

WEAVER CONSTRUCTION MANAGEMENT, INC. 3679 S. Huron St., Suite 404 Englewood, CO 80110 Phone: (303) 789-4111 FAX: (303) 789-4310

SUBMITTAL TRANSMITAL

November 28, 2011 WCM Submittal No: 05500-005.A

- PROJECT: Harold Thompson Regional WRF Birdsall Rd. Fountain, CO 80817 Job No. 2908
- ENGINEER: GMS, Inc. 611 No. Weber St., #300 Colorado Springs, CO 80903 719-475-2935 Roger Sams
- OWNER: Lower Fountain Metropolitan Sewage Disposal District 901 S. Santa Fe Ave. Fountain, CO 80817 719-382-5303 James Heckman
- CONTRACTOR: Rocky Mountain Railings 11839 E. 51st Ave. Denver, CO 80239

SUBJECT: Resubmitting with Calculation Corrections - Handrail for the Aeration Basin/Digester Structure, Clarifiers and Pumping and Disinfection Building.

SPEC SECTION: 05500 - Metal Fabrications

PREVIOUS SUBMISSION DATES: 11/17/11

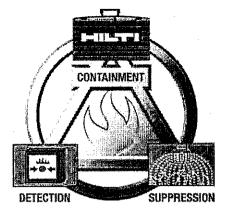
DEVIATIONS FROM SPEC: ____YES X__NO

CONTRACTOR'S STAMP: This submittal has been reviewed by WCM and approved with respect to the means, methods, techniques, & safety precautions & programs incidental thereto. Weaver General Construction also warrants that this submittal complies with contracted documents and comprises on deviations thereto:

Contractor's Stamp:	Engineer's Stamp:
Date: 11/28/11 Reviewed by: H.C. Myers (X) Reviewed Without Comments () Reviewed With Comments	
ENGINEER'S COMMENTS:	

Attached are page(s) from the 2008 Hilti North American Product Technical Guide. For complete details on this product, including data development, product specifications, general suitability, installation, corrosion, and spacing & edge distance guidelines, please refer to the Technical Guide, or contact Hilti.

> **Hilti, Inc.** 5400 South 122nd East Avenue Tulsa, OK 74146


> > 1-800-879-8000 www.hilti.com

PROFIS: The World's Most Powerful Anchor Design Software

- Easy to Learn Start working in just minutes
- Fast and Powerful Produce detailed designs quickly
- Specify with Confidence The largest number of approvals and latest design codes

No charge. Download now at **www.us.hilti.com** or **www.hilti.ca**

Firestop Systems

When it comes to Life Safety and building code compliance, Hilti provides complete solutions with a wide range of products and unmatched technical support.

- Firestop Systems Guides
 - Through Penetrations
 - Joint Penetrations
- FACT Program
- FS 411
- BASIC Training
- Engineering Judgements
- Firestop Design Center online at www.us.hilti.com or www.hilti.ca

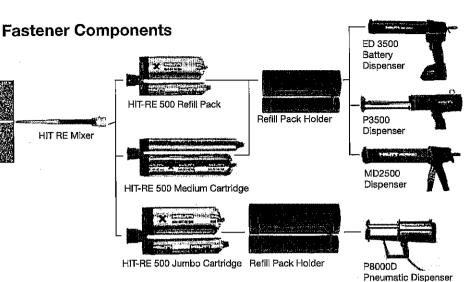
Hilti Diaphragm Deck Design

The Hilti Diaphragm Deck Design Program allows designers to quickly and accurately design roof deck and composite floor deck diaphragms.

- Ability to design with innovative Hilti fasteners for frame and sidelap connection
- Creates easy to use load tables with span ranges based on user input
- Allows for different safety factors depending on load type, building code and field quality control
- Direct link to Hilti website

Hilti Online

- Technical Library
- Design Centers
- Interactive Product Advisors
- Full-line Product Catalog
- Online Ordering
- Maps to Hilti locations
- "Contact Us" program to answer your questions


MI - Industrial Pipe Support Technical Guide

A guide to specifying the Hilti modular pipe support system for medium to heavy loads without welding.

- MI System is the ideal solution for pipes up to 24 in. diameter
- · Reliable fastenings without welds
- · Easily installed

HIT-RE 500 Epoxy Adhesive Anchoring System 4.2.7

The Hilti HIT-RE 500 System is a high strength, two part epoxy adhesive. The system consists of a side-by-side adhesive refill pack, a mixing nozzle, a HIT dispenser with refill pack holder, and either a threaded rod, rebar, HIS internally threaded insert or smooth epoxy coated bar. HIT-RE 500 is specifically designed for fastening into solid base materials such as concrete, grout, stone or solid masonry. HIT-RE 500 may be used in underwater fastenings and for oversized holes up to 2 times the rod diameter (2-1/2" rod and 3" max. hole diameter) and for diamondcored holes.

Product Features

- Superior bond performance
- Use in diamond cored or pneumatic drilled holes and under water up to 165 feet (50 m)
- Meets DOT requirements for most states; contact the Hilti Technical Staff
- Meets requirements of ASTM C 881-90, Type IV, Grade 2 and 3, Class A, B, C except gel times
- Meets requirements of AASHTO specification M235, Type IV, Grade 3, Class A, B, C except gel times
- Mixing tube provides proper mixing, eliminates measuring errors and minimizes waste
- Contains no styrene; virtually odorless
- Extended temperature range from 23°F to 104°F (-5°C to 40°C)
- Excellent weathering resistance; Resistance against elevated temperatures
- Suitable for oversized holes
- Seismic qualified per IBC[®]/IRC[®] 2003, IBC[®]/IRC[®] 2000 and UBC[®] 1997 (ICC-ES AC58). Please refer to ESR-1682.

4.2.7.1	Product Description
4.2.7.2	Material Specifications
4.2.7.3	Technical Data
4.2.7.4	Installation Instructions
4.2.7.5	Ordering Information

Listings/Approvals

City of Los Angeles
Research Report #25514
NSF/ANSI Std 61
certification for use in potable water
Europan Technical Approval
ETA-04/0027
ETA-04/0028
ETA-04/0029

Code Compliance

IBC®/IRC® 2003 (ICC-ES AC58)	
IBC®/IRC® 2000 (ICC-ES AC58)	
UBC [®] 1997 (ICC-ES AC58)	
LEED [®] : Credit 4.1-Low Emitting	
Materials	

The Leadership in Energy and Environmental Design (LEED[®]) Green Building Rating systemTM is the nationally accepted benchmark for the design, construction and operation of high performance green buildings.

Components

HAS Threaded Rods

HIS Internally Threaded Inserts

Rebar (supplied by contractor)

Smooth, epoxy coated bar (supplied by contractor)

Guide Specifications

Master Format Section:

03250 (Concrete accessories)

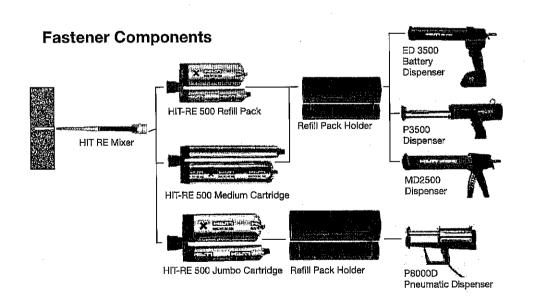
Related Sections:

03200	(Concrete Reinforcing-
	Reinforcing Accessories)
05050	(Metal Fabrication)
05120	(Structural Steel;
	Masonry Accessories)

Injectable adhesive shall be used for installation of all reinforcing steel dowels or threaded anchor rods and inserts into new or existing concrete. Adhesive shall be furnished in side-by-side refill packs which keep component A and component B separate. Side-by-side packs shall be designed to compress during use to minimize waste volume. Side-by-side packs shall also be designed to accept static mixing nozzle which thoroughly blends component A and component B and allows injection directly into drilled hole. Only injection tools and static mixing nozzles as supplied by manufacturer shall be used. Manufacturer's instructions shall be followed. Injection adhesive shall be formulated to include resin and hardener to provide optimal curing speed as well as high strength and stiffness. Typical curing time at 68°F (20°C) shall be approximately 12 hours.

Injection adhesive shall be HIT-RE 500, as furnished by Hilti.

Anchor Rods Shall be furnished with chamfered ends so that either end will accept a nut and washer. Alternatively, anchor rods shall be furnished with a 45 degree chisel point on one end to allow for easy insertion into the adhesive-filled hole. Anchor rods shall be manufactured to meet the following requirements: 1. ISO 898 Class 5.8


en politike og skrivere er en en en en en er en er

2. ASTM A 193, Grade B7 (high strength carbon steel anchor);

3. AISI 304 or AISI 316 stainless steel, meeting the requirements of ASTM F 593 (condition CW).

Special order length HAS Rods may vary from standard product.

Nuts and Washers Shall be furnished to meet the requirements of the above anchor rod specifications.

4.2.7.2 Material Specifications

Material Properties for HIT-RE 500 - Cured Adhesive

Bond Strength ASTM C882-911 2 day cure 7 day cure	12.4 MPa 12.4 MPa	1800 psi 1800 psi
Compressive Strength ASTM D-695-961	82.7 MPa	12,000 psi
Compressive Modulus ASTM D-695-961	1493 MPa	0.22 x 106 psi
Tensile Strength 7 day ASTM D-638-97	43.5 MPa	6310 psi
Elongation at break ASTM D-638-97	2.0%	2.0%
Heat Deflection Temperature ASTM D-648-95	63°C	146°F
Absorption ASTM D-570-95	0.06%	0.06%
Linear Coefficient of Shrinkage on Cure ASTM D-2566-86	0.004	0.004
Electrical resistance DIN IEC 93 (12.93)	6.6 x 10 ¹³ Ω/m	1.7 x 10¹2Ω/in.

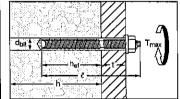
 Minimum values obtained as the result of tests at three cure temperatures (23, 40, 60°F).

0.004	0.004					
6.6 x 10 ¹³ Ω/m	1.7 x 10¹2Ω/in.	Mechanica	l Properties			
		f _y ksi (MPa)	min. f _u ksi (MPa)			
		58 (400)	72.5 (500)			
A 193, Grade B7		105 (724)	125 (862)			
Stainless HAS rod material meets the requirements of ASTM F 593 (304/316) Condition CW 3/8" - 5/8"						
6) Condition CW 3/4" -	1 1/4"	45 (310)	85 (586)			
	······	54.4 (375)	66.7 (460)			
0088-3		50.8 (350)	101.5 (700)			
A 563, Grade DH						
	6.6 x 10 ¹³ Ω/m A 193, Grade B7 6) Condition CW 3/8" - 6) Condition CW 3/4" - 0088-3	6.6 x 1013 Ω/m 1.7 x 1012Ω/in. A 193, Grade B7 6) Condition CW 3/8" - 5/8" 6) Condition CW 3/4" - 1 1/4" D088-3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			

HAS-E Carbon Steel and Stainless Steel Washers meet dimensional requirements of ANSI B18.22.1 Type A Plain

HAS Super & HAS-E Standard Washers meet the requirements of ASTM F 436

All HAS-E & HAS Super Rods (except 7/8") & HAS-E Standard, HIS inserts, nuts & washers are zinc plated to ASTM B 633 SC 1

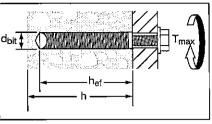

7/8" Standard HAS-E & HAS Super rods hot-dip galvanized in accordance with ASTM A 153

Note: Special Order steel rod material may vary from standard steel rod materials.

4.2.7.3 Technical Data

HIT-RE 500 Installation Specification Table for HAS Threaded Rods

	HA	S Rod Size	e in.	3/8	1/2	5/8	3/4	7/8	1	1-1/4
Details			(m m)	(9.5)	(12.7)	(15.9)	(19.1)	(22.2)	(25.4)	(31.8)
d _{bit} bi	d _{bit} bit diameter ¹ in.			7/16	9/16	3/4	7/8	1	1-1/8	1-3/8
h _{nom} std. depth of embed.		in. (mm)	3-3/8 (90)	4-1/2 (110)	5-5/8 (143)	6-3/4 (171)	7-7/8 (200)	9 (229)	11-1/4 (286)	
T _{max} max.	HAS-E Rods	Embed. ≥ h _{nom}	ft Ib (N∙m)	18 (24)	30 (41)	75 (102)	150 (203)	175 (237)	235 (319)	400 (540)
tightening torque) HAS SS HAS-Super	Embed. < h _{nom}	ft lb (N·m)	1 5 (20)	20 (27)	50 (68)	1 05 (142)	125 (169)	165 (224)	280 (375)
	nin. base mater hickness	rial	(in.)				1.5 h _{ef}			
Approx.	number of fas	stenings po	er cartrid	ge at stan	dard emb	edment ²				
Small Ca	rtridge			52	28	11	7	5	4	2
Medium Cartridge				84	45	18	11	8	6	3
Jumbo C	artridge			255	137	56	37	27	19	12



1 Use matched tolerance carbide tipped bits or Hillti matched tolerance DD-B or DD-C diamond core bits.

2 Assumes no waste.

HIT-RE 500 Installation Specification Table for HIS Inserts

HIS Insert Details	in. (mm)	3/8 (9.5)	1/2 (12.7)	5/8 (15.9)	3/4 (19.1)
d _{bit} bit diameter ^{1,2}	in.	11/16	7/8	1-1/8	1-1/4
h _{nom} std. embed. depth	in. (mm)	4-1/4 (110)	5 (125)	6-5/8 (170)	8-1/4 (210)
ℓ _{th} useable thread length	in. (mm)	1 (25)	1-3/16 (30)	1-1/2 (40)	2 (50)
T _{max} Max. tightening torque	ft lb (N·m)	18 (24)	.35 (47)	80 (108)	160 (217)
h min. base material thickness	in. (mm)	6-3/8 (162)	7-1/2 (191)	10 (254)	12-3/8 (314)
Approx. number of fasten	ings pel	r cartridge at stan	dard embedment	2	
Small Cartridge		27	16	6	4
Medium Cartridge		49	30	11	8
Jumbo Cartridge		168	105	38	27

1 Use matched tolerance carbide tipped bits or Hilti matched tolerance DD-B or DD-C diamond core bits.

HIT-RE 500 Installation Specification Table for Rebar in Concrete

Reb	ar Size:	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10	No. 11
Details										
Bit diameter ^{1, 2, 3}	in.	1/2	5/8	3/4	7/8	1	1-1/8	1-3/8	1-1/2	1-3/4
h _{nom} std. embed. depth	in. (mm)	3-3/8 (86)	4-1/2 (114)	5-5/8 (143)	6-3/4 (171)	7-7/8 (200)	9 (229)	10-1/8 (257)	11-1/4 (286)	12-3/8 (314)
Approx. number of faste	enings pe	er cartridge a	at standard er	nbedment ³						
Small Cartridge	ï	44	25	16	11	8	6	3	2	1
Medium Cartridge		72	41	27	18	13	10	5	3	2
Jumbo Cartridge		221	125	83	56	41	31	14	11	7

1 Rebar diameters may vary. Use smallest drill bit which will accommodate rebar.

2 Use matched tolerance carbide tipped bits or Hilti matched tolerance DD-B or DD-C diamond core bits.

3 Assumes no waste.

HIT-RE 500 Installation Specification Table for Metric Rebar in Concrete (Canada Only)

Reba	ar Size:	10M	15M	20M	25M	30M	35M
Bit diameter ^{1, 2}	in.	5/8	3/4	1	1-1/8	1-3/8	1-3/4
h _{nom} std. embed. depth (mm)		115	145	200	230	260	315
Approx. number of faste	nings per	cartridge a	t standard en	nbedment ²	_•		• • • • • • •
Small Cartridge		20	17	5	6	3	1
Medium Cartridge		32	28	9	10	5	2
Jumbo Cartridge		98	84	27	31	16	7

1 Rebar diameters may vary. Use smallest bit which will accommodate rebar. 2 Assumes no waste.

Combined Shear and Tension Loading

$$\left(\frac{N_{\rm d}}{N_{\rm rec}}\right)^{5/3}$$
 + $\left(\frac{V_{\rm d}}{V_{\rm rec}}\right)^{5/3} \le 1.0$ (Ref. Section 4.1.8.3)

² Assumes no waste.

HIT-RE 500 Epoxy Adhesive Anchoring System 4.2.7

HIT-RE 500 Allowable and Ultimate Bond/Concrete Capacity for HAS Rods in Normal Weight Concrete^{1,2,3,4}

		HIT-RE	500 Allowable E	Sond/Concrete (Capacity	HIT-RE 500 Ultimate Bond/Concrete Capacity					
Anchor Diameter in (mm)		Ten	sile	Sh	ear	Ten	sile	Sh	ear		
	Embedment Depth in (mm)	f' , = 2000 psi (13.8 MPa) Ib (kN)	f'_c = 4000 psi (27.6 MPa) Ib (kN)	f', = 2000 psi (13.8 MPa) Ib (kN)	f' , = 4000 psi (27.6 MPa) Ib (kN)	f' _c = 2000 psi (13.8 MPa) Ib (KN)	f' , = 4000 psi (27.6 MPa) lb (kN)	f'; = 2000 psi (13.8 MPa) Ib (KN)	f' c = 4000 ps (27.6 MPa) Ib (kN)		
	1-3/4	645	1095	1510	2135	2580	4370	4530	6405		
	(44)	(2.9)	(4.9)	(6.7)	(9.5)	(11.5)	(19.4)	(20.2)	(28.4)		
3/8	3-3/8	2190	2585	3155	4460	8760	10345	9460	13380		
(9,5)	(86)	(9.7)	(11.5)	(14.0)	(19.8)	(39.0)	(46.0)	(42.1)	(59.5)		
	4-1/2 (114)	2420 (10.8)	2585 (11.5)	4855 (21.6)	6860 (30.5)	9685 (43.1)	10335 (46.0)	6.0) (64.8)	20580 (91.5)		
-	2-1/4	1130	1965	2510	3550	4530	7860	7525	10640		
	(57)	(5.0)	(8.7)	(11.2)	(15.8)	(20.2)	(35.0)	(33.5)	(47.3)		
1/2	4-1/2	4045	5275	5610	7935	16185	21095	16820	23800		
(12.7)	(114)	(18.0)	(23.5)	(25.0)	(35.3)	(72.0)	(93.8)	(74.8)	(105.9)		
	6	4775	5380	8635	12210	19095	21520	25900	36620		
	(152)	(21.2)	(23.9)	(38.4)	(54.3)	(84.9)	(95.7)	(115.2)	(162.9)		
	2-7/8	1690	3045	5245	7420	6770	12175	15735	22250		
	(73)	(7.5)	(13.5)	(23.3)	(33.0)	(30.1)	(54.2)	(70.0)	(99.0)		
5/8	5-5/8	6560	7355	8760	12395	26240	29420	26280	37180		
(15.9)	(143)	(29.2)	(32.7)	(39.0)	(55.1)	(116.7)	(130.9)	(116.9)	(165.4)		
	7-1/2	7320	7515	13615	19080	29290	30060	40480	57240		
	(190)	(32.6)	(33.4)	(60.6)	(84.9)	(130.3)	(133.7)	(180.1)	(254.6)		
	3-3/8	2310	4515	7335	10370	9250	18065	22000	31108		
	(86)	(10.3)	(20.1)	(32.6)	(46.1)	(41.1)	(80.4)	(97.9)	(138.4)		
3/4	6-3/4	8670	10755	12615	17840	34685	43020	37840	53520		
(19.1)	(172)	(38.6)	(47.8)	(56.1)	(79.4)	(154.3)	(191.4)	(168.3)	(238.1)		
	9	10385	12995	19430	27470	41535	51985	58280	82400		
	(229)	(46.2)	(57.8)	(86.4)	(122.2)	(184.8)	(231.2)	(259.2)	(366.5)		
	4	3005	5665	7795	11020	12030	22670	23375	33050		
	(101)	(13.4)	(25.2)	(34.7)	(49.0)	(53.5)	(100.8)	(104.0)	(147.0)		
7/8	7-7/8	12495	15875	17175	24290	49975	63495	51520	72860		
(22.2)	(200)	(55.6)	(70.6)	(76.4)	(108.0)	(222.3)	(282.4)	(229.2)	(324.1)		
	10-1/2	14705	16185	26440	37390	58820	64730	79320	112160		
	(267)	(65.4)	(72.0)	(117.6)	(166.3)	(261.6)	(287.9)	(352.8)	(498.9)		
	4-1/2	3945	8440	10035	14190	15790	33765	30104	42565		
	(114)	(17.5)	(37.5)	(44.6)	(63.1)	(70.2)	(150.2)	(133.9)	(189.3)		
1	9	13845	17365	22435	31720	55380	69465	67300	95160		
(25.4)	(229)	(61.6)	(77.2)	(99.8)	(141.1)	(246.3)	(309.0)	(299.4)	(423.3)		
	12	17935	17935	34535	48830	71740	71740	103600	146480		
	(305)	(79.8)	(79.8)	(153.6)	(217.2)	(319.1)	(319.1)	(460.8)	(651.6)		
	5-5/8	5760	12815	14760	20870	23045	51270	44280	62610		
	(143)	(25.6)	(57.0)	(65.7)	(92.8)	(102.5)	(228.1)	(197.0)	(278.5)		
1-1/4	1 1-1/4	24610	31620	35050	49570	98430	126480	105140	148710		
(31.8)	(286)	(109.5)	(140.7)	(155.9)	(220.5)	(437.8)	(562.6)	(467.7)	(661.5)		
(12.7) 5/8 (15.9) 3/4 (19.1) 7/8 (22.2) 1 (25.4) 1-1/4	15 (381)	34130 (151.8)	35270 (156.9)	53960 (240.0)	76300 (339.4)	136525 (607.3)	141090 (627.6)	161880 (720.1)	228900 (1018.2)		

1 Influence factors for spacing and/or edge distance are applied to concrete/bond values above, and then compared to the steel value. The lesser of the values is to be used for the design.

2 Average ultimate concrete shear capacity based on Concrete Capacity Design (CCD) method for standard and deep embedment and based on testing for shallow embedment.

3 All values based on holes drilled with carbide bit and cleaned with brush per manufacturer's instructions. Ultimate tensile concrete/bond loads represent the average values obtained in testing.

4 For underwater applications up to 165 feet/50m depth reduce the tabulated concrete/bond values 30% to account for reduced mechanical properties of saturated concrete.

Hitti, Inc. (US) 1-800-879-8000 | www.us.hilti.com | en español 1-800-879-5000 | Hilti (Canada) Corp. 1-800-363-4458 | www.hilti.ca | Product Technical Guide 2008 265

Allowable Steel Strength for Carbon Steel & Stainless Steel HAS Rods¹

Rod Diameter		tandard Class 5.8		Super \ 193 B7	HAS SS AISI 304/316 SS			
in. (mm)	Tensile Ib (kN)	Shear lb (kN)	Tensile Ib (kN)	Shear Ib (kN)	Tensile Ib (kN)	Shear Ib (kN)		
3/8	2640	1360	4555	2345	3645	1875		
(9.5)	(11.7)	(6.0)	(20.3)	(10.4)	(16.2)	(8.3)		
1/2	4700	2420	8100	4170	6480	3335		
(12.7)	(20.9)	(10.8)	(36.0)	(18.5)	(28.8)	(14.8)		
5/8	7340	3780	12655	6520	10125	5215		
(15.9)	(32.7)	(16.8)	(56.3)	(29.0)	(45.0)	(23.2)		
3/4	10570	5445	18225	9390	12390	6385		
(19.1)	(47.0)	(24.2)	(81.1)	(41.8)	(55.1)	(28.4)		
7/8	14385	7410	24805	12780	16865	8690		
(22.2)	(64.0)	(33.0)	(110.3)	(56.9)	(75.0)	(38.6)		
1	18790	9680	32400	16690	22030	11350		
(25.4)	(83.6)	(43.0)	(144.1)	(74.2)	(98.0)	(50.5)		
1-1/4 (31.8)	29360 (130.6)	15125 (67.3)	50620 (225.2)	26080 (116.0)	34425 (153.1)	(78.9)		

1 Steel strength as defined in AISC Manual of Steel Construction (ASD):

Tensile = $0.33 \times F_u \times Nominal Area$

Shear = 0.17 x F_{μ} x Nominal Area

Ultimate Steel Strength for Carbon Steel & Stainless Steel HAS Rods¹

Rod Diameter		HAS-E Standard ISO 898 Class 5.8			HAS Super ASTM A 193 B7		HAS SS AISI 304/316 SS					
in. (mm)	Yield Ib (kN)	Tensile Ib (kN)	Shear Ib (kN)	Yield Ib (kN)	Tensile Ib (KN)	Shear Ib (kN)	Yield Ib (kN)	Tensile Ib (kN)	Shear Ib (KN)			
3/8	4495	6005	3605	8135	10350	6210	5035	8280	4970			
(9.5)	(20.0)	(26.7)	(16.0)	(36.2)	(43.4)	(27.6)	(22.4)	(36.8)	(22.1)			
1/2	8230	10675	6405	14900	18405	11040	9225	14720	8835			
(12.7)	(36.6)	(47.5)	(28.5)	(66.3)	(79.0)	(49.1)	(41.0)	(65.5)	(39.3)			
5/8	13110	16680	10010	23730	28760	17260	14690	23010	13805			
(15.9)	(58.3)	(74.2)	(44.5)	(105.6)	(125.7)	(76.8)	(65.3)	(102.4)	(61.4)			
3/4	19400	24020	14415	35120	41420	24850	15050	28165	16800			
(19.1)	(86.3)	(106.9)	(64.1)	(156.2)	(185.7)	(110.5)	(66.9)	(125.3)	(75.2)			
7/8	26780	32695	19620	48480	56370	33825	20775	38335	23000			
(22.2)	(119.1)	(145.4)	(87.3)	(215.7)	(256.9)	(150.5)	(92.4)	(170.5)	(102.3)			
1	35130	42705	25625	63600	73630	44180	27255	50070	30040			
(25.4)	(156.3)	(190.0)	(114.0)	(282.9)	(337.0)	(196.5)	(121.2)	(222.7)	(133.6)			
1-1/4	56210	66730	40035	101755	115050	69030	43610	78235	46940			
(31.8)	(250.0)	(296.8)	(178.1)	(452.6)	(511.8)	(307.1)	(194.0)	(348.0)	(208.8)			

1 Steel strength as defined in AISC Manual of Steel Construction 2nd Ed. (LRFD):

Yield = Fy x Tensile Stress Area Tensile = $0.75 \text{ x} F_u \text{ x}$ Nominal Area

Shear = $0.45 \text{ x} F_u \text{ x}$ Nominal Area

HIT-RE 500 Epoxy Adhesive Anchoring System 4.2.7

HIT-RE 500 Allowable Bond/Concrete Capacity and Steel Strength for HIS Carbon Steel and HIS-R Stainless Steel Internally Threaded Inserts

		HIT-RE 500 Allowable B	ond/Concrete Capacity ²	Steel Bolt Strength ^{1,2}							
Anchor Diameter in. (mm)	Embedment Depth in. (mm)	Tensile f [*] c ≥ 2000 psi (13.8 MPa) lb (kN)	Shear f' _c ≥ 2000 psi (13.8 MPa) Ib (KN)	ASTM A 325 Tensile ¹ Ib (kN)	Carbon Steel Shear ¹ Ib (kN)	ASTM F 593 S Tensile ¹ Ib (kN)	tainless Steel Shear ¹ Ib (kN)				
3/8 (9.5)	4-1/4 (108)	2870 (12.8)	1565 (7.0)	4370 (19.4)	2250 (10.0)	3645 (16.2)	1875 (8.3)				
1/2 (12.7)	5 (127)	4530 (20.1)	2890 (12.9)	7775 (34.6)	4005 (17.8)	6480 (28.8)	3335 (14.8)				
5/8 (15.9)	6-5/8 (168)	8255 (36.7)	4635 (20.6)	12150 (54.0)	6260 (27.8)	10125 (45.0)	5215 (23.2)				
3/4 (19.1)	8-1/4 (210)	9030 (40.1)	6695 (29.8)	1 7945 (77.8)	9010 (40.1)	12395 (55.1)	6385 (28.4)				

HIT-RE 500 Ultimate Bond/Concrete Capacity and Steel Strength for HIS Carbon Steel and HIS-R Stainless Steel Internally Threaded Inserts

		HIT-RE 500 Ultimate B	ond/Concrete Capacity ²	Ultimate Bolt Strengtin ^{1,2}							
Anchor Diameter in. (mm)	Embedment Depth in. (mm)	Tensile f ^t _c ≥ 2000 psi (13.8 MPa) Ib (kN)	Shear f' _c ≥ 2000 psi (13.8 MPa) Ib (kN)	ASTM A 325 Tensile ¹ Ib (kN)	Carbon Steel Shear ¹ Ib (kN)	ASTM F 593 S Tensile ¹ Ib (kN)	tainiess Steel Shear ¹ Ib (kN)				
3/8	4-1/4	11480	6260	9935	5960	8280	4970				
(9.5)	(108)	(51.0)	(27.8)	(44.2)	(26.5)	(36.8)	(22.1)				
1/2	5	18115	11565	17665	10600	14720	8835				
(12.7)	(127)	(80.5)	(51.4)	(78.6)	(47.2)	(65.5)	(39.3)				
5/8	6-5/8	33025	18550	27610	16565	23010	13805				
(15.9)	(168)	(146.9)	(82.5)	(122.8)	(73.7)	(102.4)	(61.4)				
3/4	8-1/4 (210)	36125	26775	39760	23855	28165	16900				
(19.1)		(160.6)	(119.1)	(176.9)	(106.1)	(125.3)	(75.1)				

1 Steel values in accordance with AISC

6

ASTM A 325 bolts:	$F_y = 92 \text{ ksi}$, $F_u = 120 \text{ ksi}$	
ASTM F 593 (AISI 304/316):	$F_y = 65 \text{ ksi}, F_y = 100 \text{ ksi}$	for 3/8" thru 5/8"
	F. = 45 ksi, F. = 85 ksi	for 3/4"

Allowable Load Values	Ultimate Load Values
Tension = 0.33 x $F_u x A_{nom}$	Tension = 0.75 x $F_u x A_{nam}$
Shear = 0.17 x $F_u x A_{nom}$	Shear = 0.45 x $F_u x A_{nom}$

