/2" Dia. S.S. Threaded Rod W/ Hilti HIT-HY 150 MAX Adhesive $t_{req} := \sqrt{\frac{6 \cdot M_b}{F_{b1} \cdot L}}$ $t_{req} = 0.26$ Edge Distance: 4" End Distance: 4" Embedment: 4-1/2" Interaction:

Use Aluminum Wall Bracket,

6105-T5 or 6061-T6 Alloy, 2" Long

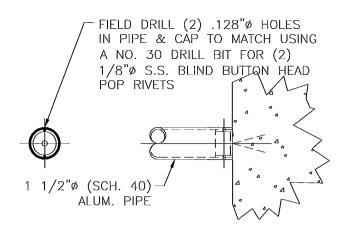

 $I := \frac{t_{req}}{t}$

I = 1.04 < 5% <u>OK</u>


Bracket to Grab Rail Screws:

Use (2) #1/4-20 S.S. Fasteners "OK" per inspection

DICE	105 School Creek Trail	Project Description:	Job No:		R11-02-15H	
<u>RICE</u> Engineering	Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	M5
ENGINEEKING		R0001 - RMR Standard Calcs	Date:	2/23/11	Rev;	
Template:	w w w .rice-inc.com		Chk By:		Date:	



Chk Thru-Bolts @ Tee:

<u>Use (1) - 3/8" Dia. S.S. Bolt</u>
Drill & Tap or Thru-Bolt
Cond "CW", Fy= 65 ksi
0.145" min. Thread Engagement

RICE	105 School Creek Trail	Project Description:	Job No:		R11-02-15H	
<u>AICE</u> ENGINEERING	Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	M6
ENGINEEKING		R0001 - RMR Standard Calcs	Date:	2/23/11	Rev:	
Template:	w w w .rice-inc.com		Chk By:		Date:	

Wall Mount End Cap

CUSTOMER NOTE! FILL VOID CAVITY IN CMU WITH GROUT @ ALL RAIL MOUNTING LOCATIONS.

WALL MOUNT END CAP

25KD-33

Chk Fasteners:

Use (2) 1/8" Dia. S.S. Blind Buton Head Pop Rivets (OK By Inspection)

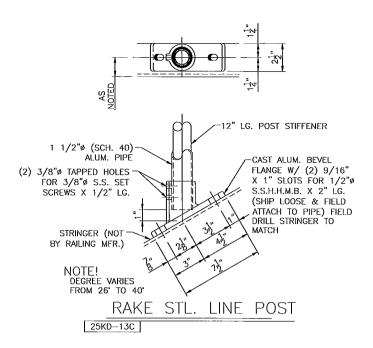
Chk End Cap:

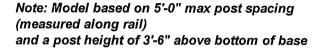
 $R_{max} := 200$

Use End Cap as shown (OK By Inspection)

Chk Anchors: (Assume Grout Filled CMU)

lb


$$V := \frac{R_{max}}{1} \qquad V = 200 \qquad lb$$


$$V_{all} := 1419 \cdot 0.5 \qquad V_{all} = 710 \qquad lb$$

$$\frac{Use (1) - 3/8" \text{ Dia. S.S. Threaded Rod w/}}{Hilti \text{ HIT-RE 500 MAX Adhesive}} \qquad OR \qquad \frac{Use (1) 1/4" \text{ Dia. S.S. Hilti Kwik Bolt 3}}{(300 \text{ Series S.S.})} \qquad (300 \text{ Series S.S.}) \\ 3 - 3/8" \text{ Min. Embedment} \\ 4" \text{ Min. Edge Distance} \qquad OR \qquad \frac{4" \text{ Min. Edge Distance}}{(300 \text{ Series S.S.})} \qquad (300 \text{ Series S.S.}) \\ 3 - 3/8" \text{ Min. Embedment} \\ 4" \text{ Min. Edge Distance} \qquad OR \qquad (300 \text{ Series S.S.}) \\ 3 - 3/8 - 3/$$

Note: Values for HIT-RE 500 Epoxy Adhesive Based on HIT-HY 150 MAX Adhesive with a Safety Factor of 8