2 Use lower value of either bond/concrete capacity or steel strength.

HIT-RE 500 Ultimate Bond Strength and Steel Strength for Rebar in Concrete1

				Concrete Compre				Grade 60 Rebar		
Nominal	Embed.	f'o	= 2000 psi (13.8 l	MPa)	f'c	= 4000 psi (27.6 N	(IPa)	araas o	σπουμι	
Rebar Size	Depth in. (mm)	Ultimate Bond Strength Ib (kN)	Embed. to Develop Yield Strength ¹ in. (mm)	Embed. to Develop Tensile Strength ¹ in. (mm)	Ultimate Bond Strength Ib (kN)	Embed. to Develop Yield Strength ¹ in. (mm)	Embed. to Develop Tensile Strength ¹ in. (mm)	Yield Strength Ib (kN)	Tensile Strength Ib (kN)	
#3	3-3/8 (86) 4-1/2 (114)	10105 (45.0) 10920 (48.6)	2-1/4 (57)	3-3/8 (86)	10810 (48.1) 10810 (48.1)	2-1/8 (54)	3-1/4 (84)	6600 (29.4)	9900 (44.0)	
#4	4-1/2 (114) 6 (152)	15980 (71.1) 18830 (83.8)	3-3/8 (86)	5-5/8 (143)	18540 (82.5) 18655 (83.0)	3 (76)	4-3/8 (111)	12000 (53.4)	18000 (80.1)	
#5	5-5/8 (143) 7-1/2 (191)	20630 (91.8) 24870 (110.6)	5-1/8 (130)	8-7/8 (225)	27790 (123.6) 27790 (128.6)	3-7/8 (98)	5-3/4 (146)	18600 (82.7)	27900 (124.1)	
#6	6-3/4 (171) 9 (229)	33695 (149.9) 38960 (173.3)	5-3/8 (136)	9-3/8 (238)	44675 (198.7) 44870 (200.0)	4 (102)	6 (152)	26400 (117.4)	39600 (176.2)	
#7	7-7/8 (200) 10-1/2 (267)	40525 (180.3) 48460 (215.6)	7 (178)	12-3/8 (314)	59340 (264.0) 61720 (274.6)	4-7/8 (124)	7-1/4 (184)	36000 (160.1)	54000 (240.2)	
#8	9 (229) 12 (305)	63940 (284.4) 69610 (309.7)	8-1/4 (210)	12-7/8 (327)	72820 (323.9) 72950 (324.5)	5-7/8 (149)	8-7/8 (225)	47400 (210.9)	71100 (316.3)	
#9	10-1/8 (257) 13-1/2 (343)	72245 (321.4) 94205 (419.1)	8-1/2 (216)	13 (330)	81235 (361.4) 84015 (373.7)	7-1/2 (191)	12 (305)	60000 (266.9)	90000 (400.4)	
#10	11-1/4 (286) 15 (381)	92000 (409.3) 95850 (426.4)	9-3/8 (238)	17-7/8 (454)	96725 (430.3) 97070 (431.8)	8-7/8 (225)	14 (356)	76200 (339.0)	11430 (508.5	
#11	12-3/8 (314) 16-1/2 (419)	118615 (527.6) 123570 (549.7)	9-7/8 (251)	18-3/4 (476)	123120 (547.7) 123790 (550.7)	9-1/2 (241)	16-1/2 (419)	93600 (416.4)	140400 (624.6)	

1 Based on comparison of average ultimate adhesive bond test values versus minimum yield and ultimate tensile strength of rebar. For more information, contact Hilti.

en e men entre skrime se somer et det som ere e met

HIT-RE 500 Epoxy Adhesive Anchoring System 4.2.7

HIT-RE 500 Bond Strength and Steel Strength for Metric Rebar in Concrete (Canada Only) 1, 2, 3, 4, 5, 6, 7

		HIT-RE 5	Strength Properties of Metric Reba				
		f' _c = 1	4 MPa	$f'_c = 2$	8 MPa	f _y = 400 MPa	f _u = 600 MPa
Rebar Size	Embedment Depth mm (in)	Ultimate Bond kN (lb)	Allowable Bond kN (lb)	Ultimate Bond kN (Ib)	Allowable Bond kN (lb)	Yield Strength kN (lb)	Tensile Strength kN (lb)
10M	115 (4-1/2) 150 (6)	71.1 (15980) 83.8 (18830)	17.8 (3995) 20.9 (4705)	82.5 (18540) 83.0 (18655)	20.6 (4635) 20.7 (4665)	40 (8990)	60 (13490)
15M	145 (5-5/8) 190 (7-1/2)	91.8 (20630) 110.6 (24870)	22.9 (5155) 27.6 (6215)	123.7 (27810) 123.6 (27790)	30.9 (6950) 30.9 (6945)	80 (17985)	120 (26975)
20M	200 (7-7/8) 265 (10-1/2)	180.3 (40525) 215.6 (48460)	45.1 (10130) 53.9 (12115)	264 (59340) 274.6 (61720)	66 (14835) 68.6 (15430)	120 (26975)	180 (40465)
25M	230 (9) 305 (12)	284.4 (63940) 309.7 (69610)	71.0 (15985) 77.4 (17400)	323.9 (72820) 324.5 (72950)	81.0 (18205) 81.1 (18235)	200 (44960)	300 (67440)
30M	260 (10-1/8) 345 (13-1/2)	321.4 (72245) 419.1 (94205)	80.3 (18060) 104.8 (23550)	361.4 (81235) 373.7 (84015)	90.3 (20305) 93.4 (21000)	280 (62945)	420 (94415)
35M	315 (12-3/8) 420 (16-1/2)	527.6 (118615) 549.7 (123570)	131.9 (29650) 137.4 (30890)	547.7 (123120) 550.7 (123790)	136,9 (30780) 137.6 (30945)	400 (89920)	600 (134880)

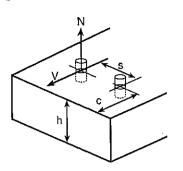
1 Based on minimum steel strength and nominal cross-sectional area of rebar.

2 Use lesser value of bond strength or steel strength.

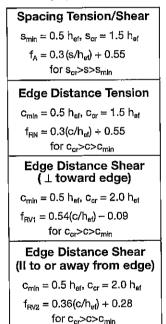
3 Minimum concrete thickness must be equal to 1.5 times the anchor embedment.

4 Testing done with imperial rebar in same size holes.

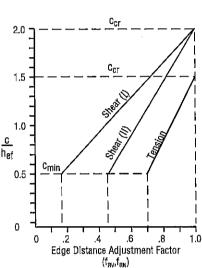
5 Allowable tension for adhesive bond based on a safety factor of 4.0.


6 For anchor spacing and edge distance guidelines, please refer to the following pages.

7 Ultimate tensile concrete/bond loads represent the average values obtained in testing:


Anchor	Drill Bit	Embedment	Ultimate
Diameter	Diameter	Depth	Tensile Load
in. (mm)	in. (mm)	in. (mm)	1b (kN)
1 (25.4)	1-1/8 (29)		
1-1/4	1-3/8	9	40385
(31.8)	(34.9)	(229)	(179.7)
1-1/2 (38.1)	1-5/8 (41)		

HIT-RE 500 Ultimate Tensile Strength for Smooth Epoxy Coated Dowel Bars in Concrete ≥ 2410 psi (15.9 MPa)


Anchor Spacing and Edge Distance Guidelines in Concrete

Note: Tables apply for listed embedment depths. Reduction factors for other embedment depths must be calculated using equations below.

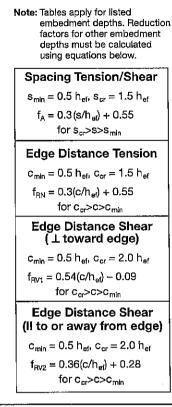
Anchor Spacing Adjustment Factors s = Actual spacing h_{ef} = Actual embedment $s_{min} = 0.5 h_{ef}$ $s_{cr} = 1.5 h_{ef}$ Scr 1.5 2.0 Shear & Tension 1.5 1.0 $\frac{s}{h_{ef}}$ Smin 1.0 0.5 C h_{ef} 0.5 0 .6 .8 1.0 Anchor Spacing Adjustment Factor (\mathbf{f}_A) 0

	Load Adjustment Factors for 3/8" Diameter Anchor													
Anc	hor Diameter:					3	/8" dia	meter		-				
1	Adjustment Factor		Spacing sion/Sh			ge Dista Tension f _{in}		S	e Dista hear, f _{ri} oward e	V1	Edge Distance Shear, f _{Rv2} (II to or away from edge)			
Emb	ed. Depth (in.)	1-3/4	3-3/8	4-1/2	1-3/4	3-3/8	4-1/2	1-3/4	3-3/8	4-1/2	1-3/4	3-3/8	4-1/2	
	7/8	0.70			0.70			0.18			0.46			
	1	0.72			0.72			0.22	a kieri	200	0.49			
	1 11/16	0.84	0.70		0.84	0.70		0.43	0.18		0.63	0.46		
Distance (c), In.	2	0.89	0.73	44geri	0.89	0.73		0.53	0.23	신성	0.69	0.49		
9	2 1/4	0.94	0.75	0.70	0.94	0.75	0.70	0,60	0.27	0.18	0.74	0.52	0.46	
Ĕ	2 5/8	1.00	0,78	0.73	1.00	0.78	0.73	0.72	0.33	0.23	0.82	0.56	0.49	
lste	3		0.82	0.75		0.82	0.75	0.84	0.39	0.27	0.90	0.60	0.52	
l a	3 1/2		0.86	0.78		D.86	0.78	1.00	0.47	0.33	1.00	0.65	0.56	
Ēd	4		0.91	0.82		0.91	0.82		0.55	0.39		0.71	0.60	
(S)	5 1/16		1.00	0.89		1.00	0.89		0.72	0.52		0.82	0.69	
- juj	5 1/2			0,92			0.92		0.79	0.57		0.87	0.72	
Spacing (s)/Edge	6			0.95			0.95		0.87	0.63		0.92	0.76	
	6 3/4			1.00			1.00		1.00	0.72		1.00	0.82	
	8									0.87			0.92	
	9									1.00			1.00	

c = Actual edge distance h_{ef} = Actual embedment

Edge Distance Adjustment Factors

- $c_{min} = 0.5 h_{ef}$ Tension and shear
- $c_{cr} = 1.5 h_{ef}$ Tension
 - = 2.0 h_{ef} Shear
- \perp = Perpendicular to edge
- II = Parallel to edge


270 Hilti, Inc. (US) 1-800-879-8000 | www.us.hilti.com | en español 1-800-879-5000 | Hilti (Canada) Corp. 1-800-363-4458 | www.hilti.ca | Product Technical Guide 2008

POMPLER PRIME

Anchor Spacing and Edge Distance Guidelines in Concrete

Сđ

_	L	oad A	djust	ment	Facto	ers foi	· 1/2"	Diam	eter /	Anche	or			
Anc	hor Diameter:					1	/2" dia	meter						
	Adjustment Factor		Spacing Ision/Sh			ge Dista Tension f _{en}		Ś	je Dista hear, f _r toward e	V1	Edge Distance Shear, f _{Rv2} (Il to or away from edge			
Em	ed. Depth (in.)	2-1/4 4-1/		6	2-1/4	4-1/2	6	2-1/4	4-1/2	6	2-1/4	4-1/2	6	
	1	e e e	1963	的時	영영	dd (p.	2003			li E p P				
	1-1/8	0.70		98. H	0.70		089	0.18			0.46			
	1-1/2	0.75	관련	ik ir	0.75	- 1947		0.27			0.52			
	1-3/4	0.78		481. s	0.78			0.33	Liter,		0.56		문문	
	2	0.82			0.82		land e	0.39			0.60			
Ë	2-1/4	0.85	0.70		0.85	0.70		0.45	0.18		0.64	0.46		
(c), in.	2-1/2	0.88	0.72		0.88	0,72		0.51	0.21		0.68	0.48	1.5453	
B	3	0.95	0.75	0.70	0.95	0.75	0.70	0.63	0.27	0.18	0.76	0.52	0.46	
tan	3-3/8	1.00	0.78	0.72	1.00	0.78	0.72	0.72	0.32	0.21	0.82	0.55	0.48	
ä	4		0.82	0.75		0,82	0.75	0.87	0.39	0.27	0.92	0.60	0.52	
Spacing (s)/Edge Distance	4-1/2		0.85	0.78		0,85	0.78	1.00	0.45	0.32	1.00	0.64	0.55	
12	5		0.88	0.80		0,88	0.80		0.51	0.36		0.68	0.58	
p	6		0.95	0.85		0,95	0.85		0.63	0.45		0.76	0.64	
aci	6-3/4		1.00	0.89		1.00	0.89		0.72	0.52		0.82	0.69	
<u>ନ</u>	7			0.90			0.90		0.75	0.54		0.84	0.70	
	8			0.95			0.95		0.87	0.63		0.92	0.76	
	9			1.00			1.00		1.00	0.72		1.00	0.82	
	10									0.81			0.88	
	11									0.90			0.94	
	12									1.00			1.00	

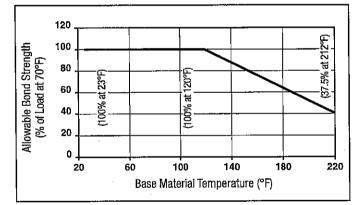
						L	oad A	djust	ment	Facto	rs foi	5/8"	and	3/4" [Diame	eter A	nchor	S							
Ar	nchor Diameter					5/8	3" diam	neter					_	3/4" diameter											
	Adjustment Factor		Spacing nsion/Sh f _A		Edge Distance Tension f _{au}		5	Edge Distance Shear, f _{avi} (⊥ toward edge)		i s	ge Dista Shear, f _P away fro		Spacing Tension/Shear f _A		Edge Distance Tension f _{RM}			5	ge Dista Shear, f _R toward e	15	Edge Distance Shear, f _{Rv2} (Il to or away from edg		V2		
Em	bed. Depth (in.)	2-7/8	5-5/8	7-1/2	2-7/8	5-5/8	7-1/2	2-7/8	5-5/8	7-1/2	2-7/8	5-5/8	7-1/2	3-3/8	6-3/4	9	3-3/8	6-3/4	9	3-3/8	6-3/4	9	3-3/8	6-3/4	9
	1-7/16	0.70			0.70	sa.		0.18			0.46			動信用	14.11	464	성실과	19.65		nië er			9965 M		91.3 ×
	1-11/16	0.73			0.73		9.01	0.23		işa :	0.49	0-8		0.70			0.70	19473		0.18			0.46		<u>i i i i i</u>
	2	0.76			0.76	dit e		0.29			0.53	201		0.73			0.73			0.23			0.49		
	2-13/16	0.84	0.70		0.84	0,70		0.44	0.18	1.4.4.	0.63	0.46	1.24	0.80			0.80		144	0.36	-99998 1999		0.58		
	3-3/8	0.90	0.73		0.90	0.73		0.54	0.23		0.70				0.70		0.85	0.70	34435	0.45			0.64	0.46	
. ≓	3-3/4	0.94	0.75	0.70	0.94	0.75	0.70	0.61	0.27	0.18	0.75	0.52	0.46	0.88	0.72		0.88	0.72			0.21		0.68		
0	4-5/16	1.00	0.78	0.72	1.00	0.78	0.72	0.72	0.32	0,22	0.82	0.56	0.49	0.93	0.74	254	0.93	0,74		0.60	0.26			0.51	
	4-1/2		0.79	0.73		0.79	0.73	0.76	0,34	0.23	0.84	0.57	0.50	0.95	0.75	0.70	0.95		0.70	0.63	0.27	0.18	0.76	0.52	0.46
Distance	5-1/16		0.82	0.75		0,82	0.75	0.86	0,40	0,27	0.91	0.60	0.52	1.00	0.78	0.72	1.00	0,78	0.72	0.72	0.32	0.21	0.82	0.55	0.48
	5-5/8		0.85	0.78		0.85	0.78	0.97	0.45	0.32	0.98	0.64	0.55		0.80	0.74	 	0.80	0.74		0.36	0.25		0.58	0.51
(s)/Edge	5-3/4		0.86	0.78		0.86	0.78	1.00	0.46	0.32	1.00	0.65	0.56		0.81	0.74		0.81	0.74	0.83	0.37	0.26	0.89	0.59	0.51
<u>چ</u> ا	6-3/4		0.91	0.82		0,91	0.82		0.56	0.40		0.71	0.60		0.85	0.78	I	0.85	0.78	1.00	0.45	0.32	1.00	0.64	0.55
) p	8-7/16		1.00	0.89		1.00	0.89		0.72	0.52		0.82	0.69		0.93	0.83		0.93	0.83		0.59	0.42		0.73	0.62
Spacing	10-1/8			0.96			0.96		0.88	0.64		0.93	0.77		1.00	0.89		1.00	0.89		0.72	0.52		0.82	0.69
2	11-1/4			1.00			1.00		1.00	0.72		1.00	0.82			0.93		 	0.93		0.81	0.59		0.88	0.73
1	12								i	0.77			0.86			0.95			0.95		0,87	0,63		0,92	0.76
	13-1/2									0.88			0.93			1,00		<u> </u>	1.00		1.00	0,72		1.00	0.82
1	15									1.00			1.00									0.81		<u> </u>	0.88
1	16							1													ļ	0,87		L	0.92
	18																					1.00			1.00

Anchor Spacing and Edge Distance Guidelines in Concrete

	L	oad A	djust	ment	Facto	ers foi	· 7/8"	Diam	ieter /	Ancho	or		
An	chor Diameter:					7	/8º dia	meter	•				
	Adjustment Factor					Edge Distance Tension, f _{eu}			je Dista hear, f _R toward e	v1	Edge Distance Shear, f _{Rvz} (I) to or away from edge)		
Emit	ed. Depth (in.)	4	7-7/8	10-1/2	4	7-7/8	10-1/2	4	7-7/8	10-1/2	4	7-7/8	10-1/2
	2	0.70	080		0.70			0.18			0.46		Figur
1	2-1/2	0.74		2.4	0,74			0.25			0.51		
	3	0.78			0.78			0.32	걸려	ante	0.55		
	3-1/2	0.81		1000	0.81	N had		0.38	drujć		0.60		
	3-15/16	0.85	0.70	-9458	0.85	0.70		0.44	0.18	1496	0.63	0.46	는 같은
Ē	4-1/2	0.89	0.72		0.89	0.72		0.52	0.22	11 (J. 1	0.69	0.49	
Spacing (s)/Edge Distance (c), in	5	0.93	0.74		0.93	0.74		0.59	0.25		0.73	0.51	949
9	5-1/4	0.94	0.75	0.70	0.94	0.75	0.70	0,62	0.27	0.18	0,75	0.52	0.46
tan	6	1.00	0.78	0.72	1.00	0.78	0.72	0.72	0.32	0.22	0.82	0.55	0.49
Dis	6-1/2		0.80	0.74		0.80	0.74	0.79	0.36	0.24	0.87	0.58	0.50
B	7		0.82	0.75		0,82	0.75	0.86	0.39	0.27	0.91	0.60	0.52
R.	8		0.85	0.78		0.85	0.78	1.00	0.46	0.32	1.00	0.65	0.55
j j	10		0.93	0.84		0.93	0.84		0.60	0.42		0.74	0.62
aci	11-13/16		1.00	0.89		1.00	0.89		0.72	0.52		0.82	0.69
ାର୍ଚ୍ଚ	12			0.89			0.89		0.73	0.53		0,83	0.69
	14			0.95			0.95		0.87	0.63		0.92	0.76
1	15-3/4			1.00			1.00		1.00	0.72		1.00	0.82
	18									0.84			0.90
	20									0.94			0.97
	21									1.00			1.00

Note: Tables apply for listed embedment depths. Reduction factors for other embedment depths must be calculated using equations below.
Spacing Tension/Shear
$s_{min} = 0.5 h_{ef}$, $s_{cr} = 1.5 h_{ef}$
$f_A = 0.3 (s/h_{el}) + 0.55$
for s _{cr} >s>s _{min}
Edge Distance Tension
$c_{min} = 0.5 h_{ef}, c_{cr} = 1.5 h_{ef}$
$f_{RN} = 0.3(c/h_{ef}) + 0.55$
for c _{cr} >c>c _{min}
Edge Distance Shear (⊥ toward edge)
$c_{min} = 0.5 \ h_{ef}, \ c_{cr} = 2.0 \ h_{ef}$
$f_{RV1} = 0.54(c/h_{ef}) - 0.09$
for c _{cr} >c>c _{min}
Edge Distance Shear (II to or away from edge)
$c_{min} = 0.5 h_{ef}, c_{cr} = 2.0 h_{ef}$
$f_{RV2} = 0.36(c/h_{ef}) + 0.28$
for c _{cr} >c>c _{min}

						La	oad A	djust	ment	Facto	rs for	' 1" a	nd 1-	1/4" [Diame	ter A	nchor	'S							
Anc	hor Diameter					1"	diame	ter										1-1/4º	diame	ter					
	Adjustment Factor		Spacing nsion/Sh f _A			ge Dista Tension f _{ail}		S	ge Distar ihear, f _{Ri} loward eo	"	S	ge Dista Shear, f _R away fro	V2		Spacing tsion/Sh f _A		Edg	je Dista Tension f _{av}		3	ge Distar Shear, f _{RV} toward er	"	Ś	ge Distar Shear, f _{Rv} away froi	vz
Emb	ed. Depth (in.)	4-1/2	9	12	4-1/2	9	12	4-1/2	9	12	4-1/2	9	12	5-5/8	11-1/4	15	5-5/8	11-1/4	15	5-5/8	11-1/4	15	5-5/8	11-1/4	15
	2-1/4	0.70			0.70	1999 (J.)	1616	0.18		(Na	0.46				900	h-9.2		di di di		11	1990	1999		실망네	
	2-3/4	0.73		민준이	0.73	동물		0.24		uede -	0.50			0,70		Mine P	0.70	lei si	<u>, 29</u>	0.18		2002	0.46	rte e	
	3	0.75			0.75			0.27			0.52	1		0.71	i de la composición d	이십	0.71			0.20			0.47		
	4	0.82			0.82			0.39		é ar	0.60	1360		0.76	명한 영습		0.76			0.29			0.54		
	4-1/2	0.85	0.70		0.85	0.70		0.45	0.18	999	0.64	0.46		0.79		ista:	0.79		8,8994	0.34			0.57		
1	5	0.88	0.72		0.88	0.72		0.51	0.21		0.68	0.48		0.82			0.82			0.39			0.60		
	5-5/8	0.93	0.74		0,93	0.74		0.59	0,25	14,00	0.73	0.51		0.85	0.70		0.85	0.70		0.45	0.18		0.64	0.46	<u> 6852</u>
. <u> </u>	6	0.95	0.75	0.70	0,95	0.75	0.70	0.63	0.27	0,18	0.76	0.52	0.46	0.87	0.71		0.87	0.71		0.49	0.20	신하는	0.66	0.47	8.00
0	6-3/4	1.00	0.78	0.72	1.00	0.78	0.72	0.72	0.32	0.21	0.82	0.55	0.48	0.91	0.73		0.91	0.73	취리네	0.56	0.23		0.71	0,50	332
	7-1/2		0.80	0.74		0,80	0.74	0.81	0.36	0.25	0.88	0.58	0.51	0.95	0.75	0.70	0,95	0.75	0.70	0.63	0.27	0.18	0.76	0.52	0.46
Distance	8-1/4		0.83	0.76		0,83	0.76	0.90	0.41	0.28	0.94	0.61	0.53	0.99	0.77	0.72	0.99	0,77	0.72	0.70	0.31	0.21	0.81	0.54	0.48
õ	9		0.85	0.78		0.85	0.78	1.00	0.45	0.32	1.00	0.64	0.55	·	0.79	0.73		0.79	0.73	0.77	0.34	0.23	0.86	0.57	0.50
g	10		0.88	0.80	L	0.88	0.80		0.51	0.36		0.68	0.58		0.82	0.75		0.82	0.75	0.87	0.39	0.27	0.92	0.60	0.52
(s)/Edge	11		0.92	0.83		0,92	0.83		0.57	0.41		0.72	0.61		0.84	0.77	1	0,84	0.77	1.00	0.44	0.31	0.98	0.63	0.54
DG.	12		0.95	0.85		0.95	0.85		0.63	0.45		0,76	0.64		0.87	0.79		0.87	0.79		0.49	0.34		0.66	0.57
Spacing	13-1/2		1.00	0.89		1.00	0.89		0.72	0.52		0.82	0.69		0.91	0.82		0.91	0.82		0.56	0.40		0.71	0.60
S	14			0.90			0.90		0.75	0.54		0,84	0.70		0.92	0.83		0.92	0.83		0.58	0.41		0.73	0.62
	16-7/8			0.97			0.97		0.92	0.67		0.96	0,79		1.00	0.89	<u> </u>	1.00	0.89		0.72	0.52		0.82	0.69
	18			<u> 1.00 </u>			1.00	<u> </u>	1.00	0.72		1.00	0.82			0.91	<u> </u>		0.91		0,77	0.56		0.86	0.71
	20						<u> </u>			0.81			0,88			0.95			0.95		0.87	0.63		0.92	0.76
	22-1/2							<u> </u>		0.92			0,96			1.00			1.00		1.00	0,72		1.00	0.82
	24								<u> </u>	1.00			1.00						İ		<u> </u>	0,77		\vdash	0,86
1	27																				ļ	0,88		\vdash	0.93
	30]																		1.00			1.00


272 Hilti, Inc. (US) 1-800-879-8000 | www.us.hilti.com | en español 1-800-879-5000 | Hilti (Canada) Corp. 1-800-363-4458 | www.hilti.ca | Product Technical Guide 2008

HIT-RE 500 Epoxy Adhesive Anchoring System 4.2.7

Resistance of HIT-RE 500 to Chemicals

			Not
Chemical	Chemicals Tested	Resistant	Resistant
Alkalinize	Concrete drilling mud (10%) pH=12.6	+	
(Base material	Concrete drilling mud (10%) pH=13.2	+	
concrete)	Concrete potash solution (10%) pH=14.0	+	
	Acetic acid (10%) concrete was		-
Acids	Nitric acid (10%) L dissolved by acid		-
	Hydrochloric acid (10%) 3 month -		-
	Sulfuric acid (10%)		- 1
	Benzyl alcohol		_
Solvents	Ethanol		-
	Ethyl acetate		-
	Methyl ethyl ketone (MEK)		· -
	Trichlorethylene		- 1
	Xylene (mixture)	+]
	Concrete plasticizer	+	
Chemicals	Diesel oil	+	
used on job sites	Oil	+	
	Petrol	+	
	Oil for form work (forming oil)	+	·
	Salt water	+	
Environmental	de-mineralized water	+	
Chemicals	salt spraying test	+	
	S02	+	
	Environment / Weather	+	

Influence of Temperature on Bond Strength

Note: Test procedure involves the concrete being held at the elevated temperature for 24 hours then removing it from the controlled environment and testing to failure.

Long term creep test in accordance with AC58 is available; please contact Hilti Technical Services.

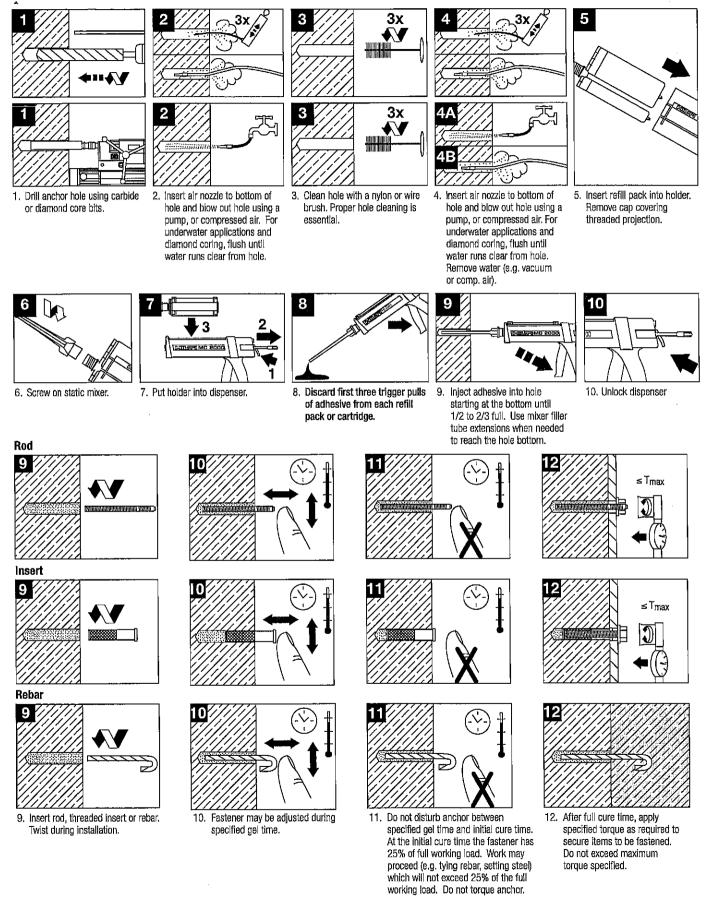
Samples of the HIT-RE 500 resin were immersed in the various chemical compounds for up to one year. At the end of the test period, the samples were analyzed. Any samples showing no visible damage and having less than a 25% reduction in bending (flexural) strength were classified as **"Resistant."** Samples that were heavily damaged or destroyed were classified as **"Not Resistant."**

Note: In actual use, the majority of the resin is encased in the base material, leaving very little surface area exposed.

Full Cure Time Table1 (100% of working load)

Base Materia	Approx.	
°F	0°	Full Curing Time
23	-5	72 hours
32	0	50 hours
50	10	24 hours
68	20	12 hours
86	30	8 hours
104	40	4 hours

Initial Cure Time Table1 (25% of working load)


Base Material	Approx.			
°F	°C	Initial Cure Time		
23	5	36 hours		
32	0	25 hours		
50	10	12 hours		
68	20	6 hours		
86	30	4 hours		
104	40	2 hours		

Gel Time Table1 (Approximate)

Base Materia	Base Material Temperature				
۴	°C	Gel Time			
23	5	4 hours			
32	0	3 hours			
50	10	2 hours			
68	20	30 minutes			
86	30	20 minutes			
104	40	12 minutes			

 Minimum product temperature must be maintained above 41°F (5°C) prior/during Installation.