RICE	105 School Creek Trail	Project Description:	Job No:		R11-02-15H	-
<u>ENGINEERING</u>	Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	M7
LIVOINLEKIIVO		R0001 - RMR Standard Calcs	Date:	2/23/11	Rev:	3/4/11
Template:	w w w .rice-inc.com		Chk By:		Date:	

Note: 6'-0" max post spacing (measured along rail) along rail and a post height of 2'-10" above bottom of base

 $\frac{M}{34} = 309$ lb > 4.167.72 = 300 lb

Chk Bolts to Steel Stringer:

$V_b := \frac{R_{max}}{2}$	$V_{b} = 125$	lb
$T_b := \frac{M_{max}}{2 \cdot 1.25}$	T _b = 3562	lb
$V_{all} := 0.196 \cdot 23094$	$V_{all} = 4526$	lb
$T_{all} \coloneqq 0.142 \cdot 40000 \cdot \frac{0.375}{0.456}$	$T_{all} = 4671$	lb

$$I_{3} := \left(\frac{V_{b}}{V_{all}}\right)^{2} + \left(\frac{T_{b}}{T_{all}}\right)^{2}$$

<u>Use (2) - 1/2" Dia. S.S. Thru-Bolts</u> or Drill & Tap w/ 3/8" Min. Thread Engagement Condition "CW"

 $I_3 = 0.58$

2-Bolt Raked	SHT
Base Plate	M8

R_{max} := 250 lb

 $M := R_{max} \cdot 42 = 10500 \text{ lb-in}$

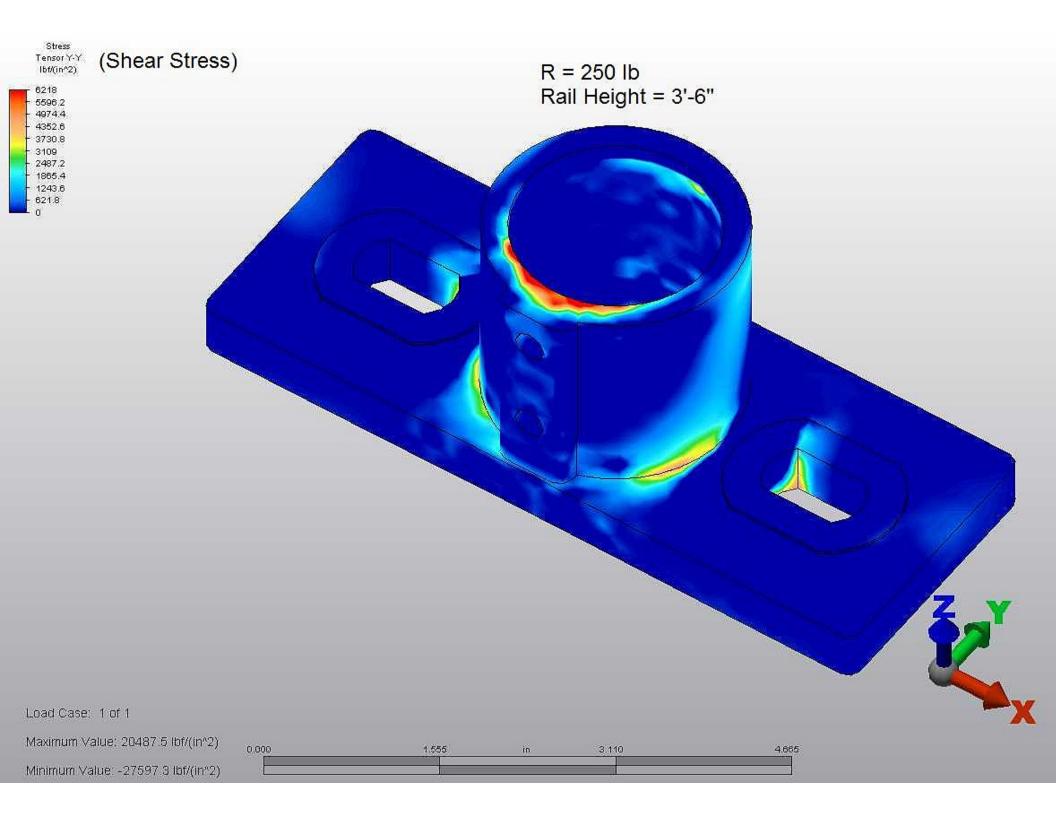
 $M_{max} := \cos(32 \text{deg}) \cdot M = 8905$ lb·in