4.2.7.4 Installation Instructions

274 Hilti, Inc. (US) 1-800-879-8000 | www.us.hilti.com | en español 1-800-879-5000 | Hilti (Canada) Corp. 1-800-363-4458 | www.hilti.ca | Product Technical Guide 2008

HIT-RE 500 Epoxy Adhesive Anchoring System 4.2.7

HIT HIT-RE 500 Volume Charts

Threaded Rod Installation

Rod Diameter (in.)	Drill Bit ¹ Diameter (in.)	Adhesive Volume Required per Inch of embedment (in ³)
1/4	5/16	0.055
3/8	7/16	0.095
1/2	9/16	0.133
5/8	3/4	0.261
3/4	7/8	0.326
7/8	1	0.391
1	1-1/8	0.478
1-1/4	1-3/8	0.626

Rebar Installation

Rod Diameter (in.)	Drill Bit ¹ Diameter (in.)	Adhesive Volume Required per Inch of embedment (in ³)
#3 or 3/8	1/2	0.110
#4 or 1/2	5/8	0.146
#5 or 5/8	3/4	0.176
#6 or 3/4	7/8	0.218
#7 or 7/8	1	0.252
#8 or 1	1-1/8	0.299
#9 or 1-1/8	1-3/8	0.601
#10 or 1-1/4	1-1/2	0.659
#11 or 1-3/8	1-3/4	1.037

cartridge is 81.8 in³ (1340 ml).

 #10 or 1-1/4
 1-1/2
 0.639

 #11 or 1-3/8
 1-3/4
 1.037

 NOTE:
 Useable volume of HIT-RE 500 refill cartridge is 16.5 in³ (270 m!).

 Useable volume of HIT-RE 500 medium refill cartridge is 26.9 in³ (440 ml).

 Useable volume of HIT-RE 500 jumbo refill

Metric Rebar Installation (Canada Only)

Bar Diameter	Drill Bit ¹ Diameter (in.)	Adhesive Volume Required per Inch of embedment (in ³)
10M	5/8	0.186
15M	3/4	0.170
20M	1	0.388
25M	1-1/8	0.289
30M	1-3/8	0.481
35M	1-3/4	0.996

EXAMPLE: Determine approximate fastenings for 5/8" rod embedded 10" deep.

10 x 0.261 = 2.61 in³ of adhesive per anchor 16.5 ÷ 2.61 = 6 fastenings per small cartridge 81.8 ÷ 2.61 = 31 fastenings per jumbo cartridge

1 Rebar diameter may vary. Use smallest drill bit which will accommodate rebar.

4.2.7.5 Ordering Information

HIT-RE 500 Refill Pack

HIT-RE 500 Medium Cartridge

HIT-RE 500 Jumbo Cartridge

HIT Adhesives

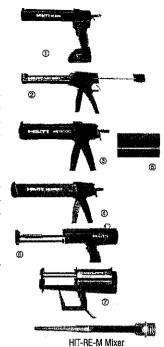
Item No.	Description	
340225	HIT-RE 500 11.1 oz (330 ml)	
	Includes (1) Refill Pack and (1) Mixer with filler tube	
369251	HIT-RE 500 MC 11.1 oz (330 ml)	
	Includes (25) Refill Packs and (25) Mixers with filler tube	
369110	HIT-RE 500 Medium 16.9 oz (500 ml)	
	Includes (20) Refill Packs and (20) Mixers with filler tube	
373958	HIT-RE 500 Jumbo 47.3 oz (1400 ml)	
	Includes (4) Jumbo Refill Packs and (4) Mixers	

Oty/pkg

4.2.7 HIT-RE 500 Epoxy Adhesive Anchoring System

Dispensers

Battery Powered


ltem No.	Ordering designation	
3245363	ED3500 2.0 Ah kit	Ð
Manual		
Item No.	Ordering designation	
371291	MD 1000 Manual Dispenser for HIT-ICE	0
229154	MD 2000 dispenser — includes foil pack holder	3
338853	MD 2500 Manual Dispenser	@
229170	Refill Holder Replacement for MD2000, ED 3500 or P-3000HY dispensers	6

Pneumatic Dispenser with 1/4" internally threaded compressed air coupling

ltem No.	Ordering designation	
354180	P-3500 dispenser (for foil packs)	6
373959	HIT-P8000D pneumatic dispenser (for jumbo cartridges)	0
373960	Jumbo pack holder replacement for P8000D	

Mixers and Filler Tubes

ltem No.	Ordering designation
337111	HIT-RE-M static mixer (suitable for foil pack and jumbo cartridges)

HIT-RE 500 Epoxy Adhesive Anchoring System 4.2.7

Threaded Rods

3

HAS Rods 5.8				HAS Super A1	93, B7 High Streng	th Rods	HAS-R Ro	ds 304 Stainless	Steel	HAS-R Rods 316 Stainless Steel		
ltem No. (Box)	Master Carton (MC)	Description (in.)	Oty Box/MC	Item No.	Description	Qty Box	ltem No.	Description	Oty Box	ltem No.	Description	Qty Box
385417	3432178	3/8 x 3	10/360									
385418	3432179	3/8 x 4-3/8	10/240									
385419	3432180	3/8 x 5-1/8	20/240	68657	3/8x5-1/8	10	385462	3/8x5-1/8	10	3024335	3/8x5-1/8	1
385420	3432181	3/8-8	10/160				385463	3/8 x 8	10			
385421	3432182	3/8 x 12	10/90									
385422	3432183	1/2 x 3-1/8	10/240									
385423	3432184	1/2 x 4-1/2	10/160									
385424	3432185	1/2 x 6-1/2	20/160	68658	1/2x6-1/2	10	385464	1/2x6-1/2	10	3024336	1/2x6-1/2	1
385425	3432239	1/2 x 8	10/120				385465	1/2x8	1			
385426	3432186	1/2 x 10	10/120	· · · · · ·			385466	1/2x10	1			
										3024337	1/2x11	1
385427	3432187	1/2 x 12	10/80								1	
385428	3432188	5/8 x 8	20/80	333783	5/8x7-5/8	10	385467	5/8x7-5/8	10	333781	5/8x7-5/8	10
							385468	5/8x10	1			
385429	3432189	5/8 x 9	10/60							3024338	5/8x9	1
385430	3432190	5/8 x 12	10/60							3024339	5/8x12	1
385431	3432191	5/8 x 17	10/40									
385432	3432052	3/4 x 10	10/40	68660	3/4x9-5/8	5	385469	3/4x9-5/8	5	3024340	3/4x9-5/8	1
385433	3432163	3/4 x 11	10/30								1	
385434	3432164	3/4 x 12	10/30				385470	3/4x12	1			
385435	3432165	3/4 x 14	10/30	3006083	3/4 x 14	5	385471	3/4x14	1			
000,00	0.01.00	<u> </u>					385472	3/4x16	1			·
385436	3432166	3/4 x 17	10/20									
385437	3432167	3/4 x 19	10/20								1	1
385438	3432168	3/4 x 21	10/20								1	1
385439	3432169	3/4 x 25	10/20									
385440	3432170	7/8 x 10	10/20	68661	7/8x10 (HDG) ¹	5	385473	7/8x10	1			
				3006077	7/8x12 (HDG)1	5					1	
385441	3432171	7/8 x 13	10/20	45259	7/8x16 (HDG)1	5					·	
385442	3432172	1 x 12	4/16	68662	1x12	5	385474	1x12	1	3024341	1x12	4/16
385443	3432173	1 x 14	2/16	3006079	1x14	5			<u> </u>		<u> </u>	1
385444	3432174	1 x 16	2/12	3006080	1x16	5					1	<u>†</u>
385445	3432175	1 x 20	2/12	3006081	1x21	5	t				1	<u> </u>
385446	3432176	1-1/4 x 16	4/8	333779	1-1/4x16	4				• • •	1	1
385447	3432177	1-1/4 x 22	4/8	1		•						1
	1			3006082	1-1/4x23	5						1

1 Hot dipped galvanized (7/8" rod only). Coating thickness 2 mils (50.8 µm).

|--|

HIS Internally Threaded Inserts

HIS Item No.	HIS-R Item No.	Description	Useable Thread Length (in.)	Oty Box
258020	258029	3/8x4-1/4	1	10
258021	258030	1/2x5	1-3/16	5
258022	258031	5/8x6-5/8	1-1/2	5
258023	258032	3/4x8-1/4	2	5

Hilti, Inc. (US) 1-800-879-8000 | www.us.hilti.com | en español 1-800-879-5000 | Hilti (Canada) Corp. 1-800-363-4458 | www.hilti.ca | Product Technical Guide 2008 277

In The United Sate	25	In Canada	
PAYMENT TERMS:	Net 30 days from date of invoice. Customer agrees to pay all costs incurred by Hilti in collecting any delinquent amounts, including attorney's fees.	PAYMENT TERMS:	Net 30 days from date of invoice. Customer agrees to pay all costs incurre by Hilti in collecting delinquent amounts, any, including reasonable attorney's fees
FREIGHT:	All sales are F.O.B. Destination with transportation allowed via Hilti designated mode. Delivery dates are estimates only. Additional charges for expedited shipments, special handling requirements, and orders below certain dollar amounts shall be the responsibility of Customer. Fuel surcharges may apply depending on market conditions.	FREIGHT:	Sales are F.O.B. Destination Point with transportation allowed via Hilti designate mode. Additional charges may apply for expedited delivery, special handling requirements, and order under certain limits. A fuel surcharge may apply
CREDIT:	All orders sold on credit are subject to Credit Department approval.		depending on market conditions.
RETURN POLICY:	Products must be in saleable condition to qualify for return. Saleable condition is defined as unused items in original undamaged packaging and unbroken quantities and in as-new	CREDIT:	All orders sold on credit are subject to Credit Department approval.
	condition. All returns are subject to Hilti inspection and acceptance, and a \$125 restocking charge if returned more		Product may be returned prepaid (unless otherwise authorized) to Hilti provided:
	than 90 days after invoice date. Proof of purchase is required for all returned materials. Special orders products and discontinued items are not eligible for return credit. Dated materials are only returnable in case quantity, and within 30 days after invoice date.		 i) it is returned by the original purchaser ii) it is not dated product returned more than 30 days after the original delivery date
WARRANTY:	Hilti warrants that for a period of 12 months from the date it sells a product it will, at its sole option and discretion, refund the purchase		iii) it is not discontinued, clearance or special order product
	price, repair, or replace such product if it contains a defect in material or workmanship. Absence of Hilti's receipt of notification of any such defect within this 12-month period shall constitute a		iv) it is unused, in original packaging and in unbroken quantities.
	waiver of all claims with regard to such product. THE FOREGOING WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY		Hitti will inspect product and, if the abov requirements are satisfied, will credit to customer the original purchase price. A 15% restocking fee may apply.
ACCEPTANCE OF ORDER:	AND FITNESS FOR A PARTICULAR PURPOSE. Hitl shall in no event be liable for, and Customer hereby agrees to indemnify Hitl against all claims related to special, direct, indirect, incidental, consequential, or any other damages arising out of or related to the sale, use, or inability to use the product. Acceptance is limited to the express terms contained herein, and	WARRANTY:	Other than the manufacturer's published warranty, no warranties or conditions, express or implied, written or oral, statutory or otherwise are implied. Any a all conditions and warranties implied by law or by the Sale of Goods Act or any similar statutes of any Province are here
	terms are subject to change by Hilti without notice. Additional or different terms proposed by Customer are deemed material and are objected to and rejected, but such rejection shall not operate as a	TITLE TO PRODUCT:	expressly waived. Title to product remains with Hilti until th
	rejection of the offer unless it contains variances in the terms of the description, quantity, price or delivery schedule of the goods.	PRICES:	total purchase price of product is paid. Customer agrees to pay Hilti prices set
DOMESTIC ORIGIN:	Orders are not deemed "accepted" by Hilti unless and until it ships the associated items. Any non-domestic Hilti product will be so identified on shipping		on invoice. Customer agrees to pay tax as indicated on invoice unless Hilti receives acceptable exemption certificates.
	documents and invoices for customers who properly identify themselves as a federal government entity. All other customers may obtain such information by written request to Hilti, Inc., Contract Compliance, P.O. Box 21148, Tulsa, Oklahoma 74121. Hilti's Quality Department personnel are the only individuals authorized to warrant the country of origin of Hilti products.		Customer agrees to use product at owr risk and to indemnify Hilti against all liabilities, including legal fees, to third parties arising out of the use or possession thereof. Hilti shall in no ever
BUSINESS SIZE:	Hilti is a large business.		be liable for special, incidental or consequential damages.
PRICES:	Prices are those stated on the order, and unless otherwise noted are based on purchasing all items on the order — pricing for individual products may vary for purchases of different quantities or item combinations. Hilti does not maintain most favored customer records, makes no representation with respect to same, and rejects any price warranty terms proposed by Customer. Hilti's published	CHANGES:	Hiti sales personnel are not authorized modify these Terms and Conditions or modify Customer's credit terms. Terms subject to change by Hilti with reasonal notice to Customer.
	net price list is subject to change without notice.	CASH SALES:	Payment in full is due prior to goods be released.
CONSENT TO JURISDICTION:	All transactions made pursuant hereto shall be deemed to have been made and entered into in Tulsa, Oklahoma. Any and all disputes arising directly or indirectly from such transactions shall be resolved in the courts of the County of Tulsa, State of Oklahoma, to the exclusion of any other court, and any resulting judgment may be enforced by any court having jurisdiction of such an action. All transactions shall be governed by and construed in accordance with the laws of the State of Oklahoma.	QUOTATIONS:	All terms and conditions apply once customer agrees to purchase product. Quotations on special promotion produ are only valid until end of promotion period.
INDEMNIFICATION:	Customer hereby agrees to indemnify Hilti for any costs, including attorney's fees, incurred by Hilti as a result, in whole or in part, of any violation by Customer of any Federal, State or Local statute or regulation, or of any nationally accepted standard. It shall be Customer's sole responsibility to comply with all applicable laws and regulations regarding the handling,use, transportation, or disposal of products upon taking possession of same.		
AUTHORIZATION:	HILTI LEGAL DEPARTMENT PERSONNEL ARE THE ONLY INDIVIDUALS AUTHORIZED TO MODIFY THESE TERMS AND CONDITIONS, WARRANT PRODUCT SUITABILITY FOR SPECIFIC APPLICATIONS, OR EXECUTE CUSTOMER DOCUMENTS, AND ANY SUCH ACTION IS NULL AND VOID UNLESS IN WRITTEN FORM SIGNED BY SUCH INDIVIDUAL.		

Hilti, Inc. (US) 1-800-879-8000 | www.us.hilti.com | en español 1-800-879-5000 | Hilti (Canada) Corp. 1-800-363-4458 | www.ca.hilti.com | Product Technical Guide 2008

February 10, 1986

Tuttle Aluminum and Bronze Company 120 Shadow Lawn Drive Noblesville, Indiana 46060

ATTN: Mr. Doug Waugh

Draver CO Destin, Fl Garv IN Gaithersburg MD Harrisburg, PA Hintsville AL Lowester KY Lowester KY Rotegs NG Satisbury MD Satisbury MD Satisbury MD Satisbury DO

Affiliates: Alexandria VA Norfolx VA

RE: Load Testing of Aluminum Hand Rail Structure - TABCO 2500 Tuttle Aluminum and Bronze Company Noblesville, Indiana ATEC Job No. 21-62016

Gentlemen:

Submitted herewith are results of load testing of an aluminum hand rail structure at the referenced site. This testing was performed on February 7, 1986 on the railing configuration noted below.

Three independent loads were applied to the rail structure. (See attached sketch of the rail structure) The loads were applied horizontally at a midspan, horizontally at a post and vertically at a midspan. The load was applied by a hydraulic jack attached to a fork lift. A calibrated proving ring was attached to the rail at loading locations for measurement of load. The loads were then applied by jacking the pump against the proving ring until the desired load was reached.

Deflection readings were made at maximum loading (200#) and then again after release of load to determine any permanent deflection. This was measured as deflection of the top rail horizontally (for horizontal loading) and the top rail vertically (for vertical loading).

The following is the construction description of the TABCO 2500 - Mechanical Connections railing system:

Consulted Gentechnical Environmental & Materials Engineers

Corporate Office: Indianapors, IN

Offices:

Atlanta GA Baltimore, MD Birminghain, AL Calumet Catv, IL Chicago IL Cincinnati OH Dallas TX Dayton OH

57

February 10, 1986 Tuttle Aluminum & Bronze Page 2

• [], • •

TABCO 2500 CONSTRUCTION

Aluminum rail was constructed of 1-1/2" (Sch 40) aluminum pipe, top, intermediate, and post. All pipe to pipe connections were mechanically attached with fittings and rivets. The posts were welded to 3/8" X 2-1/2" x 6" aluminum base plates and mounted to a concrete floor with two (2) 3/8" x 2-3/4" stainless steel TRUBOLTS.

We appreciate the opportunity to be of service to you on this project. If you have any questions, please give me a call at this office.

Very truly yours;

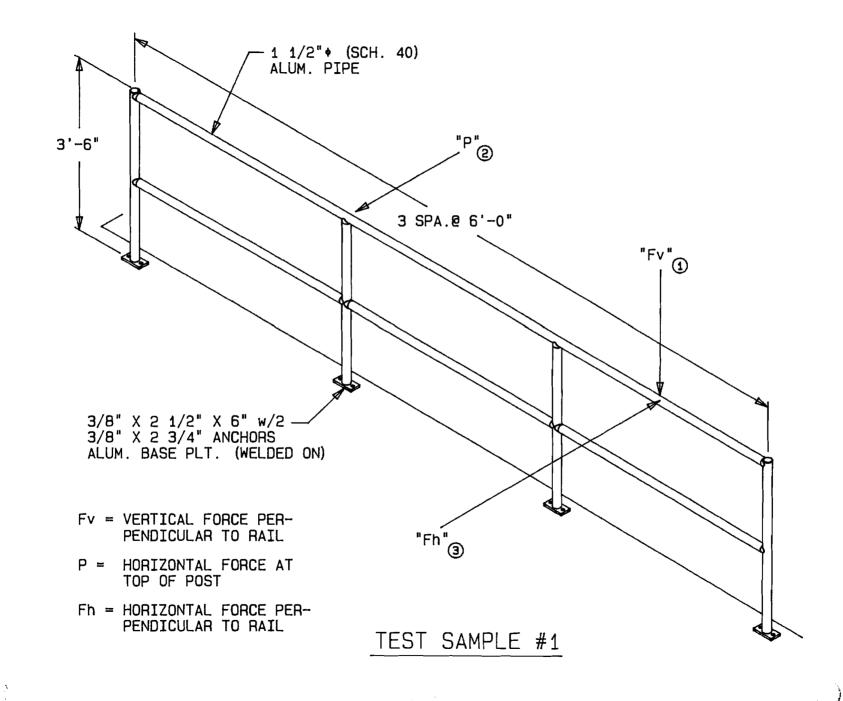
ATEC ASSOCIATES, INC.

_ -0 Kiondo 1/Miliano

Thomas J. Struewing Project Engineer

TJS/cas

Load Test of Aluminum Railing Tuttle Aluminum and Bronze Company Noblesville, Indiana ATEC Job No. 21-62016


	TABCO 2500 - Mechanical Deflection	<u>Connections</u> <u>Permanent Set *</u>
Horizontal load Midspan = 200# (Fh)	at 1-9/16"	1/16"
Vertical Load at Nidspan = 200# (Fv)	0.127"	0.00"
Horizontal Load Post = 200# (P)	at 1-5/16"	0 "

* Deflection after release of load

•

(

C

.

5

ROCKY MOUNTAIN RAILINGS

Re: Alloy Temper for Rocky Mountain Railings, Inc. Aluminum Pipe

Subject: Increased Yield Strength and Anodizing

As of 01/01/2007, Rocky Mountain Railings, Inc. has changed the use of alloy 6063-T6, 1-1/2" Sch. 40 pipe to the use of Aluminum Alloy 6105-T5, The reasons for the change is as follows:

- 1). 6105-T5 has an ultimate minimum tensile strength of 38 KSI, and 6063-T6 has 22 KSI (See Alcoa Conformance Chart) This alloy meets or exceeds OSHA and UBC loading requirements.
- 2). Alloy 6105-T5 is also equivalent to alloy 6061-T6 in terms of tensile and yield strength. Alloy 6061-T6 is also a commonly specified alloy due to its superior strength. However the anodizing finish of 6061-T6 does not match Rocky Mountain Railings, Inc. standard clear anodize of our fittings 6105-T5 is a near perfect match in finish, Therefore a more aesthetic appearance.

Although Rocky Mountain Railings, Inc. has endured cost impact for the use of alloy 6105-T5, We have not passed this cost to our customers. We feel that the increased strength of alloy and the appearance of the finish have helped in the submittal process and a feeling of satisfaction, knowing that we are supplying a quality product to our customer.

If you have any questions, Please call at (303)-432-0003

Alcoa Engineered Products

Understanding Extruded Aluminum Alloys

Among Alcoa Engineered Products' structural 6XXX series alloys, 6005 and 6105 are medium strength alloys that are very similar to alloy 6061 except they contain higher amounts of silicon. These alloys are used in designs that require moderate strength, but are generally not recommended for applications where the structure may be susceptible to impact or overloading.

When bending is required, the naturally aged -T1 temper is preferred. However, due to the excess silicon content, properties may increase more rapidly with room temperature aging than typically experienced with 6063 and 6061 alloys. In comparison to 6061, alloys 6005 and 6105 are easier to extrude and are less quench sensitive, allowing them to be used for more complex shapes. Alloys 6005 and 6105, when produced to a -T5 temper, have the same minimum tensile and yield strength as 6061-T6. In comparison to 6063, alloys 6005 and 6105 in -T5 tempers have better machinability and strength properties than 6063-T6.

. .

Alloys 6005 and 6105 can also be welded or brazed using various commercial methods (caution: direct contact with dissimilar materials can cause galvanic corrosion). The heat from welding or brazing can reduce strength in the weld region. Consult the Material Safety Data Sheet (MSDS) for proper safety and handling precautions when using 6005 and 6105 alloys.

These alloys also offer good finishing characteristics and respond well to common anodizing methods such as clear, clear and color dve and hardcoat.

Typical applications for alloys 6005 and 6105 include:

- Automotive connector stock
- Structural members
- Hand rail tubing
- Seamless tubing
 - Ladder structures

6005/6105 Temper Standard Tempers	r Designations and Definitions Standard Temper Definitions*
F	As fabricated. There is no special control over thermal conditions and there are no mechanical property limits.
T1	Cooled from an elevated temperature shaping process and naturally aged. (See Note A.)
	Cooled from an elevated temperature shaping process & artificially aged. (See Note A.)
Alcoa Special Tempers** (For 6005 Alloy only)	Alcoa Special Temper Definitions
T1S14	A maximum formability special temper for product that will be formed within 1 to 2 weeks after shipment. Samples are aged and tested in the -T5 condition to verify heat treat capability.
T5S3	An underaged temper to increase formability at a sacrifice of mechanical properties.
T5511	Same mechanical property limits as -T5. Stretched 1-3% for stress relief.

*For further details of definitions, see Aluminum Association's Aluminum Standards and Data manual and Tempers for Aluminum and Aluminum Alloy Products. Note A: Applies to products that are not cold worked after cooling from an elevated temperature shaping process, or in which the effect of cold work in flattening or straightening may not be recognized in mechanical properties. **Alcoa Special Temper designations are unregistered tempers for reference only and provided for customer use to identify unique processing, material, or end use

application characteristics.

Alloy 6005 Cher		iquìdus	Temp	erature:	1210°F	Solidus Temperatur	Density: 0.097 lb./ in. ³				
Percent Weight			Elements						Others	Others	
	<u>Si</u>	<u>Fe</u>	<u>Cu</u>	<u>Mn</u>	Ma	Cr	<u>Zn</u>	Ii	Each	<u>Total</u>	Aluminum
Minimum	.6		-	_	.40	_				-	
Maximum	.9	.35	.10	.10	.6	.10	.10	.10	.05	.15	Remainder

Alloy 6105 Che	mical	Ana	lysis	i L	iquidus	s Temp	erature:	1200°F	Solidus Temperatu	re: 1110°F	Density: 0.097 lb./ in.
Percent Weight					Elem	ents			Others	Others	
	<u>Si</u>	<u>Fe</u>	<u>Cu</u>	<u>Mn</u>	Mg	<u>Cr</u>	<u>Zn</u>	Ti	Each	Total	Aluminum
Minimum	.6				.45						
Maximum	1.0	.35	.10	.15	.8	.10	.10	.10	.05	.15	Remainder
						Ave	200 00	officiant			

Average Coefficient of Thermal Expansion (68° to 212°F)

6005	13.0 X 10 ⁻⁶ (inch per inch per °F)
6105	13.0 X 10 5 (inch per inch per °F)

Alloy

		cified lion or		Tensile Str	ength (ksi)		Elongation ³ Percent	Typical Thermal	Typical Electrical
Temper		Wall Thickness (inches) ²		ate	Yield (0.2	% offset)	Min, in 2 inch	Conductivity	Conductivity ⁵
	Min.	Max.	Min.	Min. Max.		Max.	67 4D4	at 77°F btu-in./tt²hr°F	(% IACS)
Alloy 6005 S	tandard Ter	npers ¹							
F	A	.11		No Prope	erties Apply			N/A	N/A
 T1		.500	25.0		15.0		16	1250	47
T5		.124	38.0		35.0	-	8	1310	49
T5	,125		38.0		35.0		10	1310	49
Alloy 6105 S	tandard Ter	npers ¹	Charles Marine				Real Providence		
F	A	JI		No Prope	erties Apply			N/A	46
T1		.500	25.0		15.0		16	1220	
T5		.500	38.0		35.0		8	1340	50
Alloy 6005 S	pecial Tem	vers*				iller i Maria			
T1S146		.124	38.0		35.0		8	1250	47
T1S14 ⁶	.125		38.0		35.0	_	10	1250	47
T5S3	All		35.0		30.0		8	N/A	N/A
T55117		.124	38.0		35.0		8	1310	49
T55117	.125		38.0		35.0		10	1310	49

© The mechanical property limits for standard tempers are listed in the Property Limits section of the Aluminum Association's <u>Aluminum Standards and Data</u> manual and <u>Tempers for Aluminum and Aluminum Alloy Products</u>. © The thickness of the cross section from which the tension test specimen is taken determines the applicable mechanical properties. © For materials of such dimensions that a standard test specimen cannot be taken, or for shapes thinner than .062^s, the test for elongation is not required. © D=Specimen diameter. © Minimum, unless stated as typical. © These properties apply to the material after proper artificial aging. No properties apply to shipped product. Por stress-relieved tempers, the characteristics and properties other than those specified may differ somewhat from the corresponding characteristics and properties of material in the basic temper.

*Alcoa Special Temper designations are unregistered tempers for reference only and provided for customer use to identify unique processing, material, or end use application characteristics.

		Formability	Machinability	General Corrosion Resistance	Weldability (Arc with Inert Gas)	Brazeability	Anodizing Response	Typical Conductivity (%IACS)
Alloy	Temper	DCBA	DCBA	DCBA	DCBA	DCBA	DCBA	40 50 60
6005	-T1	N/A	N/A	N/A				
	-T5, T511	N/A	N/A	N/A				
6105	-T1	N/A	N/A	N/A				
	-T5	N/A	N/A	N/A				
6061	-T4							
	-T6		Terrista in					
6063	-T4						20	
	-T6				Constant Containing			
6262	-T6						21	

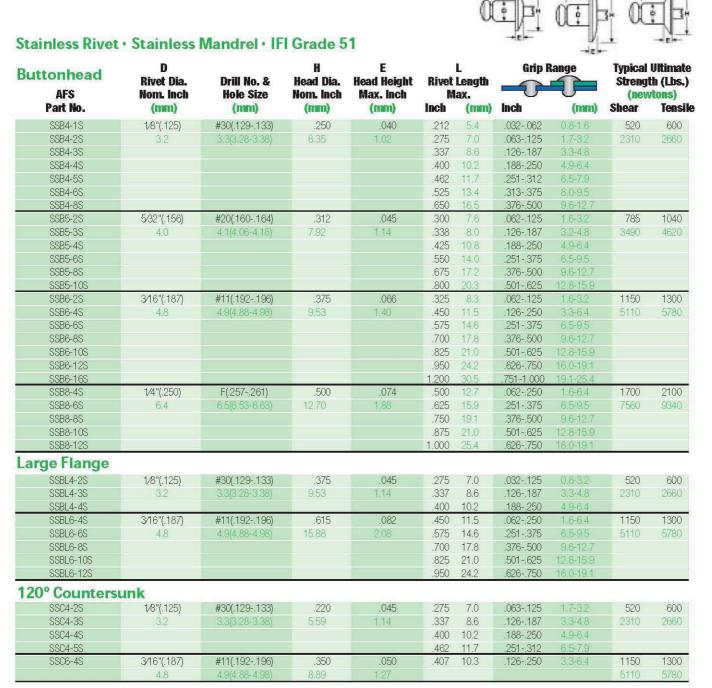
In Rating: A=Excellent B=Good C=Fair D=Poor For further details of explanation of ratings for, see Aluminum Association's <u>Aluminum Standards and Data</u> manual.

Alcoa Distribution and Industrial Products

53 Pottsville Street Cressona, PA 17929 Phone: 800-233-3165 FAX: 800-252-4646

317-594-5609

1.1.5


an an in the second stands and strong and an statements eral information general information wrought products I VARIOUS TEMPERATURES® TYPICAL TENSILE PROPERTIES AT VARIOUS TEMPERATURES® Table 3 (continued) Table 3 (continued) Tensilo Strength, kal Elon Bion-pation In 2 In. Tentilo Strength, Alloy and Temper Lion ∧ itoy anvi Tensilo Steengin. sellan islin., nerceni Elea-Temp., Alloy Temp Tenip. sation in Z in Tomper Temper in 2 in., Percent Ultimate Yichit Ultimate Vield® Ullimate Derconi (ICfuen Yichico 25 6063-76 -320 5436-0 -320 7075-16, -320 ~112 ·T651 75 -112 Ľ 22 20 31 75 30 36 50 60 23 22 20 17 ΞŞ <u> | 8</u> 70 31 300 400 500 30 55 2i 9 6,5 1,5 2,5 2 9 6.5 4.6 7.5 4.2 4,5 3,3 2,3 70 70 700 ii G YNAD С 2 x, 66= 20,000 50 49 48 6151-TG 17 17 300360 500 7075-173, ю 79 6053-T6, -T651 67 14 13 13 13 27 80 44 44 12 5 3 3 3 -112 -17351 ~112 300 400 24 12 4.7 2 75 212 300 63 58 27 13 6.5 4.6 _ 75 43 28 14 6.5 5 4 15 20 60C 16 11 55 65 70 500 600 700 30 50 43 35 õã 110 700 6061-T6, <u>47</u> 45 -T651 18 17 30 27 25 31 G2G2-T651 --- 320 42 7079-TG. -TG51 75 -320 38 31 15 2.7 1.8 79 77 78 73 -- 112 47 45 42 34 H 42 34 19 7.5 4.6 3 -112 68 75 212 300 40 38 31 300 400 75 212 14 14 18 37 60 28 13 8.5 20 28 40 85 95 20 Ξō sõõ 400 500 6Ö 700 6262-179 62 JĞ -320 [4 7.5 5,5 tõõ -112 56 55 58 53 38 15 8.**3** 4.6 5 700 C 49 000* - 18 75 212 300 400 500 600 4,3 JŪ 6063-T1 YIEL 36 26 24 22 22 20 18 20 37 45 80 ×. 66= 24,400 04 37 14 13 14 15 6.5 3,5 2,5 2 33 18 20 40 75 80 34 48 13 6 2.7 1.8 - * 3.2 2.3 70Ö O Lowest strengths during 10,000 hours of exposure at testing temperature under no load; stress applied at 5,000 psi/min to yield strength and then it train rate for 0.03 in./m. min to failure. Under some conditions of temperature and then, the application of heat will givernely affect cartain alloys for use of cleaned temperature, the general stats office of Aluminum Computer of the various should be consulted. $1\overline{10}$ $1\overline{30}$ 6063-TS -320 22 22 24 21 22 18 118 118 119 110 110 -112 DOffact equals 0.2 parcent. <u>28</u> <u>27</u> 24 OPreferred alloy designation is 6101. 20 9 45 23 23 5.5 2.5 2 400 500 600 700 40 75 YIELD x. 66 = 13,860 DS Z1000 ALUMINUM COMPANY OF AMERICA ALCOA ALURINUM HANDDOOK

p.7

47.50

Marson

Stainless Rivets

KLIK-FAST RIVETS conform to IFI-114 (inch) and IFI-505 (metric). Millimeters (mm) and newtons (N) are in green.

Meet our stainless lineup

AND X (SAVI (DN CC)

COVERAGE RATES

	Dry Mils (Microns)	Wet Mils (Microns)	Sq Ft/Gal (m²/Gal)
Suggested	10.0 (255)	15.5 (395)	103 (9.5)
Minimum	8.0 (205)	12.5 (320)	128 (11.9)
Maximum	12.0 (305)	19.0 (480)	86 (7.9)

Allow for overspray and surface irregularities. Film thickness is rounded to the nearest 0.5 mil or 5 microns. Application of coating below minimum or above maximum recommended dry film thicknesses may adversely affect coating performance.

MIXING Stir thoroughly, making sure no pigment remains on the bottom of the can.

THINNING Use No. 2 Thinner. For air or airless spray, brush or roller, thin up to 5% or ¼ pint (190 mL) per gallon if necessary. Drum heaters or inline heaters may be necessary to maintain application viscosity during cool weather.

SURFACE TEMPERATURE

Minimum 40°F (4°C) Maximum 135°F (57°C) The surface should be dry and at least 5°F (3°C) above the dew point.

APPLICATION EQUIPMENT

Air Spray

Gun	Fluid Tip	Air Cap	Air Hose ID	Mat'l Hose ID	Atomizing Pressure	Pot Pressure
DeVilbiss MBC or JGA	E	704		1/2" or 3/4" (12.7 or 19 mm)	50 psi (3.4 bar)	20 psi (1.4 bar)

Low temperatures or longer hoses require higher pot pressure.

Airless Spray

Tip Orifice	Atomizing Pressure	Mat'l Hose ID	Manifold Filter
0.017"-0.031"	2400-3000 psi	3/8" or 1/2"	60 mesh
(430-785 microns)	(165-207 bar)	(9.5 or 12.7 mm)	(250 microns)

Use appropriate tip/atomizing pressure for equipment, applicator technique and weather conditions. **Roller:** Use high quality synthetic nap covers. Short nap for smooth surfaces. Long nap for rough surfaces. **Note:** Two or more coats may be required to obtain recommended film thicknesses.

Brush: Use high quality nylon or synthetic bristle brushes. **Note:** Two or more coats may be required to obtain recommended film thicknesses.

CLEANUP

Flush and clean all equipment immediately after use with the recommended thinner or xylol.

WARRANTY & LIMITATION OF SELLER'S LIABILITY: Tnemec Company, Inc. warrants only that its coalings represented herein meet the formulation standards of Tnemec Company, Inc.

THE WARRANTY DESCRIBED IN THE ABOVE PARAGRAPH SHALL BE IN LIEU OF ANY OTHER WARRANTY, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. INERE ARE NO WARRANTIES THAT EXTEND BEYOND THE DESCRIPTION ON THE FACE HERBED. The byer's sole and exclusive temedy against Taemec Company, Inc. shall be for replacement of the product in the event a defective condition of the product should be found to exist and the exclusive remedy shall not have foiled its essential purpose as long as Tnemec is willing to provide comparable replacement product to the buyer. NO OTHER EMEMOY (INCLUDING, BUT NOT LIMITED TO, INCIDENTIAL OR CONSEQUENTIAL DAMAGES FOR LOST PROFITS, LOST SALES, INIURY TO PERSON OR PROFERINT, ENVENDMENTAL INJURIES OR ANY OTHER MERCEDULATION THE PARE HERBEDY (INCLUDING, BUT NOT LIMITED TO, WARMENTAL INJURIES OR ANY OTHER MERCEDULATIAL USS) SHALL BE AVAILABLE TO THE BUYER, Technical and application information here in is provided for the purpose of establishing a general profile of the coating and proper coating application procedures. Test performance results were obtained in a controlled environment and Inemec Company makes no cleim that these tests or any other tests, accurately represent ell environments. As application, environmental and design factors can vary significantly, due care should be excrusive in the selection and use of the coating. FOR INDUSTRIAL USE ONLY. 222003310-00

TUTTLE ALUMINUM 120 SHADLOWLAWN DRIVE

FISHERS IN 46038

COAL TAR CTG. H.B. TNEMEC

s. 3

2003310-00		PAGE 3
	FOR COATINGS, RESINS, AND RELATED MATERIALS (APPROVED BY THE U.S. DEPARTMENT OF LABOR AS 'ESSENTIALLLY SIMILAR' TO FORM OSHA-20) (MEETS REQUIREMENTS OF CFR 29 PART 1910.1200, OSHA'S HAZARD COMMUNICATION STANDARD) NP(CA 1-84
	SECTION 1 - MANUFACTURER AND PRODUCT INFORMATION	ng man man ang ang ang ang ang ang ang ang ang a
PRODUCT PRODUCT TRADE N FORMULA MSDS PREP	PRODUCT IDENTIFICATION: ID	С. ТБ
TELEPHOI EMERGEN(RER IDENTIFICATION: TNEMEC COMPANY, INC 123 WEST 23RD AVENU NORTH KANSAS CITY, 816-474-3400 CY TELEPHONE 816-474-1425	MO. 64116-3064
	SECTION 2 - HAZARDOUS INGREDIENTS	
CAS# 148 TALC (NO 2 PCT BY W	ASBESTOS FIBERS/RESPIRABLE DUST)	
2 CAS# 772 BARIUM SUI PCT BY W	27-43-7 LFATE (TOTAL DUST)	
REFINED CO PCT BY WY	996-93-2 OAL TAR PITCH (CONTAINS PPAH'S) T: 34.4860 LIMIT: TVL/TWA: 0000.20 MG/M3 EL/TWA: 0000.20 MG/M3	
CAS# 108		
PCT BY WI EXPOSURE I ACGIG 7 OSHA PE OSHA ST	T: 5.6690 VAPOR PRESSURE: 22.000 MMHG @ 68F LIMIT: TVL/TWA: 0050.00 PPM EL/TWA: 0100.00 PPM TEL: 0150.00 PPM	4
ETHYL BENZ	U-41-4	
CAS# 133 DIMETHYLBE PCT BY WI	30-20-7 ENZENE F: 11.0730 VAPOR PRESSURE: 5.100 MMHG @ 68F	
مله مله مله مله عله مله مله عله عله عله	EL/TWA: 0100.00 PPM TEL: 0150.00 PPM product contains one or more reported carcinogens on s which are noted NTP, IARC, or OSHA-Z in the other	*****

TNEMEC COMPANY, INC. MATERIAL SAFETY DATA SHEET

F046-0465 5G COAL TAR CTG. H.B. TNEMEC SECTION 4 - FIRST AID MEASURES -----EYE CONTACT: Flush immediately with large amounts of clean water under low pressure for at least 15 minutes. Consult a physician. SKIN CONTACT: Wash affected area with soap and water. Remove contaminated clothing. Dispose of or launder accordingly. Consult a physician if skin irritation persists. INHALATION: Remove affected individual to fresh air. Treat symptomatically. If breathing is difficult, administer oxygen. If breathing has stopped give artificial respiration. Consult a physician. INGESTION: Drink 1 or 2 glasses of water to dilute. Do not induce vomiting. Consul a physician or poison control center IMMEDIATELY. Treat symptomatically. NOTE TO PHYSICIAN: Consult SECTION 5 - FIRE AND EXPLOSION HAZARD DATA Higher - -N/A EXTINGUISHING MEDIA: Foam, carbon dioxide, and dry chemical. FIRE-FIGHTING PROCEDURES AND EQUIPMENTS: Keep away from heat, open flames, sparks, and areas where static charge may be generated. Do not apply to hot surfaces due to possible fire and explosion risk. For closed containers, pressure build-up and possible explosion might occur due to extreme heat exposure. Solvent vapors are heavier than air and may travel considerable distance to a source of ignition and flash back. Water may be used to cool unruptured containers. Wear self-contain-ed breathing apparatus with a full facepiece operated in pressure-demand or other positive pressure mode to prevent inhalation of hazardous decomposition products. Use appropriate extinguishing media to control fire. Water may cause violent frothing if sprayed directly into containers of burning liquid. SECTION 6 - SPILL OR LEAK PROCEDURES CLEAN-UP: Remove all sources of ignition. Spills may be collected with inert, absorbent material for proper disposal. Use non-sparking tools, protective gloves, goggles and clothing, adequate ventilation, avoid the breathing of vapors and use respiratory protective devices. Transfer absorbent material to suitable containers for proper disposal. SECTION 7 - SPECIAL PRECAUTIONS HANDLING AND STORAGE: Store in dry area. Keep closures tight and upright to prevent leakage. Do not store in high temperature areas or near fire or open flame. Refer to product data sheet for recommended storage temperatures. SPECIAL COMMENTS: Prevent prolonged breathing of airborne contaminants such as vapor, spray mists, or dusts. Prevent contact with skin and eyes. Do not take internally. Keep out of reach of children. Do not reuse or alter containers without proper industrial cleaning. Do not weld or flame cut empty, uncleaned containers due to potential fire and explosion hazard. Consult product data sheet for proper application instructions.

TNEMEC COMPANY, INC. MATERIAL SAFETY DATA SHEET F046-0465 5G COAL TAR CTG. H.B. TNEMEC -SECTION 12 - ECOLOGICAL INFORMATION ECOTOXICOLOGICAL INFORMATION: SECTION 13 - DISPOSAL CONSIDERATIONS WASTE DISPOSAL: Dispose of in accordance with Federal, state, and local regulations regarding pollution. SECTION 14 - TRANSPORT INFORMATION DOT HAZARD CLASS TRANSPORTATION ASSISTANCE: Contact Tnemec's Traffic department @ (816) 474-3400. -----SECTION 15 - REGULATORY INFORMATION FEDERAL REGULATIONS: This product contains the following toxic chemicals subject to the reporting requirements of Section 313 of the Emergency Planning and Community Right-To-Know Act of 1986 and of 40 CFR 372: TOLUENE CAS# 108-88-3 PCT BY WT: 5.6690 . Nay been done bye been een doer and een aan aan een soo ann soo ann door wee doer doe doe doe doe door bee aan a -ETHYL BENZENE CAS# 100-41-4 PCT BY WT: 2.6770 DIMETHYLBENZENE PCT BY WT: 11.0730 CAS# 1330-20-7 ------STATE REGULATIONS: SECTION 16 - OTHER INFORMATION Kevin Settles 01/18/2001 02/23/1997 MSDS Prepared for . . . TUTTLE ALUMINUM 120 SHADLOWLAWN DRIVE FISHERS 46038 TN MSDS Last Prepared : 04/27/2000 n: Health- 3* Flammability-Reactivity- 1 HMIS Information: 3 For specific information regarding occupational safety and health standards, please refer to the Code of Federal Regulations, Title 29, Part 1910. Part 1910. To the best of our knowledge, the information contained herein is accurate. However, neither the Tnemec Company or any of its subsidiaries assume any liability whatsoever for the accuracy of completeness of the information contained herein. Final determination of suitability of any material is the sole responsibility of the user. All materials may present inknown health hazards and should be used with caution. Although certain hazards are described herein, we cannot guarantee that these are the only hazards which exist.

22003310-00	PAGE	1
FOR COATINGS, RESINS, AND RELATED MATERIALS (APPROVED BY THE U.S. DEPARTMENT OF LABOR AS 'ESSENTIALLLY SIMILAR' TO FORM OSHA-20)		
(MEETS REQUIREMENTS OF CFR 29 PART 1910.1200, OSHA'S HAZARD COMMUNICATION STANDARD) NPCA 1	-84	
SECTION 1 - MANUFACTURER AND PRODUCT INFORMATION		
CHEMICAL PRODUCT IDENTIFICATION: PRODUCT ID	<u></u>	***
NAME ADDRESS TELEPHONE EMERGENCY TELEPHONE NAME TELEPHONE	64116-3	064
SECTION 2 - HAZARDOUS INGREDIENTS	a and Nink top are usy 4500 area .	
1 CAS# 100-41-4 ETHYL BENZENE		
PCT BY WT: 19.9980 VAPOR PRESSURE: 6.000 MMHG @ 68F		
ACGIG TVL/TWA: 0100.00 PPM ACGIH TLV/STEL: 0125.00 PPM OSHA PEL/TWA: 0100.00 PPM OSHA STEL: 0125.00 PPM		
2 XYLENE CAS# 1330-20-7 DIMETHYLBENZENE PCT BY WT: 80.0020 VAPOR PRESSURE: 5.100 MMHG @ 68F EXPOSURE LIMIT: ACGIG TVL/TWA: 0100.00 PPM ACGIH TLV/STEL: 0150.00 PPM OSHA PEL/TWA: 0100.00 PPM OSHA STEL: 0150.00 PPM		
<pre>************************************</pre>	spected its ******** air *******	* *
SECTION 3 - HEALTH HAZARD INFORMATION		
EMERGENCY OVERVIEW: POTENTIAL HEALTH EFFECTS: EYE: Severe irritation.	• .	•
Redness, tearing, blurred vision. SKIN: Moderate irritation, drying of skin, defatting and possible		· .
INHALATION - OVEREXPOSURE TO SOLVENT VAPORS OR SPRAY MIST: Nasal and respiratory irritation, anesthetic effects, dizziness, possible unconsciousness and asphyxiation, stupor, weakness, fatigue, nausea, and headache. INHALATION - OVEREXPOSURE TO FREE PIGMENT DUST:		. *
INGESTION: Gastrointestinal irritation, nausea, vomiting, diarrhea, death, aspiration into the lungs which can be fatal. CHRONIC EFFECTS:		
NOTICE: Reports have associated repeated and prolonged occupation overexposure to solvents with permanent brain and nervous system damage. Intentional misuse by deliberately concentrating and inhaling the vapors may be harmful or fatal. Based on an International Agency for Research on Cancer (IARC) con		

TNEMEC COMPANY, INC. MATERIAL SAFETY DATA SHEET

F041-0002 5G THINNER CLEAR . - -----SECTION 6 - SPILL OR LEAK PROCEDURES CLEAN-UP: Remove all sources of ignition. Spills may be collected with inert, absorbent material for proper disposal. Use non-sparking tools, protective gloves, goggles and clothing, adequate ventilation, avoid the breathing of vapors and use respiratory protective devices. Transfer absorbent material to suitable containers for proper disposal. - -----SECTION 7 - SPECIAL PRECAUTIONS HANDLING AND STORAGE: Store in dry area. Keep closures tight and upright to prevent leakage. Do not store in high temperature areas or near fire or open flame. Refer to product data sheet for recommended storage temperatures. SPECIAL COMMENTS: Prevent prolonged breathing of airborne contaminants such as vapor, spray mists, or dusts. Prevent contact with skin and eyes. Do not take internally. Keep out of reach of children. Do not reuse or alter containers without proper industrial cleaning. Do not weld or flame cut empty, uncleaned containers due to potential fire and explosion hazard. Consult product data sheet for proper application instructions. SECTION 8 - SAFE HANDLING AND USE INFORMATION HYGIENIC PRACTICES: Wash hands and other contaminated skin areas with warm soap and water before eating. EYE PROTECTION: Use chemical resistant splash type goggles. RESPIRATORY PROTECTION: Respiratory protective devices must be used when engineering and administration controls are not adequate to maintain Threshold Limit Values (TLV) and Permissible Exposure Limits (PEL) of airborne contaminants below the listed values for those hazardous ingredients identified in Section II of this MSDS. Observe OSHA regulations for respirator use (CFR 29, 1910.134) whenever a respirator is used. Particulate, chemical cartridge, air purifying half-mask respirators can be used within certain limitations; consult the respirator manufacturer for specific uses and limitations. Where airborne contaminant concentrations are unknown, the use of a NIOSH/MSHA approved fresh-air supplied respirator is mandatory. OTHER PROTECTION: Use Chemical resistant gloves. Use chemical resistant gloves. Use chemical resistant coveralls or apron to protect against, skin and clothing contamination. Use protective cream where skin contact is likely. VENTILATION: Sufficient ventilation, in volume and pattern, should be provided thr EYE PROTECTION: VENTILATION: Sufficient ventilation, in volume and pattern, should be provided through both local and general exhaust to keep the air contaminant concentration below current applicable OSHA Permissible Exposure Limits (PEL) and ACGIH's Threshold Limit Values (TLV). Appropriate ventilation should be employed to remove hazardous decomposition products formed during welding or flame cutting operations of surfaces coated with this product. Heavier than air solvent vapors should be removed from lower levels of work area due to potential explosion hazard and all ignition sources (non-explosion proof equipment) should be eliminated if flammable mixtures will be encountered. SECTION 9 - PHYSICAL AND CHEMICAL PROPERTIES 6.00 Lower - 275.0 °F Higher - 288.0 °F 7.2000 LB/GL

7.200

9.400 (Ether = 1)

43

TNEMEC COMPANY, INC. MATERIAL SAFETY DATA SHEET

F041-0002 5

***					THINNER CLEAR			
	MSDS	Last Prepared	* * * *		: 04/27/2000	u dente dente dente allant	n and die bes and	
	HMIS	Information: Rea	Health- ctivity-	2 1	Flammability-	3	÷	

For specific information regarding occupational safety and health standards, please refer to the Code of Federal Regulations, Title 29, Part 1910.

Part 1910. To the best of our knowledge, the information contained herein is accurate. However, neither the Tnemec Company or any of its subsidiaries assume any liability whatsoever for the accuracy of completeness of the information contained herein. Final determination of suitability of any material is the sole responsibility of the user. All materials may present unknown health hazards and should be used with caution. Although certain hazards are described herein, we cannot guarantee that these are the only hazards which exist.

ROCKY MOUNTAIN RAILINGS

Basic Cleaning Procedures for Anodic Finishes

Cleaning of light surface soil may be accomplished using the following methods:

- Flush surface with water using moderate pressure to remove soil. If soil is still adhering after drying, a mild detergent may be necessary.
- When mild detergent or soap is necessary, it should be used with brushing (nonmetal) or sponging. The surface must be thoroughly rinsed with clean water after the use of any cleaning agent. It may be necessary to sponge the surface while rinsing, particularly if the cleaner is permitted to dry on the surface. Mild detergents ruled safe for bare hands should be safe for coated aluminum. Stronger detergents should be carefully spot tested and may necessitate the use of rubber gloves, long handled brushes, etc.
- If surface soil still adheres after following the procedures above, cleaning using a palm-sized nylon pad can be employed. Thoroughly wet pad with clean water or a mild detergent. Rub the metal surface in the direction of the metal grain with uniform pressure. After scrubbing, the metal surface should be rinsed thoroughly using clean water to remove all residues. Solvents may be used to remove non-water soluble deposits. Extreme care must be exercised when solvents are used since they may damage organic sealants, gaskets and painted finishes. If solvents are used, rinse the surface completely with clean water.

Cleaning Precautions

- Never use aggressive alkaline or acid cleaners on aluminum finishes. Do not use cleaners containing trisodium phosphate, phosphoric acid, hydrochloric acid, hydrofluoric acid, fluorides, or similar compounds on anodized aluminum surfaces. Always follow the cleaner manufacturer's recommendations as to the proper cleaner and concentration. Test-clean a small area first. Different cleaners should not be mixed.
- It is preferable to clean the metal when shaded. Do not attempt to clean hot, sun-heated surfaces since possible chemical reactions on hot metal surfaces will be highly accelerated and non-uniform. Also, avoid cleaning in freezing temperatures or when metal temperatures are sufficiently cold to cause condensation. Surfaces cleaned under these adverse conditions can become streaked or tainted that they cannot be restored to their original appearance.

References

VOLUNTARY GUIDE SPECIFICATION FOR CLEANING AND MAINTENANCE OF ARCHITECTURAL ANODIZED ALUMINUM, AAMA 609.1 American Architectural Manufacturers Association

RMR 80KD System Calculations Aluminum Railing Design Calculations – R11-10-240

Colorado

Prepared for Rocky Mountain Railings Denver, CO

Engineers Design Approval Stamp:

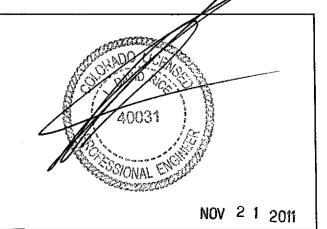
Design Criteria:

Date: 11/21/11

1. Railing live loads per International Building Code 2009:

Guardrails

50 plf uniform load in any direction on top rail 200 pound concentrated load in any direction on top rail 50 pound concentrated load over 1 ft^2 of infill area Concentrated load and uniform loads need not be assumed to act concurrently


Railing deflections per ASTM E985

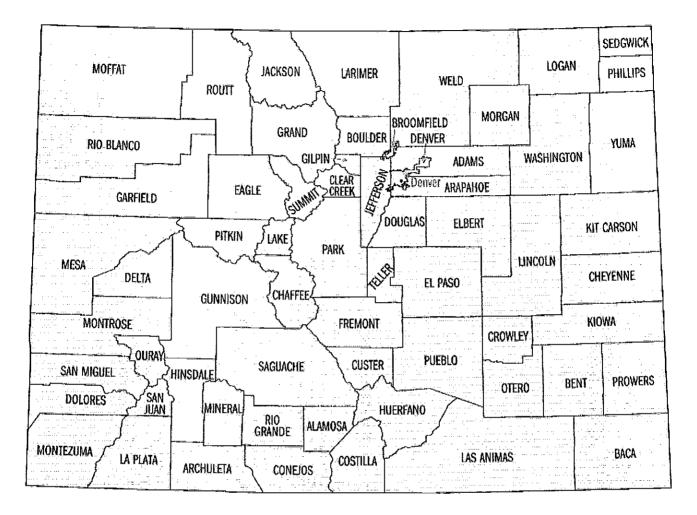
Members designed per Aluminum Association Inc, "Aluminum Design Manual"

- 2. Aluminum member sizes shall be as recommended in the calculation booklet
- 3. Aluminum alloys shall be as recommended in the calculation booklet
- 4. Stainless steel fasteners to be minimum Condition "CW", Fy= 65 ksi
- 5. Aluminum welds to be filler alloy 5356, unless noted otherwise
- 6. Concrete strength is assumed to be F'c= 4,000 psi, normal weight
- 7. Separate dissimilar metals.
- 8. Additional RISA Finite Element Analysis model data available upon request.

This Certification is limited to the structural design of structural components of this handrail or divider system. It does NOT include responsibility for:

- Structural design of misc. hardware (latches, hinges, etc.).
- Structural design of concrete slabs and other masonry units
- Structural design of wood blocking or wood framing
- Structural design of all other anchorage substrates
- The manufacture, assembly, or installation of the system.
- Quantities of materials or dimensional accuracy of drawings

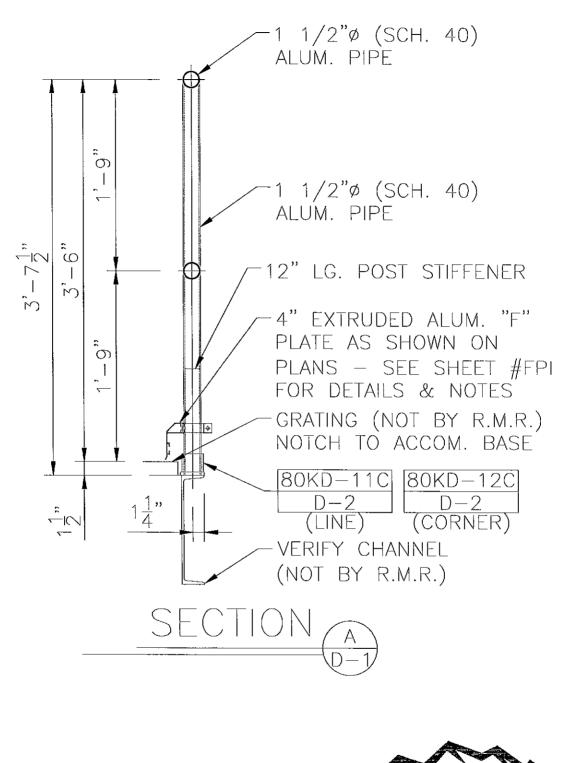
Sheet			· · · · · · · · · · · · · · · · · · ·	Sheet		
Number	Description	Date	Revision	Number	Description	Date
	Project Location & Specs	10/24/11	Kevision	(quinder	Description	
	Guardrail "A"	10/24/11				
	Guardrail "A" Analysis	10/24/11				·
	2-Bolt Base Plate	10/24/11		 		
A2 A3	Corner Base Plate	10/24/11		 		
		2/23/11				
	RISA Data	2/23/11				
A3.2	RISA Data					
B	Guardrail "B"	10/24/11				<u> </u>
	Guardrail "B" Analysis	10/24/11				
	Surface Mount Anchorage	10/24/11				ļ
B3	Hilti Adhesive	10/25/11				
0	Guardrail "C"	10/24/11		· · ·		<u>A</u>
	Guardrail "C" Analysis	10/24/11				1
C2	Side Mount Anchorage	10/24/11			4	
C3	Hilti Adhesive	10/25/11	ļ[
C4	Corner Side Mount Anchorage	10/24/11		J		<u> </u>
C4.1	RISA Data	2/23/11			`	Star 19
	RISA Data	2/23/11			A stand	<u> </u>
C5	Hilti Adhesive	10/25/11				
C6	Side Mount Anchorage	10/24/11				
C7	Hilti Adhesive	10/25/11				
D	Guardrail "D"	10/24/11				Τ
D1-D1B	Guardrail "D" Analysis	10/24/11				
D2	Side Mount Anchorage	10/24/11				
D3	Side Mount Anchorage	10/24/11				
Ë	Guardrail "E"	10/24/11				
E1-E1B	Guardrail "E" Analysis	10/24/11			MAN P	
E2	Side Mount Anchorage	10/24/11				
E3	Side Mount Anchorage	10/24/11		1	(. WA /	
F	Guardrail "F"	10/24/11		, other		T
F1-F1B	Guardrail "F" Analysis	10/24/11		A	X X	
F2	Post Embedment in Grout	10/24/11				
M1	Miscellaneous Connections	10/24/11		Alter A		
M1A	RISA Data	10/25/11			AN I I I I I I I I I I I I I I I I I I I	
M2	Wall Rail Post Bracket	10/24/11				
M2A	RISA Data	2/23/11			· · · · · · · · · · · · · · · · · · ·	
M2B	RISA Data	2/23/11				
	Wall or Grab Rail Analysis	10/24/11				
M4	Grab Rail Bracket Analysis	10/24/11		1		
M5	Wall Rail Bracket Analysis	10/24/11		l f^	1	
M6	Offset Rail/Connections	10/24/11		11		
M7	Wall Moutht End Cap	10/24/11				
M8	2-Bolt Raked Base Plate	10/24/11		1		
M8A	Algor Base Plate Models //	10/24/11		11	<u> </u>	
	Fastener Spec. Sheet	10/24/11		l		1
		10/24/11		┨┠────		
				1	···	
		· · · · ·		┨┠─────		+
<u>an N</u>		9 4	+	┨┠─────	<u>}··−</u> ···	
- <u>~</u>		r.	+	┨┠		+
1000 1000 1000 1000 1000 1000 1000 100	and the second s		. <u>t</u>	J L	<u> </u>	
	S/1/					


Engineers Design Approval Stamp:

This Certification is limited to the structural design of structural components of this handrail or divider system. It does NOT include responsibility for:

- Structural design of misc. hardware (latches, hinges, etc.).
- Structural design of concrete slabs and other masonry units
- Structural design of wood blocking or wood framing
- Structural design of all other anchorage substrates
 The manufacture, assembly, or installation of the s
- The manufacture, assembly, or installation of the system.Quantities of materials or dimensional accuracy of drawings