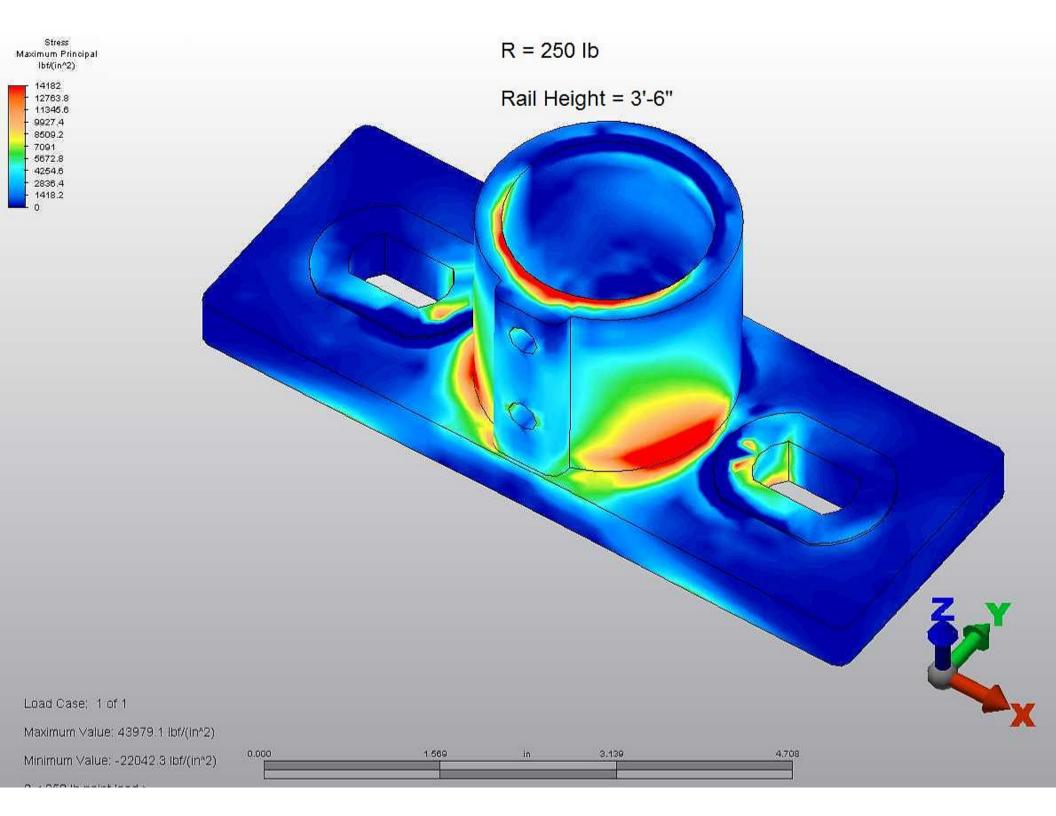
d := 2.5 in (sleeve dia.)