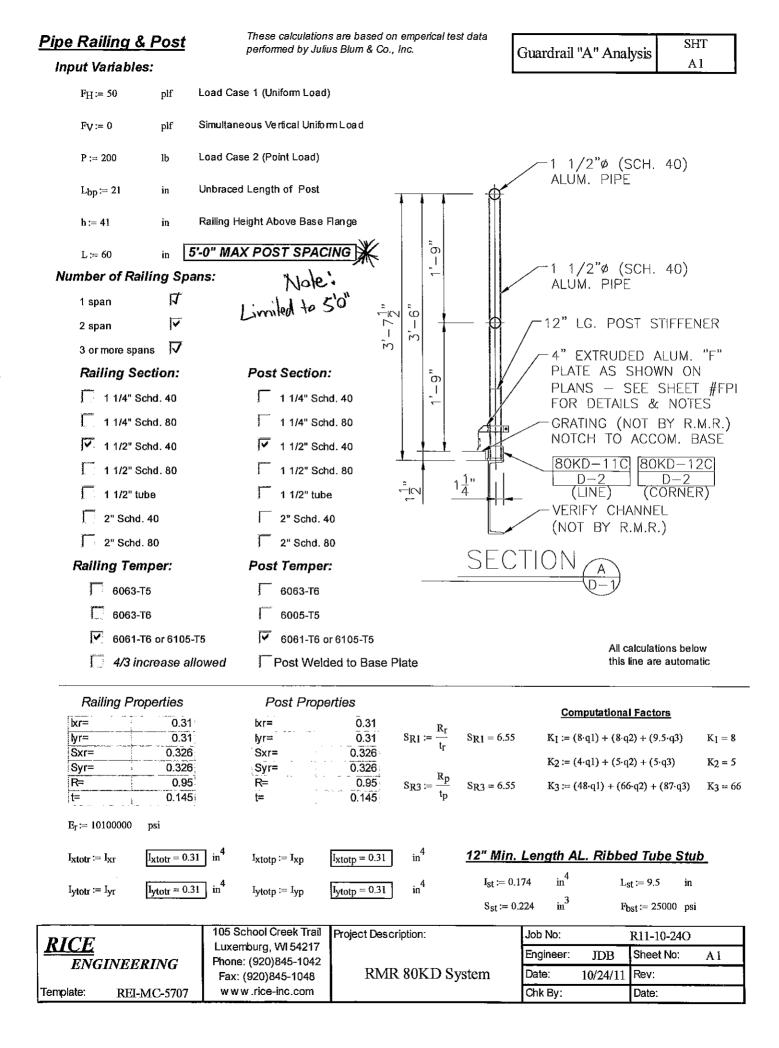
ORADO 9031 SSIONAL ENGLISH NOV 2 1 2011


Project Location &	SHT
Specifications	PL

Project Location: Colorado

- Design Loads per IBC 2009
 - 50 plf uniform load in any direction on top rail
 - 200# concentrated load in any direction on top rail
 - 50# concentrated load applied to 1 square foot of infill

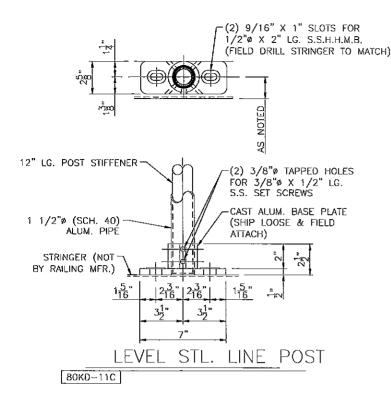
RICE105 School Creek Trail Luxemburg, WI 54217ENGINEERINGLuxemburg, WI 54217Phone: (920)845-1042Fax: (920)845-1042Template:REI-MC-2002w w w .rice-inc.com			Project Description:	Job No: R11-10-24O			
		0,		Engineer:	JDB	Sheet No:	PL
		. ,	RMR 80KD System	Date:	10/24/11	Rev:	
			Chk By:		Date:		



Note: Structural steel, Concrete, CMU and all other anchorage substrates designed by others

ROCKY MOUNTAIN RAILINGS

<u>RICE</u> Engineering		105 School Creek Trail	Project Description:	Job No: R11-10-240			
		Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	Α
		Fax: (920)845-1048	RMR 80KD System	Date:	10/24/1 1	Rev:	
Template:	REI-MC-5707	www.rice-inc.com		Chk By:		Date:	


Railing Analysis:	$W_h := \frac{F_H}{12}$	$W_V := \frac{F_V}{12}$		Guard	rail "A" Analysis	SHT A1 A
Case 1 Uniform Load:				L	l	
$\Delta_{\text{yrl}} \coloneqq \frac{5 \cdot W_{\text{h}} \cdot L^4}{384 \cdot E_{\text{r}} \cdot I_{\text{ytotr}}}$			$\Delta_{yT1} = 0.225$	in	Modeled as a simple spa	n
$\Delta_{\mathbf{xr1}} \coloneqq \frac{5 \cdot \mathbf{W}_{\mathbf{v}} \cdot \mathbf{L}^4}{384 \cdot \mathbf{E}_{\mathbf{r}} \cdot \mathbf{I}_{\mathbf{xtotr}}}$			$\Delta_{\rm Xrl} = 0$	in		
$\Delta_{\text{allr}} \coloneqq \frac{L}{96}$			$\Delta_{allr} = 0.63$	in	Per ASTM Specification	E985
$M_{yrmax} \coloneqq \frac{W_{h} L^2}{K_1}$			M _{yrmax} = 1875	lb•in		
$M_{xrmax} \coloneqq \frac{W_{v}L^2}{K_1}$			M _{X∏Dax} ≃ 0	lb·in		
$\mathbf{f}_{bry1} \coloneqq \frac{\mathbf{M}_{yrmax}}{\mathbf{S}_{yr}}$			f _{bry1} = 5752	psi		
$f_{brx1} := \frac{M_{xrmax}}{S_{xr}}$			$f_{\text{DTX1}}=0$	psi		
Case 2 - Point Load:						
$\Delta_{yr2} := \frac{P \cdot L^3}{K_3 \cdot E_r \cdot I_{ytotr}}$			$\Delta_{y\bar{t}2} = 0.209$	in		
$M_{yrmax2} \coloneqq \frac{P \cdot L}{K_2}$			M _{yrmax2} = 2400	lb∙in		
$f_{bry2} := \frac{M_{yrmax2}}{S_{yr}}$			$f_{bTy2} = 7362$	psi		
$F_{bry} := \begin{cases} (F_{bry1} \cdot 1.33) & \text{if } 1BC \\ F_{bry1} & \text{otherwise} \end{cases}$	2 = 1		F _{bry} = 25000	psi		

Calculation Results:_____

$\operatorname{Int}_{r1} := \left(\frac{f_b}{F}\right)$	$\left(\frac{\text{fbryl}}{\text{ory}}\right) + \left(\frac{\text{fbryl}}{\text{Fbry}}\right)$	$\text{Int}_{r1}=0.23$					
$\operatorname{Int}_{\Gamma 2} := rac{\operatorname{fbr}}{\operatorname{Fbr}}$	/2 y	$Int_{r2} = 0.29$					
$\begin{aligned} \text{RAILS} &:= \begin{array}{l} \text{"OK"} \text{if} \frac{\max\left(\Delta_{yr1}, \Delta_{xr1}, \Delta_{yr2}\right)}{\Delta_{\text{allr}}} \leq 1 \land \left(\frac{f_{\text{bry1}}}{F_{\text{bry}}}\right) + \left(\frac{f_{\text{bry1}}}{F_{\text{bry}}}\right) \leq 1 \land \frac{f_{\text{bry2}}}{F_{\text{bry}}} \leq 1 \end{aligned}$ $\begin{aligned} \text{RAILS} &= \text{"OK"} \\ \text{"FAIL"} \text{otherwise} \end{aligned}$							
DICE		105 School Creek Trail	Project Description:	Job No:	R11-10-24O		
		Luxemburg, WI 54217 Phone: (920)845-1042		Engineer: JDB	Sheet No: A1 A		
		Fax: (920)845-1048	RMR 80KD System	Date: 10/24/11	Rev:		
Template:	emplate: REI-MC-5707 www.rice-inc.com			Chk By:	Date:		

Post Analysis:	$E_p := E_r$	Guardrail	"A" Ana	alysis A1 B
$\Delta_{xp1} := \frac{W_{h} \cdot L \cdot (h - L_{st})^{3}}{3 \cdot E_{p} \cdot (I_{xp})}$		$\Delta_{\rm Xpl} = 0.832$	in	AID
$\Delta_{xp2} \coloneqq \frac{P \cdot 0.85 \cdot (h - L_{st})^3}{3 \cdot E_p \cdot (I_{xp})}$		$\Delta_{xp2} = 0.566$	in	
Max Deflection:				
$\Delta_{\text{tot}} \coloneqq \frac{W_{h} \cdot L \cdot (h - L_{st})^{3}}{3 \cdot E_{p} \cdot I_{Xp}} + \frac{W_{h} \cdot L \cdot \left[h^{3} - (h^{3} - h^{2}) + \frac{W_{h} \cdot L \cdot \left[h^{3} - h^{2}\right]}{3 \cdot \left[(E_{p} \cdot I_{Xp}) + h^{2}\right]} + \frac{W_{h} \cdot L \cdot \left[h^{3} - h^{2}\right]}{3 \cdot \left[(E_{p} \cdot I_{Xp}) + h^{2}\right]}$	$\frac{\mathbf{b} - \mathbf{L}_{st}}{(\mathbf{E}_{p}, \mathbf{I}_{st})]}^{3}$	$\Delta_{\text{tot}} = 1.474$	in	
$\Delta_{a lp} := \frac{h}{12}$		$\Delta_{\text{allp}} = 3.42$	in	Per ASTM E985
Case 1 - Uniform Load:				
$\mathbf{M}_{\mathbf{X}\mathbf{p}} := \left(\mathbf{W}_{\mathbf{h}} \cdot \mathbf{L} \cdot \mathbf{h} \right) + \mathbf{W}_{\mathbf{V}} \cdot \mathbf{L} \cdot \boldsymbol{\Delta}_{\mathbf{tot}}$	$\mathbf{M}_{\mathbf{x}\mathbf{p}\mathbf{m}\mathbf{a}\mathbf{x}} \coloneqq 0.5 \cdot \mathbf{M}_{\mathbf{x}\mathbf{p}} \cdot \mathbf{q}1 + \mathbf{M}_{\mathbf{x}\mathbf{p}} \cdot \mathbf{q}2 + \mathbf{M}_{\mathbf{x}\mathbf{p}} \cdot \mathbf{q}3$	M _{xpmax} = 10250	lb∙in	
$M_{xp2} := W_h \cdot L \cdot \left(h - L_{st}\right) + W_v \cdot L \cdot \Delta_{xp1}$	$M_{xpmax2} \coloneqq 0.5 \cdot M_{xp2} \cdot q1 + M_{xp2}q2 + M_{xp2} \cdot q3$	$M_{xpmax2} = 7875$	ŀb∙in	
Case 2 - Point Load:				
$\mathbf{M}_{\text{xpmax4}} := \mathbf{P} \cdot \left(\mathbf{h} - \mathbf{L}_{\text{st}}\right) \cdot 0.85$		M _{xpmax4} = 5355	lb-in	
$M_{xpmax3} := (P \cdot h \cdot 0.85)$		$M_{xpmax3} = 6970$	lb-in	
Max Post Stress:				
$f_{bpx} \coloneqq \frac{max(M_{xpmax2}, M_{xpmax4})}{S_{xp}}$		f _{bpx} = 24156	psi	
$F_{bpx} := (F_{bpx1} \cdot 1.33) \text{ if } IBC = 1$ $F_{bpx1} \text{ otherwise}$		$F_{bpx} = 25000$	psi	
Max Post/Stub Combined Stre	ss:			
$f_{bpx2} := max(M_{xpmax}, M_{xpmax3}) \cdot \frac{1}{(I_{xp} + I_{xpmax3})}$	xp Ist)·Sxp	$f_{0px2} = 20138$	psi	
Max Stub Stress:		$F_{bpx} = 25000$	psi	
$f_{bst} := max(M_{xpmax}, M_{xpmax}) \cdot \frac{I_{st}}{(I_{xp} + I_{st})}$	\mathbf{s}	f _{bst} = 16451	psi	
Calculation Results:	,	F _{bst} = 25000	psi	
$Int_{p1} := max \left(\frac{f_{bpx}}{F_{bpx}}, \frac{f_{bpx2}}{F_{bpx}}, \frac{f_{bst}}{F_{bst}} \right)$		Int _{p1} = 0.97		
POSTS := $ "OK" \text{ if } Int_{p1} \le 1 \land \frac{max(\Delta)}{"FAIL"}$	$\frac{(xp_1, \Delta_{xp2}, \Delta_{tot})}{\Delta_{allp}} \le 1$	POSTS = "OK"]	

<u>RICE</u> ENGINEERING		105 School Creek Trail	Project Description:	Job No: R11-10-		R11-10-240	-240	
		Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	A1 B	
		Fax: (920)845-1048	RMR 80KD System	Date:	10/24/11	Rev:		
Template:	REI-MC-5707	www.rice-inc.com	1	Chk By:		Date:		

 $V_{b} = 125$

 $T_{b} = 4350$

 $V_{all}=4526$

 $T_{all} = 5680$

 $I_3 = 0.59$

Use (2) - 1/2" Dia. S.S. Thru-Bolts

Condition "CW" - Fy = 65 ksi

lb

lb

lb

1b

Rmax := 250

 $M_{max} := 10250 + R_{max} \cdot 2.5 = 10875$ lb·in

lb

d := 2.5 in (sleeve dia.)

Chk shear on shoe wall:

$\mathbf{P} := \frac{\mathbf{M}_{\max}}{0.85 \cdot (2.375)}$	P = 5387 lb
$f_{\mathbf{V}} := \frac{\left(P + R_{\max}\right)}{2 \cdot (0.315) \cdot (2)}$	f _v = 4474 psi
$F_{V} := \frac{0.57 \cdot (18000)}{1.65}$	F _V = 6218 psi
$I := \frac{f_V}{F_V}$	I = 0.72 Shear Stress "OK"

Separate Dissimilar Metals

Chk Bolts to Steel Stringer:

R_{max} Vb := -

2

 $V_{all} := 0.196.23094$

 $T_{all} := 0.142 \cdot 40000$

 $l_{3} := \left(\frac{V_{b}}{V_{all}}\right)^{2} + \left(\frac{T_{b}}{T_{all}}\right)^{2}$

 $T_b := \frac{M_{max}}{2 \cdot 1.25}$

Chk Aluminum Base Plate:

L1 := 7	in	D1 := 1.3125	in
L2 := 2.625	in	D2 := 1.25	in
t := 0.563	în		
L := Ll - (2	2·D1)	L = 4.38	in
$P := \frac{M_{max}}{d}$		P = 4350	lb
$M_{p1} \coloneqq 0.5$	₽•0.9375	M _{p1} = 2039	in∙lb
$\mathbf{F}_{\mathbf{y}} := \frac{1.3 \cdot (1)}{1.3}$	<u>8000)</u> 65	$F_y = 14182$	psi

Mp1·6 Fy·L2 t_{req1} ≔

 $I_2 := \frac{t_{req1}}{t}$

I2 = 1.02 2% Over OK

 $t_{req1} = 0.573$ in

Use Cast Aluminum Base, as shown 535 casting alloy, Fu= 35 ksi min.

RICE		Project Description:	Job No:		R11-10-240	
ENGINEERING	Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	A2
ENGINEENING	Fax: (920)845-1048	RMR 80KD System	Date:	10/24/11	Rev:	
Template:	www.rice-inc.com		Chk By:		Date:	

÷14	(2) 9/16" X 1" SLOTS FOR 1/2"ø X 2" LG. S.S. S.S.H.H.M.B. (FIELD DRILL STRINGER TO MATCH))
	AS NOTED	
1 1/2"ø (SCH. 40) ALUM. PIPE STRINGER (NOT BY RAILING MFR.) 13"		C
<u>-8</u>	<u> - 26 316 118</u> ∩	
· · · · ·	STL. CORNER POST	
80KD-12C		

$R_{max} \approx 101$	lb	Reactions from RISA Model
$M_{max} := 0$	lb∙in	(Comer Post Modeled as a Pin Connection)
d := 2.5 in (sle	eve dia.)	

Corner Base Plate

SHT

Α3

psi

in

Chk shear on shoe wall:

$P := \frac{M_{max}}{0.85 \cdot (2.375)}$	$\mathbf{P} = 0$ lb
$f_{\mathbf{V}} \coloneqq \frac{\left(P + R_{\max}\right)}{2 \cdot (0.315) \cdot (2)}$	f _v = 80 psi
$F_{V} := \frac{0.57 \cdot (18000)}{1.65}$	F _V = 6218 psi
$I := \frac{f_V}{F_V}$	I = 0.01 Shear Stress "OK"

Separate Dissimilar Metals

 $V_{b} = 50.5$

 $T_{\mathbf{b}} = \mathbf{0}$

 $V_{all} = 4526$

 $T_{all} = 2336$

I3 = 0

Use (2) - 1/2" Dia. S.S. Thru-Bolts

or Drill & Tap - 3/16" Min. Thread Engagement Condition "CW" - Fy = 65 ksi

lb

lb

lb

lb

Chk Bolts to Steel Stringer:

 $v_b \coloneqq \frac{R_{max}}{2}$

 $T_b \coloneqq \frac{M_{max}}{2 \cdot 1.25}$

 $V_{all} := 0.196.23094$

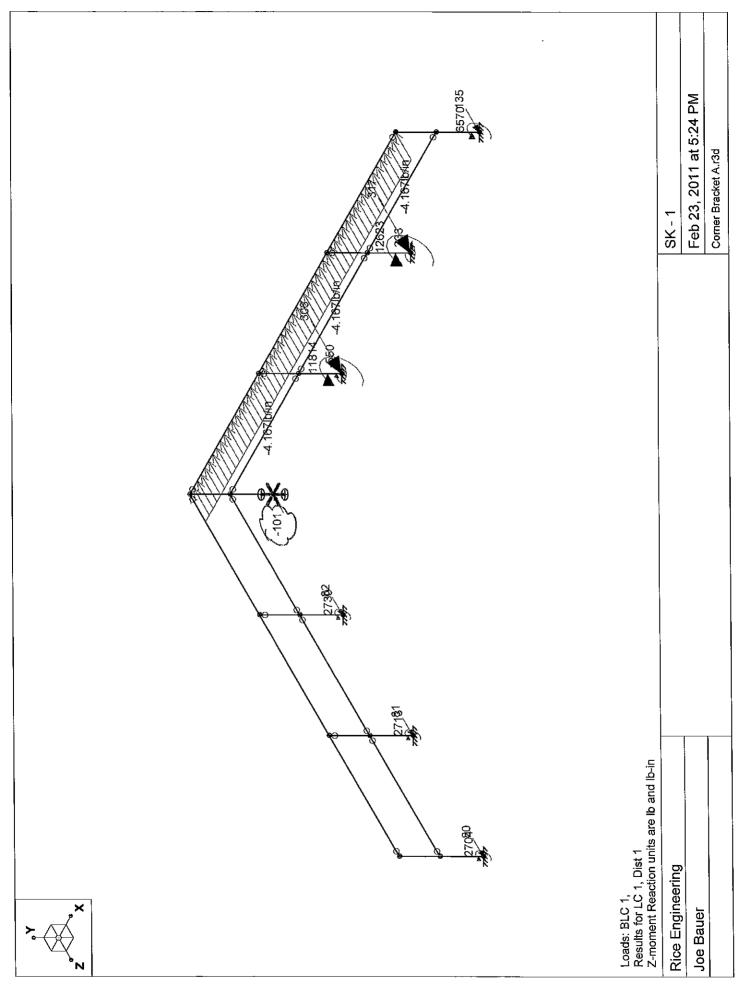
 $T_{all} := 0.142 \cdot 40000 \cdot \frac{0.1875}{0.456}$

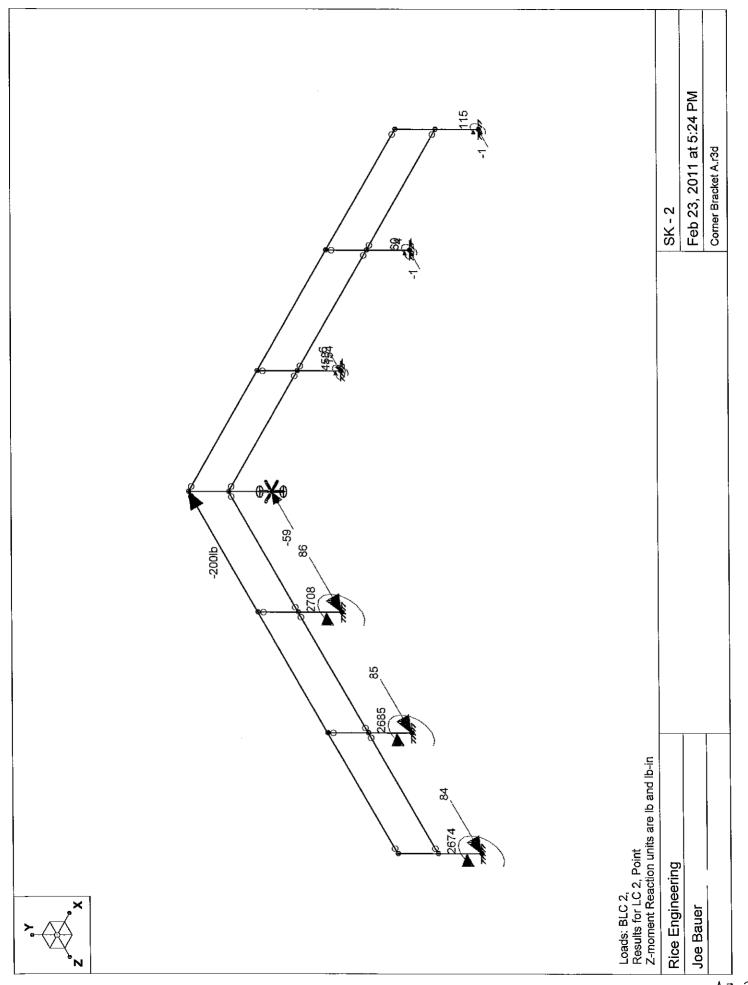
 $I_{3} := \left(\frac{V_{b}}{V_{all}}\right)^{2} + \left(\frac{T_{b}}{T_{all}}\right)^{2}$

Chk Aluminum Base Plate:

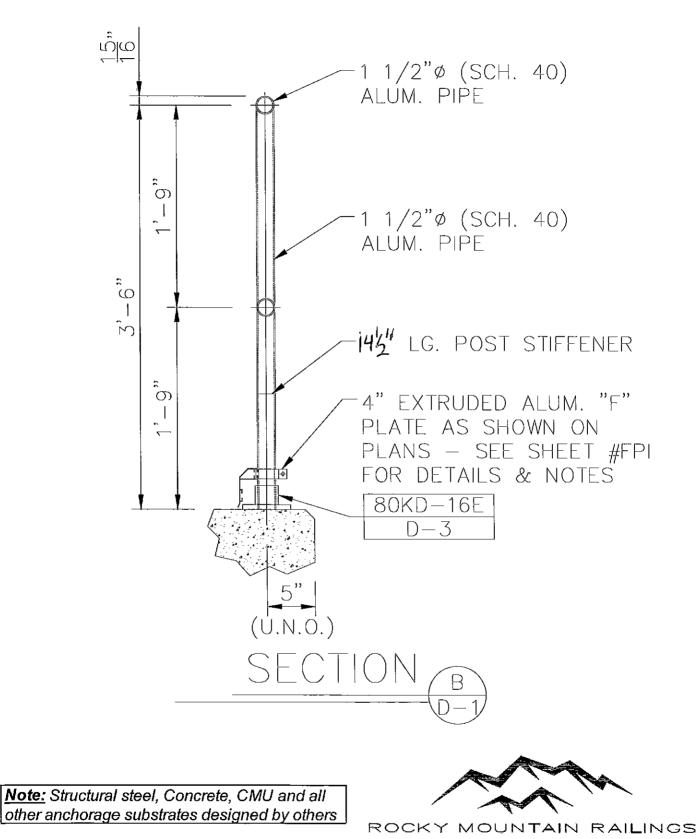
L1 := 7	in	DI :== 1.3125	in
L2:= 2.625	in	D2 := 1.25	in
t := 0.563	in		
L := L1 - (2	·D1)	L = 4.38	in
$P := \frac{M_{max}}{d}$		P = 0	lb
Mp1 := P 0.9	9375	$\mathbf{M}_{p1} = 0$	in·lb

 $F_y := \frac{1.3 \cdot (18000)}{1.65}$ $F_y = 14182$


 $t_{req1} \coloneqq \sqrt{\frac{M_{p1} \cdot 6}{F_{y} \cdot L2}} \qquad \qquad t_{req1} = 0$


 $I_2 := \frac{t_{req1}}{t}$

<u>Use Cast Aluminum Base, as shown</u> 535 casting alloy, Fu= 35 ksi min.


 $I_2 = 0$

RICE	105 School Creek Trail	Project Description:	Job No:		R11-10-24O	
ENGINEERING	Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	A3
ENGINEEKING	Fax: (920)845-1048	RMR 80KD System	Date:	10/24/ 11	Rev:	
Template:	w w w .rice-inc.com		Chk By:		Date:	

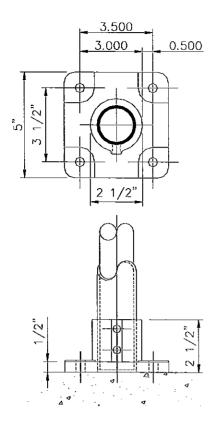
!

105 School Creek Trail Project Description: Job No: R11-10-24O **RICE** Luxemburg, WI 54217 Engineer: Sheet No: JDB в Phone: (920)845-1042 ENGINEERING RMR 80KD System Date: 10/24/11 Rev: Fax: (920)845-1048 www.rice-inc.com Template: **REI-MC-5707** Chk By: Date:

Pipe Railing & Post	These calculation performed by Juli		•		Guardrail "J	B" Analysi	s SH	
Input Variables:				L			B	·
$F_H \coloneqq 50$ plf	Load Case 1 (Uniform Load)							
$F_V := 0$ plf	Simultaneous Vertical Unifor		I					
P := 200 lb	Load Case 2 (Point Load)		2		-1 1/2	2"ø (SCH	. 40)	
$L_{bp} := 19.5$ in	Unbraced Length of Post				ALUM	. PIPE		
h := 39.5 in	Railing Height Above Base F	lange	" 0					
L := 72 in 6	-0" MAX POST SPAC	ING			-1 1/2	2"ø (SCH	. 40)	
Number of Railing Spa	ns:				ALUM	. PIPE	,	
1 span		: 						
2 span		м Г				G. POST	STIFFE	
3 or more spans 🛛 🔽					/ 172 -	G. PUST	SHEFE	NER
Railing Section:	Post Section:	;	ာ ၂		∕-4"EX	TRUDED	ALUM.	"F"
1 1/4" Schd. 40	☐ 1 1/4" Sch	d. 40	÷			E AS SH		
1 1/4" Schd. 80	1 1/4" Sch	d.80				S – SEE DETAILS		
1 1/2" Schd. 40	✓ 1 1/2" Sch	d. 40				D-16E		
1 1/2" Schd. 80	1 1/2" Sch					-3		
1 1/2" tube	1 1/2" tube)		5"				
2" Schd. 40	2" Schd. 4	0		(U.N.C),)			
2" Schd. 80	2" Schd. 8	0		, Sec	, TION			
Railing Temper:	Post Temper					$\left(\begin{array}{c} B \\ D \end{array} \right)$		
6063-T5	Г 6063-т6					\mathbb{Q}^{-}		
6063-T6	6005-T5							
6061-T6 or 6105-T		- 6105 TE						
			1-4-				lations belo are automa	
4/3 increase all	owed Post Weld	eu lo pase P	late					110
Railing Properties	Post Prope	erties			Com	putational Fa	ctors	
kr= 0.31	br=	0.31	$\mathbf{S_{R1}} \coloneqq \frac{\mathbf{R_r}}{\mathbf{t_r}}$	S _{R1} = 6.55				$V_{\ell} = 0$
lyr= 0.31 Sxr= 0.326	lyr= Sxr=	0.31 0.326	$\mathbf{S}_{\mathbf{R}\mathbf{I}} \coloneqq \frac{\mathbf{t}_{\mathbf{r}}}{\mathbf{t}_{\mathbf{r}}}$	9KI = 0'72		q1) + (8·q2) +		K1 = 8
Syr= 0.326 R= 0.95	Syr=	0.326	Rn			q1) + (5·q2) +		K ₂ = 5
R= 0.95 t= 0.145	R= t=	0.95 0.145	$S_{R3} := \frac{R_p}{t_p}$	S _{R3} = 6.55	K3 := (48	3·q1) + (66·q2)) + (87·q3)	K3 = 66
E _r := 10100000 psi	·							
$I_{xtotr} := I_{xr}$ $I_{xtotr} = 0.31$	in $I_{xtotp} := I_{xp}$	$I_{xtotp} = 0.31$	in ⁴	<u>14.5" Mi</u>	<u>n. Length A</u>	L. Ribbed	I Tube St	<u>ub</u>
T T			in ⁴	I _{st} := 0.1	174 in ⁴	L _{st} :=	12 in	
$I_{ytotr} := I_{yr} \qquad I_{ytotr} = 0.31$	in Iytotp ≔ Iyp	Iytotp = 0.31	m	S _{st} := 0.	2		= 25000 psi	
	105 School Creek Trail	Project Descr	iption:		Job No:		1-10-240	
<u>RICE</u>	Luxemburg, WI 54217 Phone: (920)845-1042				Engineer:		eet No:	B1
ENGINEERING	Fax: (920)845-1048	RMR	. 80KD Sy	vstem	Date: 1	10/24/11 Re	v:	
Template: REI-MC-5707	w w w .rice-inc.com				Chk By:	Da	te:	

Ra	niling Analysis:	$W_h := \frac{F_H}{12}$	$W_{\mathbf{v}} \coloneqq \frac{FV}{12}$		Guar	drail "B" Analysis	SHT B1 A
C	ase 1 Uniform Load:						DIA
	$\Delta_{yr1} \coloneqq \frac{5 \cdot W_h \cdot L^4}{384 \cdot E_r \cdot I_{ytotr}}$			$\Delta_{\rm yr1} = 0.466$	in	Modeled as a simple spar	1
	$\Delta_{xr1} \coloneqq \frac{5 \cdot W_v \cdot L^4}{384 \cdot E_r \cdot I_{xtotr}}$			$\Delta_{xr1} = 0$	ìn		
	$\Delta_{\text{allr}} \coloneqq \frac{L}{96}$			$\Delta_{allr} = 0.75$	in	Per ASTM Specification	E985
	$\mathbf{M}_{\mathbf{yrmax}} \coloneqq \frac{\mathbf{W}_{\mathbf{h}} \mathbf{L}^2}{\mathbf{K}_1}$			M _{yrmax} = 2700	lb∙in		
_	$M_{xrmax} \coloneqq \frac{W_{v'}L^2}{K_1}$			M _{XIIIIII} = 0	lb∙in		
>				· · · ·			
	$f_{bry1} := \frac{M_{yrmax}}{S_{yr}}$			fbry1 = 8282	psi		
	$\mathbf{f}_{\mathbf{brx1}} \coloneqq \frac{\mathbf{M}_{\mathbf{xrmax}}}{\mathbf{S}_{\mathbf{xr}}}$			$f_{brx1} = 0$	psi		
~	ase 2 - Point Load:						
	$\Delta_{yr2} \coloneqq \frac{P \cdot L^3}{K_3 \cdot E_r \cdot I_{ytotr}}$			$\Delta_{yr2}=0.361$	in		
	$M_{yrmax2} \coloneqq \frac{P \cdot L}{K_2}$			M _{yrmax2} = 2880	lb∙in		
	$f_{bry2} \coloneqq \frac{M_{yrmax2}}{S_{yr}}$			$f_{bry2} = 8834$	psi		
	$F_{bry} := \begin{cases} (F_{bry1} \cdot 1.33) & \text{if } JBC = \\ F_{bry1} & \text{otherwise} \end{cases}$:1		Fbry = 25000	psi		

Calculation Results:_____


$Int_{r1} \coloneqq \left(\frac{f_{brx1}}{F_{bry}}\right) + \left(\frac{f_{bry1}}{F_{bry}}\right)$	$Int_{r1}=0.33$					
$Int_{r2} := \frac{f_{bry2}}{F_{bry}}$	$Int_{r2} = 0.35$					
$\max(\Delta_{yr1})$	$(\Delta_{xr1}, \Delta_{yr2})$ (fbrx1)	(fbry1) fbry2		1		
RAILS := "OK" if $\frac{\max(\Delta_{yr1})}{2}$ "FAIL" otherwise		$+\left(\frac{F_{bry}}{F_{bry}}\right) \le 1 \land \frac{1}{F_{bry}} \le 1$	RAILS = "OK"			
"FAIL" otherwise	105 School Creek Trail	$\left \frac{F_{bry}}{F_{bry}} \right \le 1 \land \frac{1}{F_{bry}} \le 1$	Job No:]	R11-10-24C)
"FAIL" otherwise	105 School Creek Trail Luxemburg, WI 54217	4		JDB	R11-10-24C Sheet No:) B1 A
	105 School Creek Trail	4	Job No:	JDB 10/24/11		

Post Analysis:	$\mathbf{E}_{\mathbf{p}} \coloneqq \mathbf{E}_{\mathbf{r}}$	Guard	rail "B" An	alysis B1 B
$\Delta_{xp1} \coloneqq \frac{W_{h} \cdot L \cdot (h - L_{st})^{3}}{3 \cdot E_{p} \cdot (I_{xp})}$		$\Delta_{\rm xp1} = 0.664$	in	<u> </u>
$\Delta_{xp2} \coloneqq \frac{P \cdot 0.85 \cdot (h - L_{st})^3}{3 \cdot E_p \cdot (I_{xp})}$		$\Delta_{\rm XP2} = 0.376$	in	
Max Deflection:				
$\Delta_{tot} \coloneqq \frac{W_{h} \cdot L \cdot (h - L_{st})^{3}}{3 \cdot E_{p} \cdot I_{xp}} + \frac{W_{h} \cdot L \cdot \left[h^{3} - (h^{3} - (h^$	$\frac{(\mathbf{L}_{st})^{3}}{(\mathbf{E}_{p}\cdot\mathbf{I}_{st})]}$	$\Delta_{\text{tot}} = 1.5$	in	
$\Delta_{\text{allp}} \coloneqq \frac{\text{h}}{12}$		$\Delta_{\text{allp}} = 3.29$	in	Per ASTM E985
Case 1 - Uniform Load:				
$\mathbf{M}_{\mathbf{x}\mathbf{p}} \coloneqq \left(\mathbf{W}_{\mathbf{h}} \cdot \mathbf{L} \cdot \mathbf{h} \right) + \mathbf{W}_{\mathbf{v}} \cdot \mathbf{L} \cdot \boldsymbol{\Delta}_{\mathbf{tot}}$	$M_{xpmax} := 0.5 \cdot M_{xp} \cdot q1 + M_{xp} q2 + M_{xp} \cdot q3$	$M_{xpmax} = 11$	850 lb-in	
$\mathbf{M}_{xp2} := \mathbf{W}_{\mathbf{h}} \cdot \mathbf{L} \cdot \left(\mathbf{h} - \mathbf{L}_{st}\right) + \mathbf{W}_{\mathbf{v}} \cdot \mathbf{L} \cdot \Delta_{xp1}$	$M_{xpmax2} := 0.5 \cdot M_{xp2} \cdot q1 + M_{xp2} q2 + M_{xp2} \cdot q3$	$M_{xpmax2} = 8$	250 Ib-in	
Case 2 - Point Load:				
$M_{xpmax4} := P \cdot (h - L_{st}) \cdot 0.85$		$M_{xpmax4} = 4$	675 lb-in	
$M_{xpmax3} := (P \cdot h \cdot 0.85)$		M _{xpmax} 3 = 6	715 lb∙in	
Max Post Stress:				
$f_{bpx} \coloneqq \frac{max(M_{xpmax2}, M_{xpmax4})}{S_{xp}}$		$f_{bpx} = 25307$] psi	
$F_{bpx} := \left(F_{bpx1} \cdot 1.33 \right)$ if IBC = 1		$F_{bpx} = 25000$	psi	
F_{bpx1} otherwise				
Max Post/Stub Combined Stre	ss:			
$f_{bpx2} := max(M_{xpmax}, M_{xpmax3}) \cdot \frac{I}{(I_{xp} + I_{xpmax3})}$	xp Ist)·Sxp	$f_{bpx2} = 23282$	2 psi	
Max Stub Stress:		$F_{bpx} = 25000$	psi	
$f_{bst} := max(M_{xpmax}, M_{xpmax3}) \cdot \frac{I_{st}}{(I_{xp} + I_{st})}$	st)·Sst	$f_{bst} = 19018$	psi	
Calculation Results:		$F_{bst} = 25000$	psi	
$\text{Int}_{p1} \coloneqq \max\left(\frac{f_{bpx}}{F_{bpx}}, \frac{f_{bpx2}}{F_{bpx}}, \frac{f_{bst}}{F_{bst}}\right)$		Int _{p1} = 1.01	1% Over Ok	K

POSTS := $|^{n}OK^{n}$ if $Int_{p1} \le 1.014 \land \frac{max(\Delta_{xp1}, \Delta_{xp2}, \Delta_{tot})}{\Delta_{altp}} \le 1$

POSTS = "OK"

RICE		105 School Creek Trail	Project Description:	Job No:		R11-10-240)
	INFEDINC	Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	B1 B
ENGINEERING		Fax: (920)845-1048	RMR 80KD System	Date:	10/24/11	Rev:	
Template:	REI-MC-5707	w w w .rice-inc.com		Chk By:		Date:	

Chk Anchor Bolts (assume f'c=4,000 psi conc.):

$V_b := \frac{R_{max}}{2} \cdot 1.6$	V _b = 240	lb
$T_{b} := \frac{M_{max}}{(L1 - D2) \cdot 0.85 \cdot 1} \cdot 1.6$	$T_{b} = 5581$	lb

See Next Sheet for Calculation

Use (4) - 1/2" Dia. S.S. Threaded Rods
W/ Hilti HIT-RE 500 SD Epoxy Adhesive
Embedment= 4-1/2"
Edge Distance= 3-1/4"
End Distance = 5-1/4"

Surface Mount Anchor	SHT
Analysis	B2

R_{max} := 300 lb

 $M_{max} := 11850 + R_{max} \cdot 2.5 = 12600$ lb-in

d := 2.5 in (sleeve dia.)

Chk shear on shoe wall:

B - Mmax	P = 6241	lb
$\Gamma := \frac{1}{0.85 \cdot (2.375)}$	P = 0.241	10

$$f_V := \frac{(P + R_{max})}{2 \cdot (0.315) \cdot (2)}$$
 $f_V = 5192$ psi

 $F_V := \frac{0.57 \cdot (18000)}{1.65} \qquad \qquad F_V = 6218 \qquad psi$

 $\mathbf{I} \coloneqq \frac{\mathbf{f}_{\mathbf{V}}}{F_{\mathbf{V}}}$

I = 0.83 Shear Stress "OK"

Chk Aluminum Base Plate:

L1 := 5 in	D	1 := 0.75	in
L2 := 5 in	D	2:= 0.75	in
L := L2 - (2·D2)	L	= 3.5	in
$F_y := \frac{1.3 \cdot (18000)}{1.65}$	Fy	, = 14182	psi
$P := \frac{M_{max}}{d \cdot 2}$	Р	= 2520	lb
d∙2			
$\mathbf{p} \circ \epsilon s^2$			
$M_{pl} := \frac{P \cdot 0.5 \cdot 3^2}{3.5^2}$	M	l _{pl} = 926	in-lb
3.5			

 $t_{req} := \sqrt{\frac{M_{pl} \cdot 6}{F_{y} \cdot 5}}$

 $t_{req} = 0.28$ in

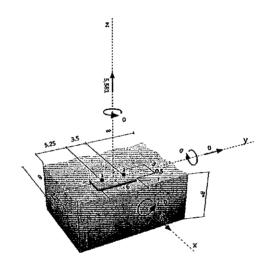
 $\mathbf{I} := \frac{\mathbf{t}_{req}}{0.5}$

I = 0.56 Bending Stress "OK"

<u>Use Cast Aluminum Base, as shown</u> 535 casting alloy, Fu= 35 ksi min.

RICE	105 School Creek Trail	Project Description:	Job No:		R11-10-24O	
ENGINEERING	Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	B2
ENGINEERING	Fax: (920)845-1048	RMR 80KD System	Date:	10/24/ 11	Rev:	
Template:	w w w .rice-inc.com		Chk By:		Date:	

PROFIS Anchor 2.2.3


www.hilti.us			PROFIS Anchor 2.2.
Company:		Page:	1
Specifier:		Project:	
Address:		Sub-Project I Pos. No	.:
Phone Fax:	- -	Date:	10/25/2011
E-Mail:			

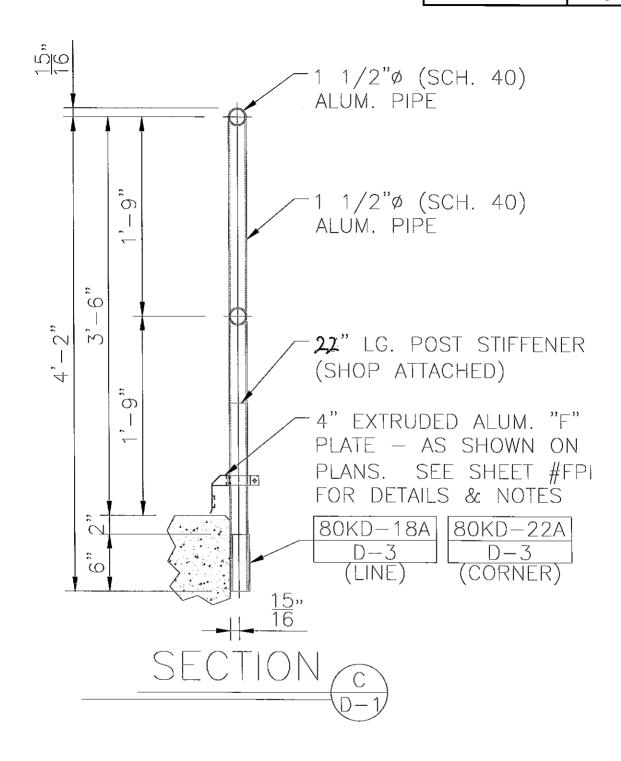
Specifier's comments:

Input data

Anchor type and diameter:	HIT-RE 500-SD + HAS-R 304/316, 1/2
Effective embedment depth:	$h_{efart} = 4.500 \text{ in.} (h_{efart} = - \text{ in.})$
Material:	ASTM F 593
Evaluation Service Report::	ESR 2322
Issued I Valid:	4/1/2010 -
Proof:	design method ACI 318 / AC308
Stand-off installation:	$e_{b} = 0.000$ in. (no stand-off); t = 0.500 in.
Anchor plate:	Ix x I, x t = 3.000 x 6.000 x 0.500 in. (Recommended plate thickness: not calculated)
Profile	no profile
Base material:	uncracked concrete, 4000, f ⁺ _c = 4000 psi; h = 8.000 in., Temp. short/long: 32/32°F
Installation:	hammer drilled hole, installation condition: dry
Reinforcement:	tension: condition B, shear: condition B; no supplemental splitting reinforcement present
	edge reinforcement: none or < No. 4 bar
Seismic loads (cat. C, D, E, or F):	no

Geometry [in.] & Loading [lb, in.-lb]

Proof I Utilization (Governing Cases)

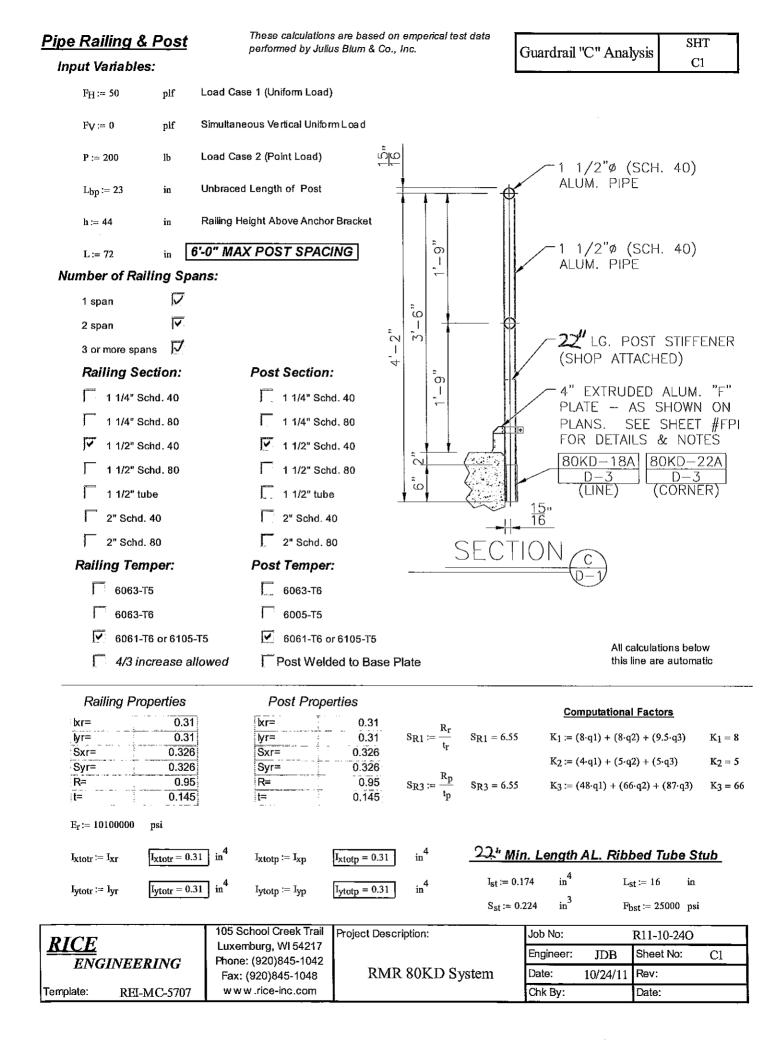

		Design	values [lb]	Utilization [%]	
Loading F	Proof	Load	Capacity	β _N /β _v	Status
Tension (Concrete Breakout Strength	5581	5582	100/-	OK
Shear C	Concrete edge failure in	240	3702	-/6	OK
c	lirection x+				
Loading	β _N	β _v	ζ	Utilization β _{ν.ν} [%]	Status
Combined tension and sh	ear 1.000	0.065	-	89	OK
loads					

Warnings

• Please consider all details and hints/warnings given in the detailed report!

Fastening meets the design criteria!

Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor (c) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan



Note: Structural steel, Concrete, CMU and all other anchorage substrates designed by others

ROCKY MOUNTAIN RAILINGS

RICE			Project Description:	Job No:		R11-10-240	
	INEERING	Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	С
	MILLENING	Fax: (920)845-1048	RMR 80KD System	Date:	10/24/11	Rev:	
Template:	REI-MC-5707	w w w .rice-inc.com		Chk By:		Date:	_

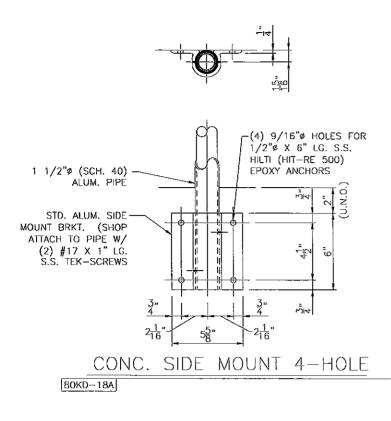
Ra	ailing Analysis:	$W_h := \frac{F_H}{12}$	$W_{\mathbf{V}} \coloneqq \frac{F_{\mathbf{V}}}{12}$		Guardrail "C" Analysis SHT C1 A	
С	ase 1 Uniform Load:					
	$\Delta_{yr1} := \frac{5 \cdot W_h \cdot L^4}{384 \cdot E_r \cdot I_{ytotr}}$			$\Delta_{\rm yr1} = 0.466$	in Modeled as a simple span	
	$\Delta_{xr1} \coloneqq \frac{5 \cdot W_{v} \cdot L^4}{384 \cdot E_{r'} I_{xtotr}}$			$\Delta_{xr1}=0$	in	
	$\Delta_{allr} \coloneqq \frac{L}{96}$			$\Delta_{allr} = 0.75$	in Per ASTM Specification E985	
	$\mathbf{M}_{\mathbf{yrmax}} \coloneqq \frac{\mathbf{W}_{\mathbf{h}} \cdot \mathbf{L}^2}{\mathbf{K}_1}$			M _{yrmax} = 2700	lb-in	
	$M_{xrmax} := \frac{W_{v'}L^2}{K_1}$			M _{xrmax} = 0	lb-in	
>						
	$f_{bry1} \coloneqq \frac{M_{yrmax}}{S_{yr}}$			$f_{bry1} = 8282$	psi	
	$f_{brx1} \coloneqq \frac{M_{xrmax}}{S_{xr}}$			$f_{\text{brx1}} = 0$	psi	
~	ase 2 - Point Load:					
L						
	$\Delta_{yr2} := \frac{P \cdot L^3}{K_3 \cdot E_r \cdot I_{ytotr}}$			$\Delta_{y_T2}=0.361$	in	
	$M_{yrmax2} \coloneqq \frac{P \cdot L}{K_2}$			M _{ymmax2} = 2880	lb-in	
	$f_{bry2} \coloneqq \frac{M_{yrmax2}}{S_{yr}}$			fbry2 = 8834	psi	
	$F_{bry} := \begin{cases} (F_{bry1} \cdot 1.33) & \text{if IBC} = \\ F_{bry1} & \text{otherwise} \end{cases}$	= 1		Fbry = 25000	psi	

Calculation Results:

$\operatorname{Int}_{r1} := \begin{pmatrix} f \\ -f \end{pmatrix}$	$\left(\frac{brx1}{F_{bry}}\right) + \left(\frac{f_{bry1}}{F_{bry}}\right)$	$Int_{r1}=0.33$					
$\operatorname{Int}_{r2} := \frac{\mathrm{fb}}{\mathrm{F}}$	bry2 bry	$\operatorname{Int}_{r2} = 0.35$					
RAILS :=	"OK" if $\frac{\max(\Delta_{yr1}, \Delta)}{\Delta}$ "FAIL" otherwise	$\frac{\Delta_{xr1}, \Delta_{yr2}}{\text{callr}} \leq i \wedge \left(\frac{f_{brx1}}{F_{bry}}\right)$	$+\left(\frac{f_{bry1}}{F_{bry}}\right) \le 1 \land \frac{f_{bry2}}{F_{bry}} \le 1$	RAILS ≃ "OK"]		
DICE			Project Description:	Job No:		R11-10-24C)
<u>RICE</u>	INEERING	Luxemburg, WI 54217 Phone: (920)845-1042	<u> </u>	Engineer:	JDB	Sheet No:	C1 A
ENG	TIVLEKING	Fax: (920)845-1048	RMR 80KD System	Date:	10/24/11	Rev:	
Template:	REI-MC-5707	w w w .rice-inc.com		Chk By:	-	Date:	

Post Analysis:	$\mathbf{E}_{\mathbf{p}} \coloneqq \mathbf{E}_{\mathbf{r}}$		Guardrai	l "C" Ana	alysis SHT
$\Delta_{xp1} := \frac{W_h \cdot L \cdot (h - L_{st})^3}{3 \cdot E_p \cdot (I_{xp})}$		ا م _{xp}	₁ = 0.701	in	C1 B
$\Delta_{xp2} := \frac{P \cdot 0.85 \cdot \left(h - L_{st}\right)^3}{3 \cdot E_{p'}(I_{xp})}$		Δ _{xp2}	= 0.397	in	
Max Deflection:					
$\Delta_{tot} \coloneqq \frac{W_h \cdot L \cdot \left(h - L_{st}\right)^3}{3 \cdot E_p \cdot I_{xp}} + \frac{W_h \cdot L \left[1 - L_{st}\right]^3}{3 \cdot \left[\left(E_p\right)^2 + L_{st}\right]^3}$	$\frac{\left[h^{3}-\left(h-L_{st}\right)^{3}\right]}{\left[I_{xp}\right]+\left(E_{p},I_{st}\right)\right]}$	Δ_{tot}	t = 1.995	in	
$\Delta_{\text{allp}} \coloneqq \frac{h}{12}$		Δ_{all}	p = 3.67	in	Per ASTM E985
Case 1 - Uniform Load:					
$\mathbf{M}_{\boldsymbol{x}\boldsymbol{p}} \coloneqq \left(\mathbf{W}_{\boldsymbol{h}} \cdot \mathbf{L} \cdot \boldsymbol{h} \right) + \mathbf{W}_{\boldsymbol{v}} \cdot \mathbf{L} \cdot \boldsymbol{\Delta}_{tot}$	$M_{xpmax} \coloneqq 0.5 \cdot M_{xp} \cdot q1 + M_{xp} q2 + M_{xp} \cdot q3$	M _{xp}	max = 13200	lb-in	
$\mathbf{M_{xp2}} \coloneqq \mathbf{W_{h}} \cdot \mathbf{L} \cdot \left(\mathbf{h} - \mathbf{L_{sf}}\right) + \mathbf{W_{v}} \cdot \mathbf{L} \cdot \boldsymbol{\Delta}_{\mathbf{y}}$	xp1 $M_{xpmax2} := 0.5 \cdot M_{xp2} \cdot q1 + M_{xp2} \cdot q2 + M_{xp2} \cdot q3$	M _{xp}	omax2 = 8400	lb-in	
Case 2 - Point Load:					
$M_{\text{xpmax4}} \coloneqq P \cdot (h - L_{\text{st}}) \cdot 0.85$		M _{xŗ}	omax4 = 4760	lb•in	
$M_{xpmax3} := (P \cdot h \cdot 0.85)$		M _x	omax3 = 7480	lb•in	
Max Post Stress:					
$f_{bpx} := \frac{max(M_{xpmax2}, M_{xpmax4})}{S_{xp}}$		fippx	_c = 25767	psi	
$F_{bpx} := (F_{bpx1} \cdot 1.33)$ if IBC = 1		F _{bp} ;	x = 25000	psi	
F_{bpx1} otherwise					
Max Post/Stub Combined	Stress:				
$f_{bpx2} := max(M_{xpmax}, M_{xpmax3})$	$\frac{\mathbf{I_{xp}}}{(\mathbf{I_{xp}} + \mathbf{I_{st}}) \cdot \mathbf{S_{xp}}}$	f _{bp} ,	x2 = 25934	psi	
Max Stub Stress:		F _{bp}	_x = 25000	psi	
$f_{bst} := max(M_{xpmax}, M_{xpmax}) \cdot \frac{1}{(1-1)^{n}}$	$\frac{I_{st}}{I_{xp} + I_{st} \cdot S_{st}}$	fbst	= 21185	psi	
Calculation Results:		Fbs	t = 25000	psi	

 $\text{Int}_{p1} := \text{max}\!\left(\frac{f_{bpx}}{F_{bpx}}, \frac{f_{bpx2}}{F_{bpx}}, \frac{f_{bst}}{F_{bst}}\right)$


$$POSTS := \begin{cases} "OK" & \text{if } Int_{p1} \le 1.04 \land \frac{max(\Delta_{xp1}, \Delta_{xp2}, \Delta_{tot})}{\Delta_{allp}} \le 1 \\ "FAIL" & \text{otherwise} \end{cases}$$

 $Int_{p1} = 1.04$ 4% Over OK

.

POSTS = "OK"

105 School Creek Trail Job No: Project Description: R11-10-240 <u>RICE</u> Engineering Luxemburg, WI 54217 Sheet No: Engineer: JDB C1 B Phone: (920)845-1042 RMR 80KD System Date: 10/24/11 Rev: Fax: (920)845-1048 REI-MC-5707 www.rice-inc.com Template: Chk By: Date:

Side Mount	SHT
Anchorage	C2

$$R_{max} := 300$$
 lb

 $M_{max} := 13200 + R_{max} \cdot 3 = 14100$ lb in

L1 := 6 in L2 := 5.25 in

Chk Extruded Aluminum Bracket:

$$P := \frac{M_{max}}{L1} + R_{max} \qquad P = 2650 \quad lb$$

$$M_{pl} := \frac{P}{2} \cdot 0.688$$
 $M_{pl} = 912$ in lb

$$t_{req} := \sqrt{\frac{6 \cdot M_{pl}}{28000 \cdot L1}}$$
 $t_{req} = 0.18$ in

$$I := \frac{t_{req}}{0.25} \qquad \qquad I = 0.72$$

Use Side Mount Bracket, As Shown 6105-T5 alloy

Chk Anchor Bolts: (Assume f'c = 4000 psi Conc.)

$$V_b := \frac{R_{max}}{2} \cdot 1.6 \qquad V_b = 240 \qquad lb$$

$$T_b := \left(\frac{M_{max}}{L2 \cdot 1 \cdot 0.85} + \frac{R_{max}}{2}\right) \cdot 1.6 \qquad T_b = 5295 \qquad lb$$

See Next Sheet for Calculation

<u>Use (4) - 1/2" Dia. S.S. Threaded Rods</u> With Hilti HIT-RE 500 SD Epoxy Adhesive Embedment = 4-1/2" Edge = 2-3/4" End = 5-1/8"

Chk TEK Screws:

$$V := \frac{R_{max}}{(2)} \qquad V = 150 \qquad lb$$

$$V_{all} := 2148 \cdot 0.333$$
 $V_{all} = 715$ lb

$$I_2 := \left(\frac{V}{V_{all}}\right) \qquad \qquad I_2 = 0.21 < 1.0$$

ļ	Use (2) - #17 S.S. TEK Screws	
-	300 Series S.S.	
	ITW Buildex or Better	

DICE	105 School Creek Trail	Project Description:	Job No: R11-10-24O			
<u>RICE</u> ENGINEERING	Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	C2
ENGINEEKING	Fax: (920)845-1048		Date:	10/24/1 1	Rev:	
Template:	w w w .rice-inc.com		Chk By:		Date:	

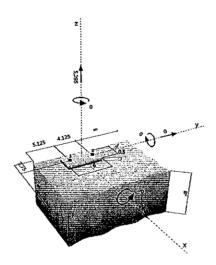
PROFIS Anchor 2.2.3

www.hilti.us	
Company:	

Specifier: Address: Phone I Fax: E-Mail:

-1-

Page: 1 Project: Sub-Project I Pos. No.: Date: 1

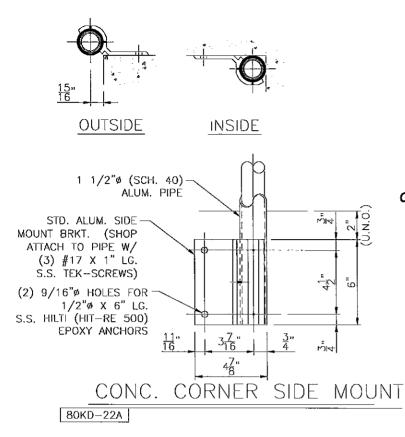

10/25/2011

Specifier's comments:

Input data

input data	
Anchor type and diameter:	HIT-RE 500-SD + HAS-R 304/316, 1/2
Effective embedment depth:	h _{etect} = 4.500 in. (h _{etimit} = - in.)
Material:	ASTM F 593
Evaluation Service Report::	ESR 2322
lssued I Valid:	4/1/2010 -
Proof:	design method ACI 318 / AC308
Stand-off installation:	e _b = 0.000 in. (no stand-off); t = 0.500 in.
Anchor plate:	l _x x l _y x t = 3.000 x 6.000 x 0.500 in. (Recommended plate thickness: not calculated)
Profile	no profile
Base material:	uncracked concrete, 4000, fc' = 4000 psi; h = 8,000 in., Temp. short/long: 32/32°F
Installation:	hammer drilled hole, installation condition: dry
Reinforcement:	tension: condition B, shear: condition B; no supplemental splitting reinforcement present edge reinforcement: none or < No. 4 bar
Seismic loads (cat. C, D, E, or F):	no

Geometry [in.] & Loading [lb, in.-lb]


Proof I Utilization (Governing Cases)

		Design	values [lb]	Utilization [%]	
Loading I	Proof	Load	Capacity	β_N/β_V	Status
Tension	Concrete Breakout Strength	5295	5331	99/-	ОК
Shear	Concrete edge failure in	240	6362	-/4	ОК
	direction x-				
Loading	β _N	βv	ζ	Utilization β _{∾ν} [%]	Status
Combined tension and sh	near 0.993	0.038	-	86	OK
loads					

Warnings

· Please consider all details and hints/warnings given in the detailed report!

Fastening meets the design criteria!