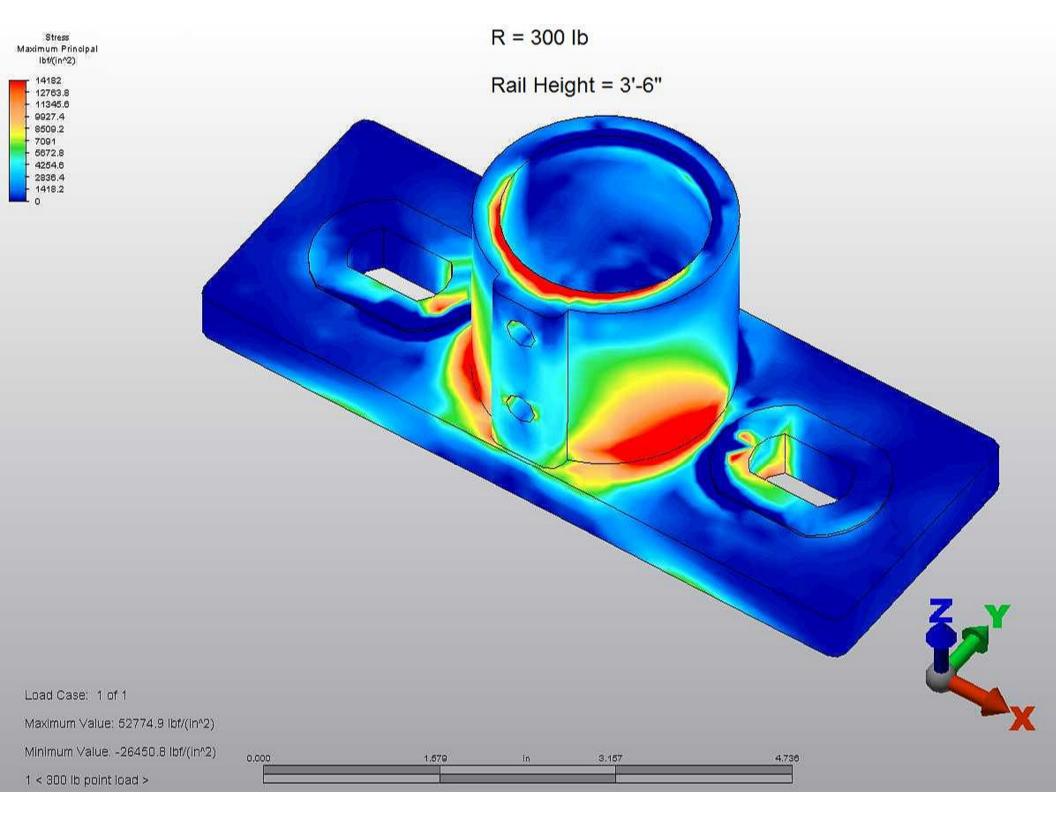
Chk shear on shoe wall:

$\mathbf{P} \coloneqq \frac{\mathbf{M}_{\max}}{0.67 \cdot (2.375)}$	P = 5596	lb
$f_{\mathbf{V}} := \frac{\left(P + R_{\max}\right)}{2 \cdot (0.315) \cdot (2)}$	f _v = 4640	psi
$F_{\mathbf{v}} := \frac{0.57 \cdot (18000)}{1.65}$	$F_{V} = 6218$	psi
$I := \frac{f_V}{F_V}$	I = 0.75 <u>She</u>	ear Stress "OK"

Chk Aluminum Base Plate:

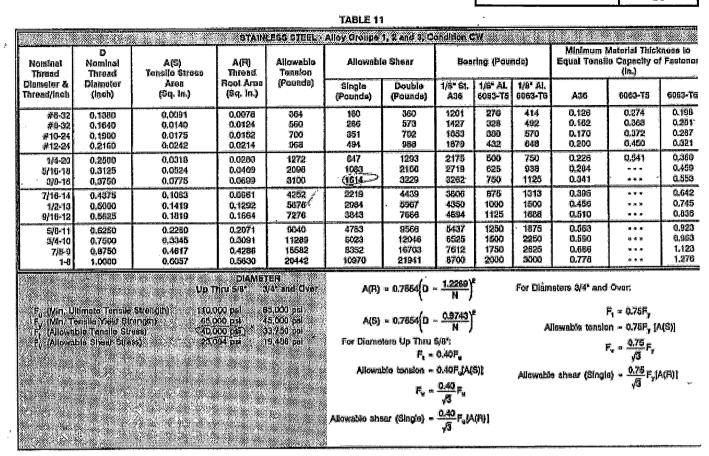

L1 := 7.5	in		D1 := 1	in
L2 := 2.5	in		D2:= 1.25	in
t := 0.5	in			
L := L1 - (2	2·D1)		L = 5.5	in
$\mathbf{P} := \frac{\mathbf{M}_{\max}}{\mathbf{d}}$			P = 3562	lb
σ _{max} := 14	182 psi	See Ne	xt Sheet For Mo	odel
$\sigma_{all} := \frac{1.3}{\cdots}$	(18000) 1.65		$\sigma_{all} = 14182$	psi
$I_2 := \frac{\sigma_{max}}{\sigma_{all}}$			I ₂ = 1	