Corner Side Mount	SHT
Anchorage	C4

R _{max} := 97	lb	Reactions from RISA Model
$M_{max} := 0$	lb in	(Comer Post Modeled as a Pin Connection)
L1 := 6	in	
L2 := 5.25	in	

Chk Extruded Aluminum Bracket:

$$P := \frac{M_{max}}{L1} + R_{max} \qquad P = 97 \qquad lb$$

$$M_{pl} := \frac{P}{2} \cdot 0.688$$
 $M_{pl} = 33$ in lb

$$t_{req} := \sqrt{\frac{6 \cdot M_{pl}}{28000 \cdot L1}}$$
 $t_{req} = 0.03$ in

$$\mathbf{I} := \frac{\mathbf{t}_{\text{req}}}{0.25} \qquad \qquad \mathbf{I} = 0.14$$

Use Side Mount Bracket, As Shown 6105-T5 alloy

Chk Anchor Bolts: (Assume f'c = 4000 psi Conc.)

$$V_b := \frac{R_{max}}{1} \cdot 1.6 \qquad V_b = 155 \qquad lb$$
$$T_b := \frac{R_{max}}{1} \cdot 1.6 \qquad T_b = 155 \qquad lb$$

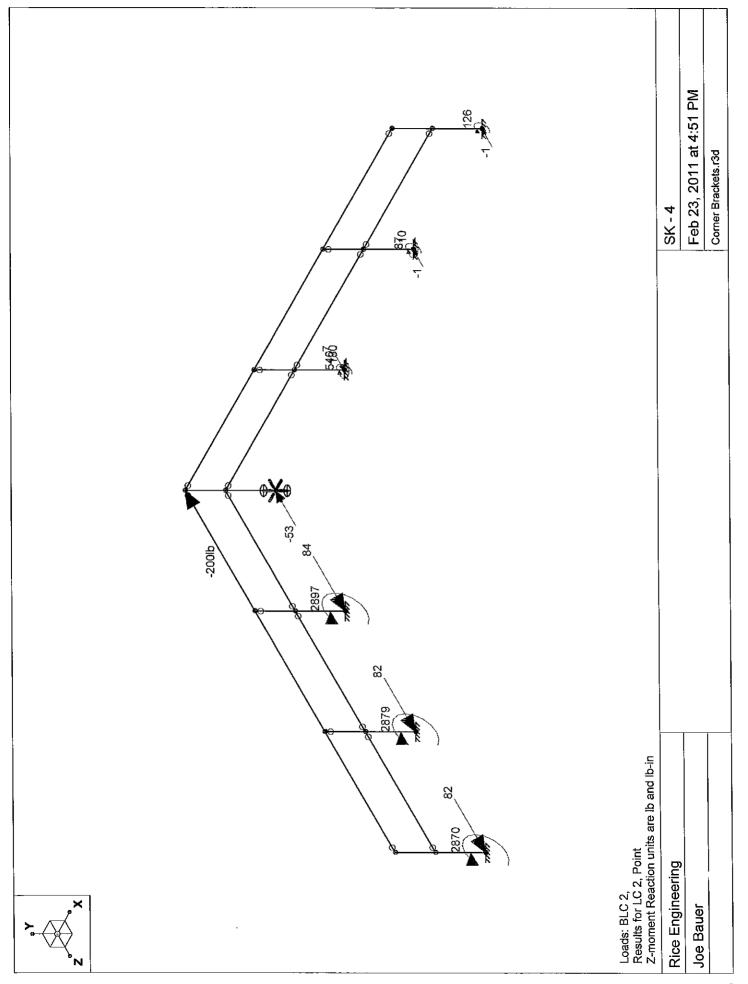
See Next Sheet for Calculation

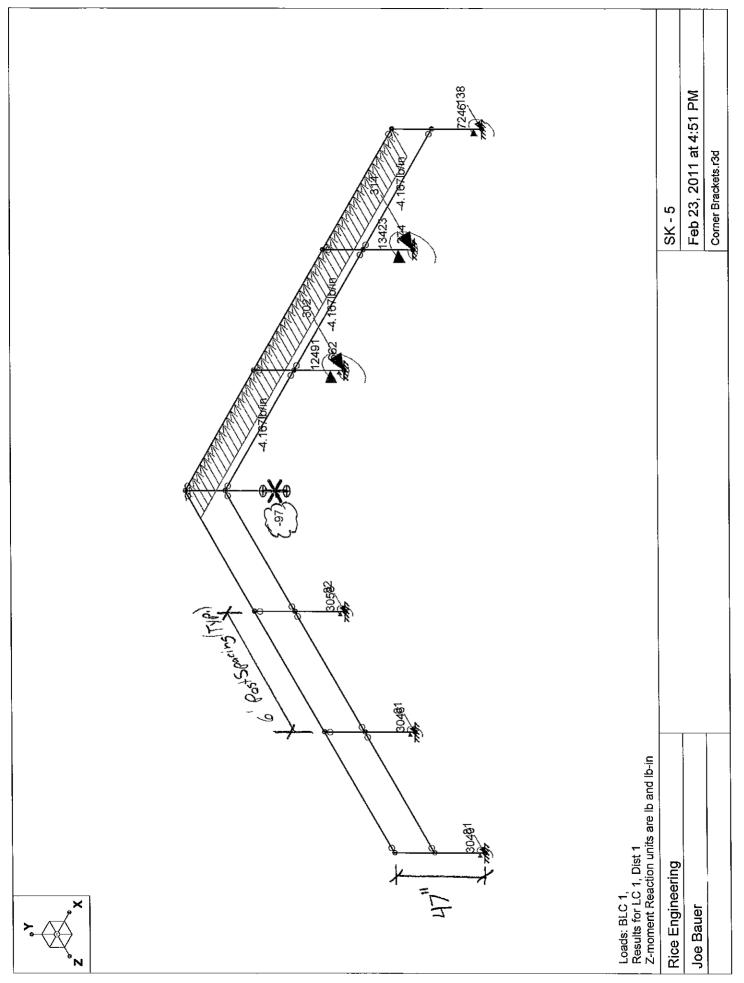
Use (2) - 1/2" Dia. S.S. Threaded Rods W/ Hilti HIT-RE 500 SD Epoxy Adhesive Embedment= 4-1/2" min. Edge Distance= 2-3/4" min. End Distance = 2-1/2"

Chk TEK Screws:

$$V := \frac{R_{max}}{(3)} \qquad \qquad V = 32 \qquad lb$$

$$V_{all} := 2148.0.333$$
 $V_{all} = 715$ lb


$$T := \frac{M_{max}}{L2} + \frac{R_{max}}{(2)} \qquad T = 49 \qquad lb$$

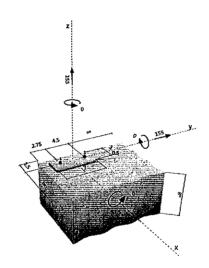

$$T_{all} := 2065 \cdot 0.33$$
 $T_{all} = 681$ lb

 $I_2 := \left(\frac{V}{V_{all}}\right)^2 + \left(\frac{T}{T_{all}}\right)^2$ $I_2 = 0.01 < 1.0$

<u>Use (3) - #17 S.S. TEK Screws</u>	
300 Series S.S.	
ITW Buildex or Better	

RICE	105 School Creek Trail	Project Description:	Job No: R11-10-24O			
ENGINEERING	Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	C4
EINGIINEEKIING	Fax: (920)845-1048	RMR 80KD System	Date:	10/24/11	Rev:	
Template:	w w w .rice-inc.com		Chk By:		Date:	

PROFIS Anchor 2.2.3


www.hilti.us			PROFIS Anchor 2.2.
Company:		Page:	1
Specifier:		Project:	
Address:		Sub-Project I Pos. No	».:
Phone I Fax: E-Mail:	- -	Date:	10/25/2011

Specifier's comments:

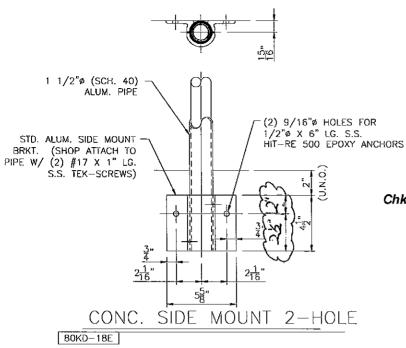
Input data

mparada	
Anchor type and diameter:	HIT-RE 500-SD + HAS-R 304/316, 1/2
Effective embedment depth:	h _{atorii} = 2.810 in. (h _{attorii} = 6.750 in.)
Material:	ASTM F 593
Evaluation Service Report::	ESR 2322
Issued I Valid:	4/1/2010] -
Proof:	design method ACI 318 / AC308
Stand-off installation:	e _b = 0.000 in. (no stand-off); t = 0.500 in.
Anchor plate:	I x I x t = 3.000 x 7.000 x 0.500 in. (Recommended plate thickness: not calculated)
Profile	no profile
Base material:	uncracked concrete , 4000, fc' = 4000 psi; h = 8.000 in., Temp. short/long: 32/32°F
Installation:	hammer drilled hole, installation condition: dry
Reinforcement:	tension: condition B, shear: condition B; no supplemental splitting reinforcement present
	edge reinforcement: none or < No. 4 bar
Seismic loads (cat. C, D, E, or F):	no

Geometry [in.] & Loading [lb, in.-lb]

Proof I Utilization (Governing Cases)

		Design values [lb]		Utilization [%]		
Loading	Proof	Load Capacity		β _N /β _ν	Status	
Tension	Concrete Breakout Strength	155	4152	41-	OK	
Shear	Concrete edge failure in	155	3174	-/5	ОК	
	direction y-					
Loading	β _N	βν	ζ	Utilization β _{Nν} [%]	Status	
Combined tension and s	hear 0.037	0.049	5/3	1	ОК	


loads

Warnings

· Please consider all details and hints/warnings given in the detailed report!

Fastening meets the design criteria!

Input data and results must be checked for agreement with the existing conditions and for plausibilityl PROFIS Anchor (c) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

Chk Anchor Bolts:	(Assume f'c =	= 4000 psi Conc.)
-------------------	---------------	-------------------

Uniform Load

$$V_b := \frac{R_{max}}{1} \cdot 1.6 \qquad V_b = 320 \qquad lb$$

$$T_b := \left(\frac{M_{max}}{1.2 \cdot 1 \cdot 0.85} + \frac{R_{max}}{1}\right) \cdot 1.6$$
 $T_b = 6655$ lb

Concentrated Load

$$V_{b2} := \frac{200 \cdot 0.85}{1} \cdot 1.6$$
 $V_{b2} = 272$ lb

$$T_{b2} := \left(\frac{200 \cdot 0.85 \cdot 42.068}{2 \cdot 1 \cdot 0.85} + \frac{200 \cdot 0.85}{1}\right) \cdot 1.6 \qquad T_{b2} = 7003 \qquad \text{lb}$$

See Next Sheet for Calculation

Use (4) - 1/2" Dia. S.S. Threaded Rods
With Hilti HIT-RE 500 SD Epoxy Adhesive
Embedment = 4-1/2''
Edge = 3-1/2"
End = 3"

	Side Mount Anchor	SHT
	(Bottom of Stairs)	C6
R _{max} :=	200 lb	

 $M_{max} := R_{max} \cdot 42.068 = 8414$ lb·in

L1 := 4.5 in

L2 := 2.5 in

Chk Extruded Aluminum Bracket:

 $P := \frac{M_{max}}{L1} + R_{max} \qquad P = 2070 \quad \text{ib}$

$$M_{pl} := \frac{P}{2} \cdot 0.688$$
 $M_{pl} = 712$ in lb

$$t_{req} := \sqrt{\frac{6 \cdot M_{pl}}{28000 \cdot L1}}$$
 $t_{req} = 0.18$ in

$$I := \frac{t_{req}}{0.25} \qquad I = 0.74$$

<u>Use Side Mount Bracket, As Shown</u> 6105-T5 alloy

Chk TEK Screws:

$$V := \frac{R_{max}}{(2)} \qquad \qquad V = 100 \qquad lb$$

$$V_{all} := 2148 \cdot 0.333$$
 $V_{all} = 715$ lb

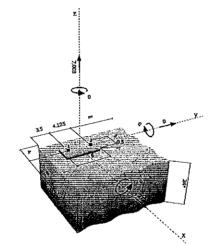
$$I_2 := \left(\frac{V}{V_{all}}\right) \qquad \qquad I_2 = 0.14 < 1.0$$

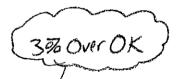
<u>Use (2) - #17 S.S. TEK Screws</u> 300 Series S.S. ITW Buildex or Better

RICE	105 School Creek Trail	Project Description:	Job No:	-	R11-10-240	
ENGINEERING	Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	C6
ENUMALERING	Fax: (920)845-1048	RMR 80KD System	Date:	10/24/11	Rev:	
Template:	www.rice-inc.com		Chk By:		Date:	

2.2.3

www.hilti.us	 	PROFIS Anchor 2.
Company:	Page:	1
Specifier:	Project:	
Address:	Sub-Project Pos. No	p.:
Phone Fax:	 Date:	10/25/2011
E-Mail:		

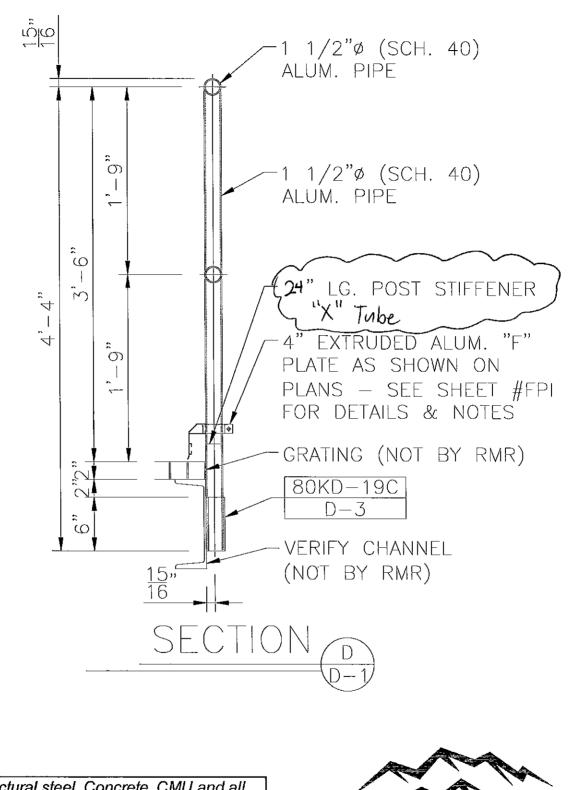

Specifier's comments:


Input data

Anchor type and diameter:	HIT-RE 500-SD + HAS-R 304/316, 1/2
Effective embedment depth:	h _{etect} = 4.500 in. (h _{etimit} = - in.)
Material:	ASTM F 593
Evaluation Service Report::	ESR 2322
Issued I Valid:	4/1/2010 -
Proof:	design method ACI 318 / AC308
Stand-off installation:	e _b = 0.000 in. (no stand-off); t = 0.500 in.
Anchor plate:	I x I x t = 3.000 x 6.000 x 0.500 in. (Recommended plate thickness: not calculated)
Profile	no profile
Base material:	uncracked concrete , 4000, f ' = 4000 psi; h = 24.000 in., Temp. short/long: 32/32°F
Installation:	hammer drilled hole, installation condition: dry
Reinforcement:	tension: condition B, shear: condition B; no supplemental splitting reinforcement present
	edge reinforcement: none or < No. 4 bar

Seismic loads (cat. C, D, E, or F): no

Geometry [in.] & Loading [lb, in.-lb]


Proof I Utilization (Governing Cases)

		Design values [lb]		Utilization [%]		
Loading	Proof	Load	Capacity	β_N/β_V	Status	
Tension	Concrete Breakout Strength	7003	6832	103 / -	Snot recommended	
Shear	Concrete edge failure in	272	5365	-/5	ОК	
	direction y-					
Loading	β _N	β _v	ζ	Utilization β _{א,ν} [%]	Status	
Combined tension ar	nd shear 1.025	0.051	-	-	ОК	
loads						

Warnings

· Please consider all details and hints/warnings given in the detailed report!

Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor (c) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

Note: Structural steel, Concrete, CMU and all other anchorage substrates designed by others

ROCKY MOUNTAIN RAILINGS

DICE		105 School Creek Trail	Project Description:	Job No:		R11-10-24O	
<u>RICE</u>	INEERING	Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	D
	INEERING	Fax: (920)845-1048	RMR 80KD System	Date:	10/24/1 1	Rev:	
Template:	REI-MC-5707	w w w .rice-inc.com		Chk By:		Date:	_

Pipe Railing & Post	These calculations performed by Juliu			Gu	ardrail "D" Ar	nalys	is SHT	
$F_{H} := 50$ plf	Load Case 1 (Uniform Load)							
Fv := 0 plf	Simultaneous Vertical Unifor	nLoad <u>ju</u>			<u>~1 1/2"</u>	a ('	SCH 40)	
P := 200 lb	Load Case 2 (Point Load)	4		- H	ALUM.	PIPE	SCH. 40)	
L _{bp} := 25 in	Unbraced Length of Post			Ť				
h := 46 in	Railing Height Above Anchor	Bracket	1, - 9,		-1 1/2" ALUM.		SCH. 40)	
	-0" MAX POST SPACI	NG					-	
Number of Railing Spa	ins:		÷	Щ	\sim	\sim	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\sim \sim$
1 span 😽		**		ĬĬ	f 24" LG.	. PC	OST STIFF	ener 🖊
2 span						Tub		
3 or more spans 📈		4	ື້ດ				ED ALUM. SHOWN O	
Railing Section:	Post Section:				/ PLANS	- 3	SEE SHEE	T #FPL
1 1/4" Schd. 40	1 1/4" Sch	d. 40		<u> </u>	FOR DE	TAIL	_S & NOT	ES
1 1/4" Schd. 80	1 1/4" Sch	d. 80			GRATING	1) C	NOT BY R	MR)
1 1/2" Schd. 40	✓ 1 1/2" Sch	d. 40		-∏	80KD-			
1 1/2" Schd. 80	1 1/2" Sch		<u>ں</u>					
1 1/2" tube	1 1/2" tube		 15,		VERIFY (NOT B			
2" Schd. 40	2" Schd. 4	o	<u>15</u> " 16		- (101 D		awice y	
2" Schd. 80	2" Schd. 8	0	SF	- C-				
Railing Temper:	Post Temper:	•				.1)		
6063-т5	6063-т6							
6063-T6	6005-T5							
6061-T6 or 6105-	T5 🗹 6061-T6 o	r 6105-T5						
4/3 increase al		ed to Base Plat	e				lculations belo ne are automa	
Railing Properties	Post Prope	rties			Computati	ions'	Fasters	
br= 0.31		0.31	R _r					
lyr= 0.31 Sxr= 0.326		0.31 S _I 0.326	$\mathbf{R}_1 \coloneqq \frac{\mathbf{K}_{\mathbf{r}}}{\mathbf{t}_{\mathbf{r}}} \qquad \mathbf{S}_{\mathbf{R}_1} =$	6.55	K1 := (8·q1) +			$K_{1} = 8$
Syr= 0.326		0.326	Rn		$K_2 := (4 \cdot q1) +$			K ₂ = 5
R= 0.95 t= 0.145		0.95 S _I 0.145	$R3 := \frac{R_p}{t_p} \qquad SR3 =$	6.55	K3 := (48·q1)	+ (66-	q2) + (87·q3)	K3 = 66
E _r := 10100000 psi								
$I_{xtotr} := I_{xr}$ $\overline{I_{xtotr} = 0.3}$	1 in ⁴ $I_{xtotp} := I_{xp}$	$I_{xtotp} = 0.31$	in ⁴ <u>24"</u> N	lin. L	.ength AL. "X	" Tu	be Stub	
	— 1		4 Ist	:= 0.24	9 in ⁴	Lst	:= 18 in	
$I_{ytotr} := I_{yr}$ $I_{ytotr} = 0.3$	1 in Iytotp := Iyp	$I_{ytotp} = 0.31$	n	t := 0.31	1		t := 25000 psi	
DICE	105 School Creek Trail	Project Descripti	ion:	ŀ	Job No:	1	R11-10-24O	
<u>RICE</u> ENGINEERING	Luxemburg, WI 54217 Phone: (920)845-1042				Engineer: JD)	В	Sheet No:	D1
	Fax: (920)845-1048	RMR 8	0KD System	L	Date: 10/24		Rev:	
Template: REI-MC-5707	w w w .rice-inc.com			1	Chk By:		Date:	

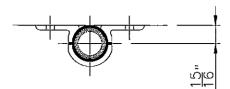
Ra	iling Analysis:	$W_{h} := \frac{F_{H}}{12}$	$W_{\mathbf{v}} := \frac{F_{\mathbf{V}}}{12}$		Guard	rail "D" Analysis	SHT D1 A
C	ase 1 Uniform Load:						DI II
	$\Delta_{yrl} \coloneqq \frac{5 \cdot W_h \cdot L^4}{384 \cdot E_r \cdot I_{ytotr}}$			$\Delta_{yr1} = 0.466$	in	Modeled as a simple spa	n
	$\Delta_{X\Gamma I} \coloneqq \frac{5 \cdot W_{V} \cdot L^{4}}{384 \cdot E_{\Gamma} I_{Xtotr}}$			$\Delta_{\rm Xr1} = 0$	in		
	$\Delta_{allr} \coloneqq \frac{L}{96}$			$\Delta_{\rm allr} \approx 0.75$	in	Per ASTM Specification	E985
	$M_{yrmax} \coloneqq \frac{W_{h} L^2}{K_1}$			M _{yrmax} = 2700	lb•in		
•	$M_{xrmax} \coloneqq \frac{W_{V} L^2}{K_1}$			M _{XIMAX} = 0	lb∙in		
	$f_{bry1} := \frac{M_{yrmax}}{S_{yr}}$			f _{bT} y1 = 8282	psi		
	$f_{brx1} \coloneqq \frac{M_{xrmax}}{S_{xr}}$			$\mathbf{f}_{brx1} = 0$	psi		
с	ase 2 - Point Load:						
	$\Delta_{yr2} \coloneqq \frac{P \cdot L^3}{K_3 \cdot E_r \cdot I_{ytotr}}$			$\Delta_{yr2} = 0.361$	in		
	$M_{yrmax2} \coloneqq \frac{P \cdot L}{K_2}$			M _{yrmax2} = 2880	lb-in		
	$f_{bry2} \coloneqq \frac{M_{yrmax2}}{S_{yr}}$			fbry2 = 8834	psi		
	$F_{bry1} := \begin{cases} (F_{bry1} \cdot 1.33) & \text{if IBC} \\ F_{bry1} & \text{otherwise} \end{cases}$	= 1		Fbry = 25000	psi		

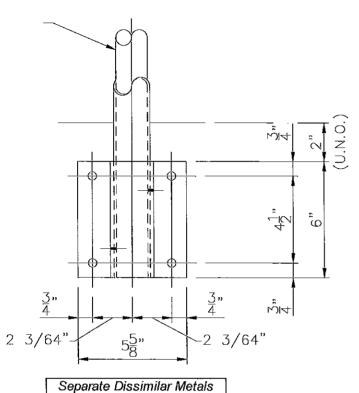
Calculation Results:

 $Int_{r1} := \left(\frac{f_{brx1}}{F_{bry}}\right) + \left(\frac{f_{bry1}}{F_{bry}}\right) Int_{r1} = 0.33$

$Int_{r2} \coloneqq \frac{f_{bry2}}{F_{bry}}$		$Int_{\Gamma 2}=0.35$					
RAILS := "OK" i "FAIL"	$f \frac{\max(\Delta_{yr1}, \Delta_x)}{\Delta_{allis}}$	$\left(\frac{\mathbf{f}_{brx1}}{\mathbf{f}_{bry2}}\right) \leq 1 \wedge \left(\frac{\mathbf{f}_{brx1}}{\mathbf{F}_{bry}}\right)$	$+\left(\frac{f_{bry1}}{F_{bry}}\right) \le 1 \land \frac{f_{bry2}}{F_{bry}} \le 1$	RAILS = "OK"]		
		05 School Creek Trail	Project Description:	Job No:		R11-10-240)
<u>RICE</u> engineering		Luxemburg, WI 54217 Phone: (920)845-1042 Fax: (920)845-1048		Engineer:	JDB	Sheet No:	D1 A
			RMR 80KD System	Date:	10/24/11	Rev:	
		www.rice-inc.com	I · · · ·	Chk By:		Date:	

Post Analysis:	$E_p := E_T$	Guardra	uil "D" An	alysis D1 B
$\Delta_{xp1} \coloneqq \frac{W_h \cdot L \cdot (h - L_{st})^3}{3 \cdot E_p \cdot (I_{xp})}$		$\Delta_{xp1} = 0.701$	in	
$\Delta_{xp2} := \frac{P \cdot 0.85 \cdot (h - L_{st})^3}{3 \cdot E_{p'}(I_{xp})}$		$\Delta_{xp2} = 0.397$	in	
Max Deflection:				
$\Delta_{tot} \coloneqq \frac{W_h \cdot L \cdot \left(h - L_{st}\right)^3}{3 \cdot E_p \cdot I_{xp}} + \frac{W_h \cdot L \cdot \left[h^3 - \left(h^3 - \frac{1}{3 \cdot \left[\left(E_p \cdot I_{xp}\right) + h^3 - \frac{1}{3 \cdot \left[\left(E_p \cdot I_{xp}\right) + h^3 - \frac{1}{3 \cdot \left[h^3	$\frac{\mathbf{h} - \mathbf{L}_{st}}{\left(\mathbf{E}_{p} \mathbf{I}_{st}\right)}$	$\Delta_{\text{tot}} = 2.036$	in	
$\Delta_{allp} \coloneqq \frac{h}{12}$		$\Delta_{allp} = 3.83$	in	Per ASTM E985
Case 1 - Uniform Load:				
$\mathbf{M}_{xp} := \left(\mathbf{W}_{h} \cdot \mathbf{L} \cdot \mathbf{h} \right) + \mathbf{W}_{v} \cdot \mathbf{L} \cdot \boldsymbol{\Delta}_{tot}$	$M_{xpmax} \coloneqq 0.5 \cdot M_{xp} \cdot q1 + M_{xp} q2 + M_{xp} \cdot q3$	M _{xpmax} = 1380)0 lb∙in	
$M_{xp2} \coloneqq W_{h} \cdot \mathbf{L} \cdot \left(h - \mathbf{L}_{st}\right) + W_{v} \cdot \mathbf{L} \cdot \Delta_{xp1}$	$M_{xpmax2} := 0.5 \cdot M_{xp2} \cdot q1 + M_{xp2} q2 + M_{xp2} \cdot q3$	$M_{xpmax2} = 846$)0 lb∙in	
Case 2 - Point Load:				
$M_{xpmax4} := P \cdot (h - L_{st}) \cdot 0.85$		M _{xpmax4} = 476	50 lb∙in	
M _{xpmax3} := (P·h·0.85)		$M_{xpmax3} = 78$	20 lb·in	
Max Post Stress:				
$f_{\text{bpx}} \coloneqq \frac{\max(M_{\text{xpmax2}}, M_{\text{xpmax4}})}{S_{\text{xp}}}$		f _{opx} = 25767	psi	
$F_{bpx} := \begin{bmatrix} F_{bpx1} \cdot 1.33 \end{bmatrix} \text{ if } IBC = 1$ $F_{bpx1} \text{ otherwise}$		F _{bpx} = 25000	psi	
Max Post/Stub Combined Stre	255:			
$f_{bpx2} := \max(M_{xpmax}, M_{xpmax3}) \cdot \frac{1}{(I_{xp} + I_{xpmax3})}$	I _{xp} - I _{st})·S _{xp}	f _{bpx2} = 23475] psi	
Max Stub Stress:		F _{bpx} = 25000	psi	
$f_{bst} := max(M_{xpmax}, M_{xpmax3}) \cdot \frac{I_s}{(I_{xp} + I_s)}$	t [st]·Sst	f _{bst} = 19765	psi	
Calculation Results:	- 	F _{bst} = 25000	psi	
(fbpx fbpx2 fbst)				


$$Int_{p1} := max \left(\frac{f_{bpx}}{F_{bpx}}, \frac{f_{bpx2}}{F_{bpx}}, \frac{f_{bst}}{F_{bst}} \right)$$


Intp1 = 1.03 3% Over OK

POSTS :=
$$|"OK" \text{ if } Int_{p1} \le 1.034 \land \frac{max(\Delta_{xp1}, \Delta_{xp2}, \Delta_{tot})}{\Delta_{allp}} \le 1$$

"FAIL" otherwise

POSTS = "OK"

<u>RICE</u> Engineering			i i ojoot Bobbilpadii.			R11-10-240)
		Phone: (920)845-1042	uxemburg, WI 54217 hone: (920)845-1042		Engineer: JDB Sheet No:		D1 B
		Fax: (920)845-1048	RMR 80KD System	Date:	10/24/11	Rev:	
Template:	REI-MC-5707	www.rice-inc.com		Chk By:		Date:	

Side Mount	SHT
Anchorage	D2

 $M_{max} := 13800 + R_{max} \cdot 3 = 14700$ Ib in

L1 := 6 in L2 := 5.25 in

Chk Extruded Aluminum Bracket:

$$P := \frac{M_{max}}{L1} + R_{max} \qquad P = 2750 \quad lb$$

$$M_{pl} := \frac{P}{2} \cdot 0.688$$
 $M_{pl} = 946$ in lb

$$t_{req} := \sqrt{\frac{6 \cdot M_{pl}}{28000 \cdot L1}} \qquad t_{req} = 0.18 \quad \text{ in }$$

$$I := \frac{t_{req}}{0.25} \qquad \qquad I = 0.74$$

<u>Use Side Mount Bracket, As Shown</u> 6105-T5 alloy

Chk Anchor Bolts:

$$V_{b} := \frac{R_{max}}{4} \qquad V_{b} = 75 \qquad lb$$

$$T_{b} := \frac{M_{max}}{L2 \cdot 2 \cdot 0.85} + \frac{R_{max}}{4} \qquad T_{b} = 1722 \qquad lb$$

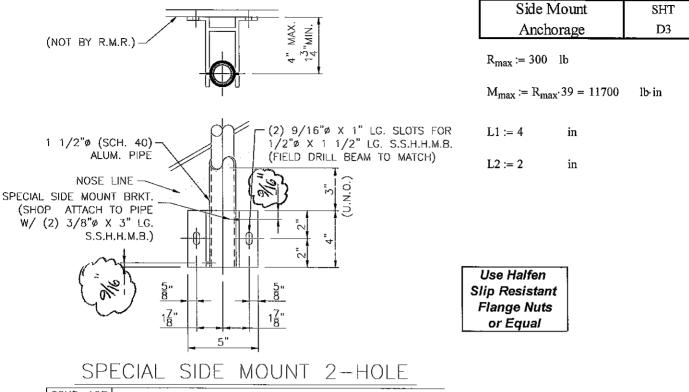
$$V_{ball} := 0.196 \cdot 23000 \qquad V_{ball} = 4508 \qquad lb$$

 $T_{\text{ball}} \coloneqq 0.142 \cdot 40000 \cdot \frac{0.1875}{0.341} \qquad T_{\text{ball}} = 3123 \qquad \text{lb}$

$$I := \left(\frac{V_b}{V_{ball}}\right)^2 + \left(\frac{T_b}{T_{ball}}\right)^2 \qquad I = 0.3 < 1.0$$

Use (4) - 1/2" Dia. S.S. Thru Bolts or 3/16" Min. Thread Engagement Cond "CW", Fy= 65 ksi minimum Structural Steel Channel Designed By Others

Chk TEK Screws:


$$V := \frac{R_{max}}{(2)} \qquad \qquad V = 150 \qquad lb$$

$$V_{all} := 2148 \cdot 0.333$$
 $V_{all} = 715$ lb

$$I_2 := \left(\frac{V}{V_{all}}\right) \qquad \qquad I_2 = 0.21 < 1.0$$

Use (2) - #17 S.S. TEK Screws 300 Series S.S. ITW Buildex or Better

RICE		105 School Creek Trail	Project Description:	Job No:		R11-10-24O	
	INFEDINC	Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	D2
ENGINEERING		Fax: (920)845-1048	RMR 80KD System	Date:	10/24/11	Rev:	
Template:	REI-MC-5741	www.rice-inc.com		Chk By:		Date:	

80KD-19E

Chk Post Attachment to Bracket:

v	M _{max}	R _{max}	V = 4220	lb
•	2.875(1)	(2)	¥ - 4220	ID

 $V_{all} := 0.110 \cdot 23000 \cdot (2)$ $V_{all} = 5060$ lb

Use (2) - 3/8" Dia. S.S. Thru-Bolts @ 2-7/8" O.C. 300 Series S.S.