Note: Model based on 5'-0" max post spacing measured along rail and a post height of 3'-6"


1	Use Cast Aluminum Base, as shown
	535 casting alloy, Fu= 35 ksi min.

RICE	105 School Creek Trail	Project Description:	Job No:		R11-02-15H	
ENGINEERING	Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	M8
ENGINEERING		R0001 - RMR Standard Calcs	Date:	2/23/11	Rev:	
Template:	www.rice-inc.com		Chk By:		Date:	

Stress von Mises Ibf/(in^2)					
14182 12763.8					
- 11345.6 - 9927.4					
- 8509.2 - 7091 - 5672.8					
- 4254.6 - 2836.4	R = 250 lb				
1418.2 0					
	Rail Height = 3	3'-6"			
					7
					- A
Load Case: 1 of 1					
Maximum Value: 32	076.2 lbf/(in*2)	0.670		7.00	Λ
	1994 lbf/(in*2)	2.473	in 4,945	7.418	



Spec Sheet

SHT

S1

In Tables 9 thru 15, for Group Type and Condition Definitions see pages 22 and 23,

	2 A 1 K P 4				IABLE 2	<u> </u>	<u> </u>			· · · · · · · · · · · · · · · · · · ·		
K a Mixed M	e disk reg m.g	¥ 90 (CK & C & C & C &	STAINI	LESS STEEL -	Alloy Groupe	1, 2 and 3, C	ondition (:W*****	****	*****	* ** ***	n (n: 19. 18. 192)
Nominal Thread	D Nominal Thread	K Basie Minor	A(R) Thread	Allowable Tension	Allowabl	o Shoar	8ea	ring (Pou	nde)		Material Tide la Capacity o (in.)	
Diameter & Thread/Inch	Diameter (Inch)	Diameter {inch}	Root Area (Sq. in.)	(Pounds)	Single (Pounde)	Double (Pounde)	1/8* S1, A36	1/8° AJ, 8063-75	1/8° Al. 6063-T6	A36	6053-TS	6063-T6
*8-20 #8-18 #10-16 #12-14	0.1380 0.1640 0.1900 0.2160	0.0997 0.1257 0.1309 0.1849	0.0078 0.0124 0.0152 0.0214	312 498 603 856	180 296 351 494	380 573 702 958	1201 1427 1653 1879	276 328 380 432	414 492 570 648	0.112 0.147 0.153 0.182	0.240 0.329 0.328 0.403	0,174 0.235 0.238 0.238
1/4-14 5/16-12 3/8-12	0.2500 0.3125 0.3750	0.1887 0.2443 0.2983	0.0280 0.0469 0.0689	1120 1876 2796	047 1083 1614	1293 2165 3229	2175 2719 3262	500 625 750	750 938 1125	0.205 0.260 0.313	0.439 0.627 0.763	0.323 0.416 0.505
⇒r _Y (Ministrian S	n Texale. Yield		65) 	DOD (Pal DOQ (Pal	Where: A(A) K	e # Thread Ro = Basis Minc				lowabla tensio	₹v = <u>0.40</u> √3 F.	

TARIE 27 TEKS -

<u>RICE</u> ENGINEERING		105 School Creek Trail	Project Description:	Job No:		R11-02-15H	
		Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	S 1
		Fax: (920)845-1048	R0001 - RMR Standard Calcs	Date:	2/23/11	Rev:	
Template:	REI-MC-5200	w w w .rice-inc.com		Chk By:		Date:	

304 SS & CARBON TAPPERS Selector Guide

PRODUCT REPORT NO. 040601

Ŕ	
8	

Electro Zinc	Electro Zinc	Description	Garbon Steel	304 SS
Part #	Part #		Box Oty	Box Qty:
1874200 1875200 1877200 1879200 1880200 1881200 1886200 1886200 1887200	1863000 1864000 1866000 	14 x 3/4" HWH W/ BD Type A Tappers 14 x 1" HWH W/ BD Type A Tappers 14 x 1-1/2" HWH W/ BD Type A Tappers 14 x 2" HWH W/ BD Type A Tappers 14 x 2-1/2" HWH W/ BD Type A Tappers 14 x 3" HWH W/ BD Type A Tappers 17 x 3/4" HWH W/ BD Type A Tappers 17 x 1" HWH W/ BD Type A Tappers	2,500 2,500 1,500 1,000 1,000 2,500 	2,500 2,500 2,000 1,500 1,000 750 2,000 2,000

Performance Data

with B	onded		(Asseption 1997)	LOUT V	ALUES	(avg. Ibs	s ultimat	e)	
s Wa	sher	Gauge	26	24	22	20	18	16	14
Fast	tener	Thickness	0.018	0.024	0.030	0.036	0.048	0.060	0.075
14	TIMO	Drill Size	1/8"	5/32"	5/32"	3/16"	3/16"	#7	#7
14	Туре А		191	252	336	371	545	694	884
Fac	tener	Gauge	26	24	22	20	18	16	14
rasi	lenei	Thickness	0.018	0.024	0.030	0.036	0.048	0.060	0.075
17	Turne A	Drill Size	1/8"	5/32"	5/32"	3/16"	#2	#2	1/4"
	Туре А	397. a.s.	263	307	425	475	559	791	

with B	onded		PUL	OVERI	/ALUES	(avg.1b	s ultima	te)	
- Wa	sher 🙏	Gauge	26	24	22	20	18	16	14
Fast	tener	Thickness	0.018	0.024	0.030	0.036	0.048	0.060	0.075
14	Type A	Drill Size	1/8"	5/32"	5/32"	3/16"	3/16"	#7	#7
14	зрел		595	827	1093	1341	1931	2229	2696
East	oner	Gauge	26	24	22	20	18	16	14
газ	tener	Thickness	0.018	0.024	0.030	0.036	0.048	0.060	0.075
17	Type A	Drill Size	1/8"	5/32"	5/32"	3/16"	#2	#2	1/4"
1 17	i Nhe K		565	792	970	1100	1556	1813	(2065)

	isher	18978789/-Selfering		LUES	1912204	No. Contract	
Fas	stener	Gauge	_26-14	24-14	22-14	20-14	18-1
14	4 Type A	Drill Size	#7	#5	#2	#2	0.234
	туре А		534	704	863	1245	212
Fas	stener	Gauge	26-18	24-18	22-14	20-14	18-1
17	TIPS	Drill Size	#2	1/4"	1/4"	1/4ª	1/4
11	Туре А		454	1013	1264	1544	129

304 SS	FASTENERVA	UES (avg lbs ult	imate)
Fastener	Tensile	Shear	Torque
(dia-tpi)	(lbs min.)	(avg <u>, lbs</u> ult.)	(min. in lbs)
14-10	2684	(2148)	127
17-9	N/A	NIA	229

CARBON STEEL/FASTENER VALUES (avg. lbs ultimate)			
Fastener (dia-tpi)	Tensile (Ibs min.)	Shear (avg. lbs ult.)	Torque (min. in Ibs)
14-10	4060	2600	150
17-9	5000	2750	173

- **Tools and Techniques**
 - A standard screwgun with a depth sensitive nosepiece should be used to install Tappers. For optimal fastener performance, the screwgun should be a minimum of 6 amps and have an RPM range of 0-2500.
 - Adjust the screwgun nosepiece to properly seat the fastener.
 - New magnetic sockets must be correctly set before use. Remove chip build-up as needed.

1349 West Bryn Mawr Avenue Itasca, Illinois 60143 630-595-3500 Fax: 630-595-3549 www.itwbuildex.com

- . The fastener is fully seated when the head is flush with the work surface.
- . Overdriving may result in torsional failure of the fastener or stripout of the substrate.
- The fastener must penetrate beyond the metal structure a minimum of 3 pitches of thread.

© 2007 ITW Buildex and Illinois Tool Works, Inc.