Chk Extruded Aluminum Bracket:

$$P := \frac{M_{max}}{L1} + R_{max} \qquad P = 3225 \quad lb$$

$$M_{pl} := \frac{P}{2} \cdot 0.7 \qquad M_{pl} = 1129 \quad in \cdot lb$$

$$t_{req} := \sqrt{\frac{6 \cdot M_{pl}}{28000 \cdot L1}} \qquad t_{req} = 0.25 \quad in$$

$$I := \frac{16q}{0.25}$$

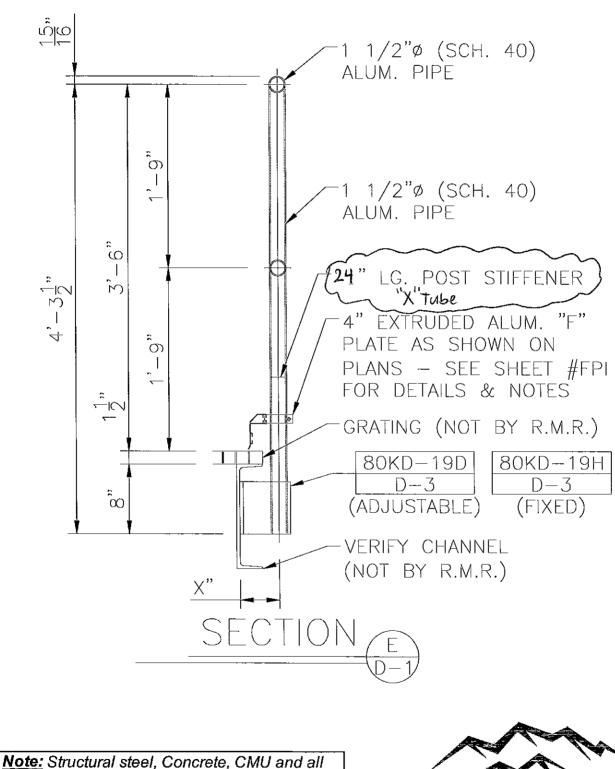
treq

I = 0.98

Use Side Mount Bracket, 4" Long 6105-T5 alloy Chk Anchor Bolts:

$$V_b := \frac{R_{max}}{2} \qquad \qquad V_b = 150 \qquad lb$$

$$T_b := \frac{M_{max}}{L2 \cdot 2} + \frac{R_{max}}{2} \qquad T_b = 3075 \qquad lb$$

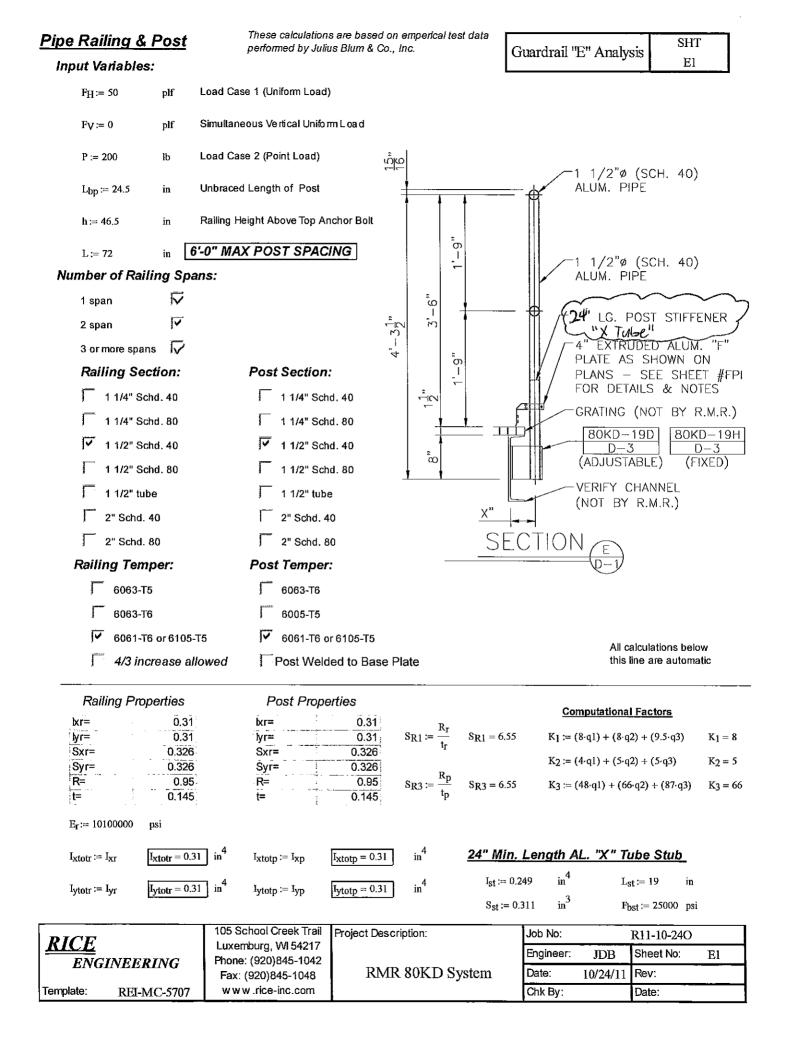

$$V_{all} := 0.196.23000$$
 $V_{all} = 4508$ lb

$$T_{all} := 0.142 \cdot 40000 \cdot \frac{0.25}{0.456}$$
 $T_{all} = 3114$ lb

 $I := \left(\frac{V_b}{V_{all}}\right)^2 + \left(\frac{T_b}{T_{all}}\right)^2 \qquad I = 0.98 < 1.0$

Use (4) - 1/2" Dia. S.S. Thru Bolts
(or Drill & Tap - 1/4" Min. Thread Engagement)
Cond "CW", Fy= 65 ksi minimum
Steel Stringers Designed By Others

DICE		105 School Creek Trail	Project Description:	Job No:		R11-02-15H	
RICE	NEERING	Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	D3
ENGINEERING			R0001 - RMR Standard Calcs	Date:	2/23/11	Rev:	
Template:	REI-MC-5741	www.rice-inc.com		Chk By:		Date:	



other anchorage substrates designed by others

ROCKY MOUNTAIN RAILINGS

DICE		105 School Creek Trail	Project Description:	Job No:		R11-10-24O	
$\left \frac{RICE}{ENC} \right $	INFEDINC	Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	Е
ENGINEERING		Fax: (920)845-1048	RMR 80KD System	Date:	10/24/11	Rev:	
Template:	REI-MC-5707	w w w .rice-inc.com		Chk By:		Date:	

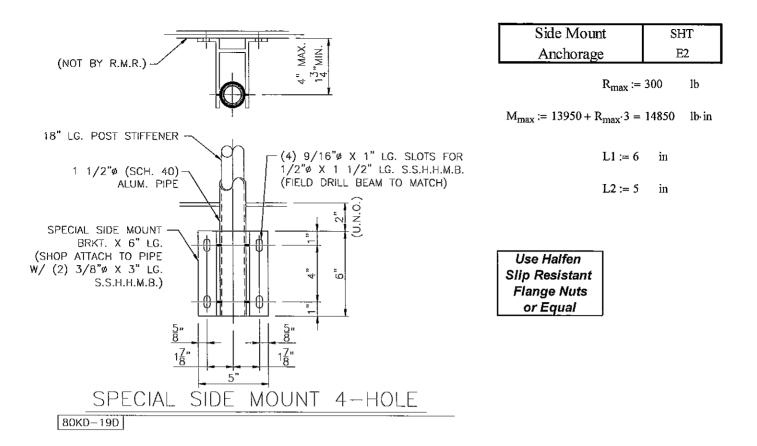
Railing Analysis:	$W_h := \frac{F_H}{12}$	$W_V := \frac{F_V}{12}$		Guardrail "E" Analysis SHT E1 A	
Case 1 Uniform Load:					
$\Delta_{yr1} := \frac{5 \cdot W_h \cdot L^4}{384 \cdot E_r I_{ytotr}}$			$\Delta_{\rm yr1} = 0.466$	in Modeled as a simple span	
$\Delta_{\mathbf{xrl}} \coloneqq \frac{5 \cdot \mathbf{W_V} \cdot \mathbf{L}^4}{384 \cdot \mathbf{E_r} \mathbf{I_{xtotr}}}$			$\Delta_{\textbf{xrl}} = 0$	in	
$\Delta_{\text{allr}} \coloneqq \frac{L}{96}$			$\Delta_{allr} = 0.75$	in Per ASTM Specification E985	
$M_{yrmax} := \frac{W_{h} L^2}{K_1}$			M _{yrmax} = 2700	lb-in	
$M_{xrmax} := \frac{W_{v} \cdot L^2}{K_1}$			M _{xrmax} = 0	lb-in	
					.
$f_{bry1} \coloneqq \frac{M_{yTIMAX}}{S_{yT}}$			f _{bry1} = 8282	psi	
$\mathbf{f}_{brx1} \coloneqq \frac{\mathbf{M}_{xrmax}}{\mathbf{S}_{xr}}$			$\mathbf{f}_{\text{DTX1}} = 0$	psi	
Case 2 - Point Load:					
$\Delta_{yr2} \coloneqq \frac{P \cdot L^3}{K_3 \cdot E_r \cdot I_{ytotr}}$			$\Delta_{yr2}=0.361$	in	
$M_{yrmax2} \coloneqq \frac{P \cdot L}{K_2}$			M _{yrmax2} = 2880	Ib-in	
$f_{bry2} := \frac{M_{yrmax2}}{S_{yr}}$			$f_{bry2}=8834$	psi	
$F_{bry} := \begin{cases} (F_{bry1} \cdot 1.33) & \text{if } IBC \\ F_{bry1} & \text{otherwise} \end{cases}$	= 1		F _{bry} = 25000	psi	

$\begin{aligned} \textbf{Calculation Results:} \\ \text{Int}_{r1} := \left(\frac{f_{brx1}}{F_{bry}} \right) + \left(\frac{f_{bry1}}{F_{bry}} \right) \\ \qquad \text{Int}_{r1} = 0.33 \end{aligned}$

$Int_{r2} := \frac{fbry2}{Fbry}$	$Int_{r2} = 0.35$									
$\text{RAILS} := \frac{\text{"OK"} \text{ if } \frac{\max(\Delta_{yr1}, \Delta_{xr1}, \Delta_{yr2})}{\Delta_{allr}} \le 1 \land \left(\frac{f_{bry1}}{F_{bry}}\right) + \left(\frac{f_{bry1}}{F_{bry}}\right) \le 1 \land \frac{f_{bry2}}{F_{bry}} \le 1$ $\text{"RAILS} = \text{"OK"}$										
		Project Description:	Job No:		R11-10-24C	1				
<u>RICE</u>	Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	E1 A				
ENGINEERING	Fax: (920)845-1048	RMR 80KD System	Date:	10/24/11	Rev:					
Template: REI-MC-5707	www.rice-inc.com		Chk By:		Date:					

Post Analysis:	$\mathbf{E}_{\mathbf{p}} := \mathbf{E}_{\mathbf{r}}$	Guardrail	"E" Ana	alysis E1 B
$\Delta_{xp1} \coloneqq \frac{W_{h} \cdot L \cdot \left(h - L_{st}\right)^{3}}{3 \cdot E_{p} \cdot \left(I_{xp}\right)}$		$\Delta_{xp1} = 0.664$	in	Di B
$\Delta_{xp2} \coloneqq \frac{P \cdot 0.85 \cdot (h - L_{st})^3}{3 \cdot E_{p} \cdot (l_{xp})}$		$\Delta_{\rm xp2} = 0.376$	in	
Max Deflection:				
$\Delta_{tot} \coloneqq \frac{W_h \cdot L \cdot \left(h - L_{st}\right)^3}{3 \cdot E_p \cdot I_{xp}} + \frac{W_h \cdot L \cdot \left[h^3 - H_{st}\right]^3}{3 \cdot \left[\left(E_p \cdot I_{xp}\right) + H_{st}\right]^3}$	$\frac{(h - L_{st})^3}{(E_{p'}I_{st})]}$	$\Delta_{\rm tot} = 2.077$	in	
$\Delta_{allp} := \frac{h}{12}$		$\Delta_{\text{allp}} = 3.88$	in	Per ASTM E985
Case 1 - Uniform Load:				
$\mathbf{M}_{\mathbf{X}\mathbf{p}} \coloneqq \left(\mathbf{W}_{\mathbf{h}} \cdot \mathbf{L} \cdot \mathbf{h} \right) + \mathbf{W}_{\mathbf{V}} \cdot \mathbf{L} \cdot \boldsymbol{\Delta}_{tot}$	$M_{xpmax} \coloneqq 0.5 \cdot M_{xp} \cdot q1 + M_{xp} \cdot q2 + M_{xp} \cdot q3$	M _{xpmax} = 13950	lb·in	
$\mathbf{M}_{xp2} := \mathbf{W}_{h} \cdot \mathbf{L} \cdot \left(\mathbf{h} - \mathbf{L}_{st} \right) + \mathbf{W}_{v} \cdot \mathbf{L} \cdot \boldsymbol{\Delta}_{xp1}$	$\mathbf{M}_{\mathbf{x}\mathbf{p}\mathbf{m}\mathbf{a}\mathbf{x}2} \coloneqq 0.5 \cdot \mathbf{M}_{\mathbf{x}\mathbf{p}2} \cdot \mathbf{q}1 + \mathbf{M}_{\mathbf{x}\mathbf{p}2}\mathbf{q}2 + \mathbf{M}_{\mathbf{x}\mathbf{p}2} \cdot \mathbf{q}3$	M _{xpmax2} = 8250	lb∙in	
Case 2 - Point Load:				
$M_{\text{xpmax4}} := P \cdot (h - L_{\text{st}}) \cdot 0.85$		M _{xpmax4} = 4675	lb·in	
$M_{xpmax3} := (P \cdot h \cdot 0.85)$		M _{xpmax3} = 7905	lb∙in	
Max Post Stress:				
$\mathbf{f}_{\text{opx}} \coloneqq \frac{\max(M_{\text{xpmax2}}, M_{\text{xpmax4}})}{S_{\text{xp}}}$		$f_{bpx} = 25307$	psi	
$F_{bpx} := \left(F_{bpx1} \cdot 1.33 \right)$ if IBC = 1		F _{bpx} = 25000	psi	
F _{bpx1} otherwise				
Max Post/Stub Combined Stre	ess:			
$f_{bpx2} := max(M_{xpmax}, M_{xpmax3}) \cdot (I_{xp})$	I _{xp} + I _{st})·S _{xp}	$f_{bpx2} = 23730$	psi	
Max Stub Stress:		F _{bpx} = 25000	psi	
$f_{bst} := max(M_{xpmax}, M_{xpmax3}) \cdot \frac{I_s}{(I_{xp} + I_s)}$	t Ist)·Sst	f _{bst} = 19980	psi	
Calculation Results:		F _{bst} = 25000	psi	

 $Int_{p1} \coloneqq max \left(\frac{f_{bpx}}{F_{bpx}}, \frac{f_{bpx2}}{F_{bpx}}, \frac{f_{bst}}{F_{bst}} \right)$


$$\max(\Delta_{xp1}, \Delta_{xp1})$$

Int_{p1} = 1.01 5% Over OK

 $\frac{\left(\Delta_{xp1}, \Delta_{xp2}, \Delta_{tot}\right)}{\Delta_{allp}} \leq 1$ POSTS := "OK" if $Int_{p1} \le 1.014 \land \frac{1}{2}$ "FAIL" otherwise

POSTS = "OK"

<u>RICE</u> ENGINEERING		105 School Creek Trail	Project Description:	Jab No:		- R11-10-240)
		Phone: (920)845-1042		Engineer:	JDB	Sheet No:	El B
		Fax: (920)845-1048		Date:	10/24/11	Rev:	
Template:	REI-MC-5707	www.rice-inc.com		Chk By:		Date:	

Chk Post Attachment to Bracket:

M _{max} R _{max}	17 00/0	
V := - + - +	V = 3863	lb
4(1) (2)		

 $V_{all} := 0.110 \cdot 23000 \cdot (2)$ $V_{all} = 5060$ lb

Chk Extruded Aluminum Bracket:

0.25

$$P := \frac{M_{max}}{L1} + R_{max} \qquad P = 2775 \qquad lb$$

$$M_{pl} := \frac{P}{2} \cdot 0.8125 \qquad M_{pl} = 1127 \quad in \cdot lb$$

$$t_{req} := \sqrt{\frac{6 \cdot M_{pl}}{28000 \cdot L1}} \qquad t_{req} = 0.2 \quad in$$

$$I := \frac{t_{req}}{L1} \qquad I = 0.8$$

Use Side Mount Bracket, As Shown 6105-T5 alloy Chk Anchor Bolts:

 V_{b}

$$= \frac{R_{\text{max}}}{4} \qquad \qquad V_b = 75 \qquad lb$$

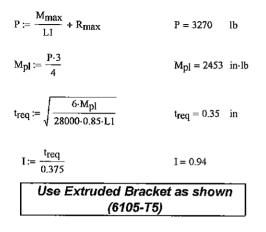
$$T_b := \frac{M_{max}}{L2 \cdot 2} + \frac{R_{max}}{4} \qquad T_b = 1560 \qquad lb$$

$$V_{all} := 0.196.23000$$
 $V_{all} = 4508$ lb

$$T_{all} := 0.142 \cdot 40000 \cdot \frac{0.1875}{0.456}$$
 $T_{all} = 2336$ lb

$$I := \left(\frac{V_b}{V_{all}}\right)^2 + \left(\frac{T_b}{T_{all}}\right)^2 \qquad I = 0.45 < 1.0$$

Use (4) - 1/2" Dia. S.S. Thru Bolts
(or Drill & Tap - 3/16" Min. Thread Engagement)
Cond "CW", Fy= 65 ksi minimum
Steel Stringers Designed By Others


RICE		105 School Creek Trail	Project Description:	Job No:	-	R11-10-240	
-	INEERING	Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	E2
	INEENING	Fax: (920)845-1048	RMR 80KD System	Date:	10/24/11	Rev:	
Template:	REI-MC-5741	www.rice-inc.com		Chk By:		Date:	

Reactions:

R_{max} := 300 lb L1 := 5 in

 $M_{max} := 13950 + R_{max} \cdot 3 = 14850$ lb·in L2 := 4 in

Chk Extruded Aluminum Bracket:

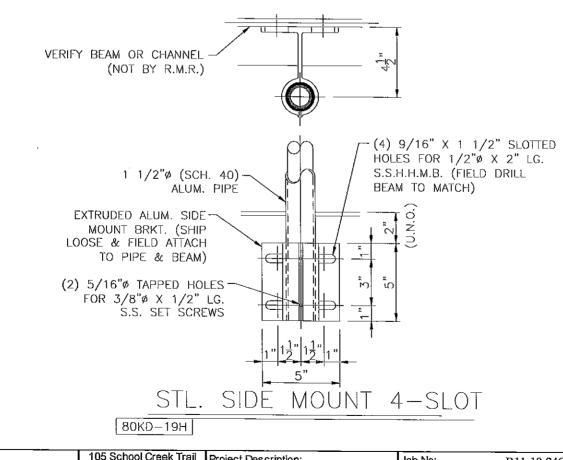
lb (upward)

Use (2) - 3/8" Dia. S.S. Set Screws OK By Inspection

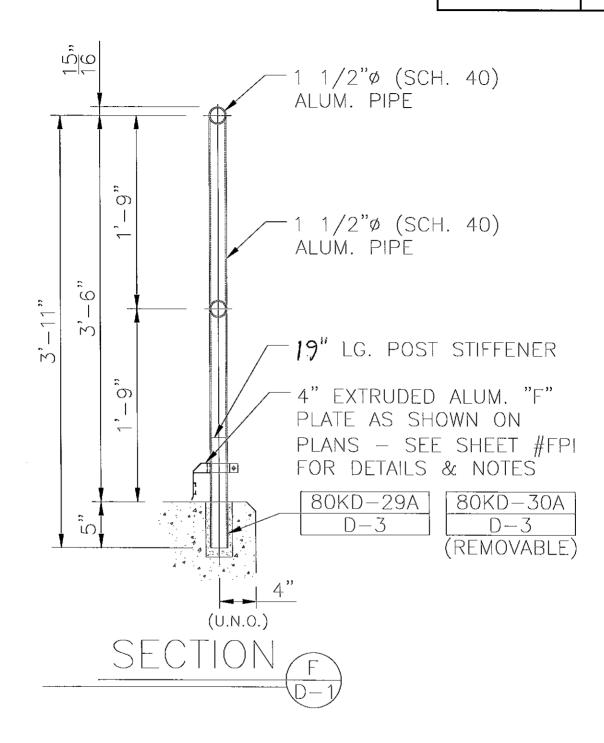
V = 150 Ib

Chk Fasteners:

 $V := \frac{R_{max}}{r}$


2

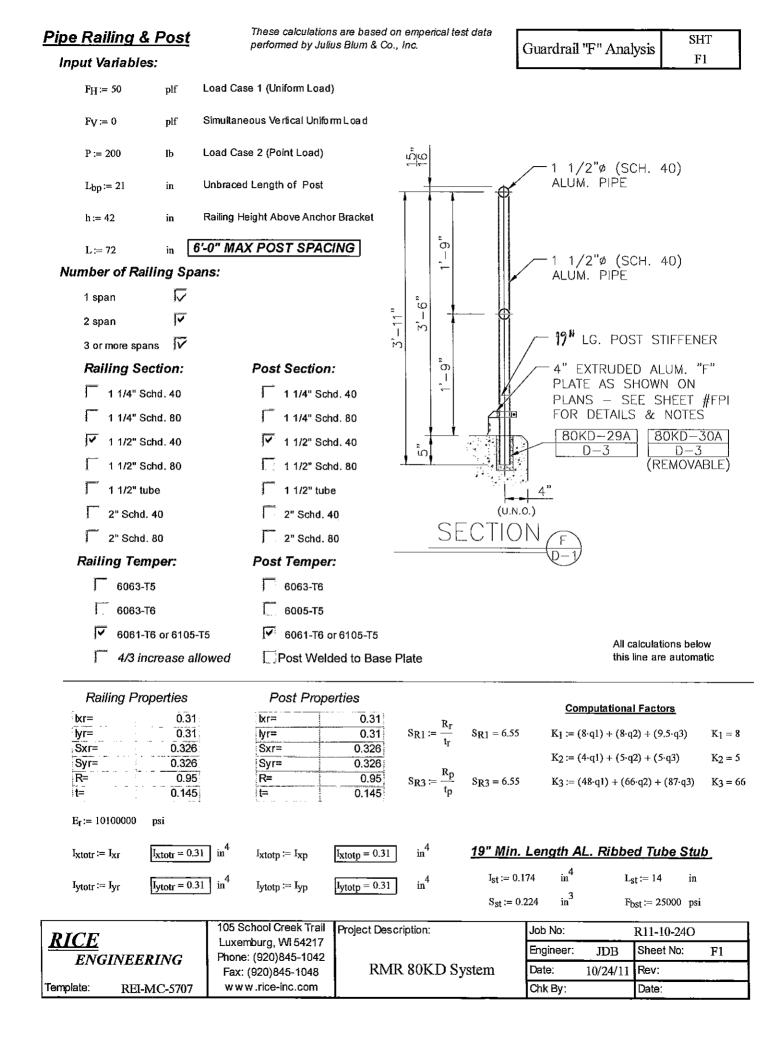
Side Mount Anchor E3


Chk Anchor Bolts (Structural Steel By Others):

$V_b := \frac{R_{max}}{4}$	V _b = 75	lb
$T_b := \frac{M_{max}}{L2 \cdot 2} + \frac{R_{max}}{4}$	T _b = 1931	lb
$V_{all} := 0.196.23000$	V _{all} = 4508	lb
$T_{all} := 0.142 \cdot 40000 \cdot \frac{0.1875}{0.456}$	$T_{all}=2336$	lb
$I := \left(\frac{V_b}{V_{all}}\right)^2 + \left(\frac{T_b}{T_{all}}\right)^2$	l = 0.68 < 1.0	

	<u>Use (4) - 1/2-13 S.S. Bolts</u>
	Drill & Tap or Thru-Bolt
	Min. Thread Engagement = 3/16"
1	(300 Series S.S., Cond. CW, Fy = 65 ksi)

RICE		Project Description:	Job No:		R11-10-24O	
ENGINEERING	Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	E3
LITGHTLLAITU	Fax: (920)845-1048		Date:	10/24/11	Rev:	
Template:	www.rice-inc.com		Chk By:		Date:	



Note: Structural steel, Concrete, CMU and all other anchorage substrates designed by others

ROCKY MOUNTAIN RAILINGS

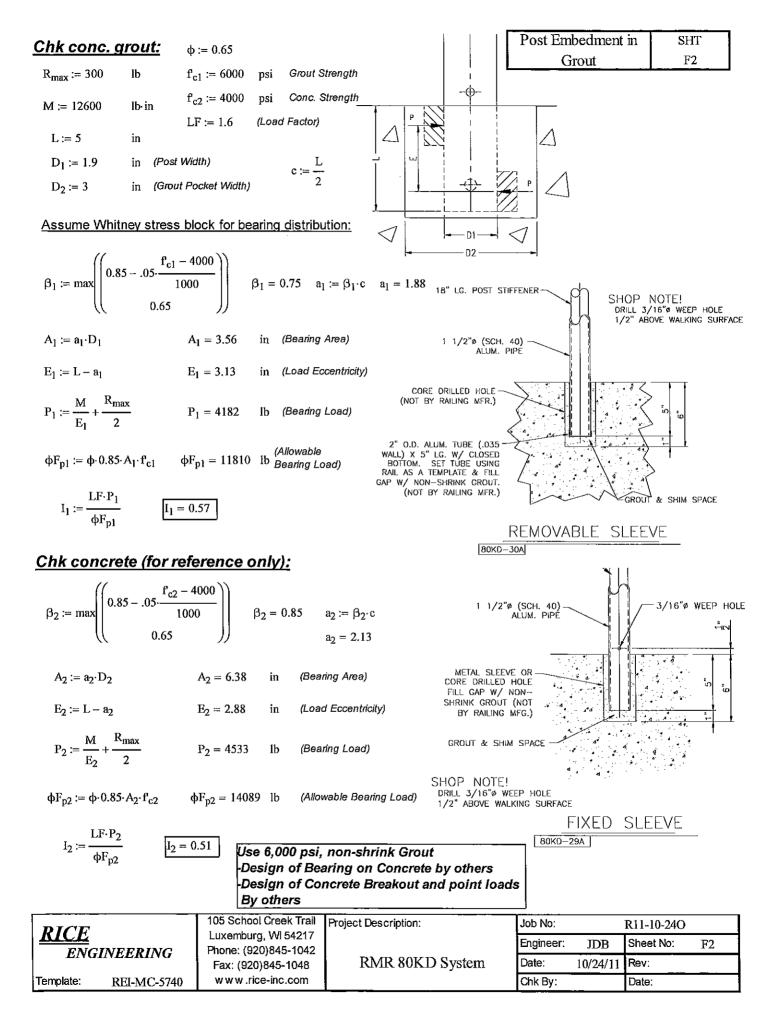
RICE		105 School Creek Trail	Project Description:	Job No:		R11-10-24O	
	INEERING	Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	F
EIVO.	INLEANO	Fax: (920)845-1048	RMR 80KD System	Date:	10/24/1 1	Rev:	
Template:	REI-MC-5707	w w w .rice-inc.com		Chk By:		Date:	

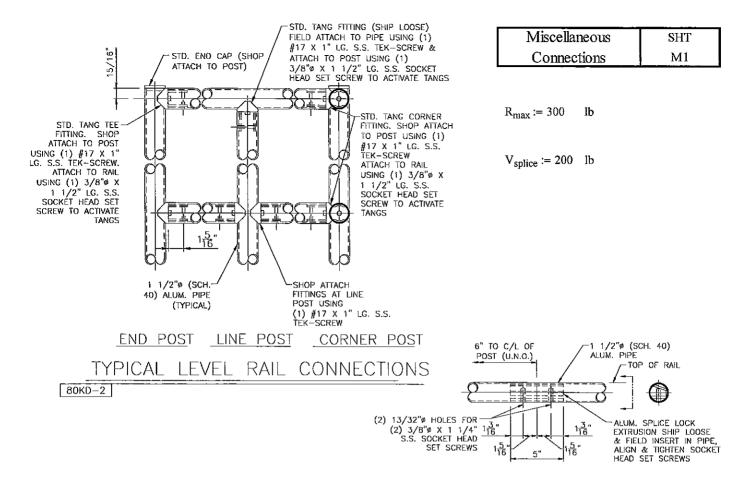
Ra	niling Analysis:	$W_h := \frac{F_H}{12}$	$W_V := \frac{F_V}{12}$		Guardrail "F" Analysis	SHT F1 A
C	ase 1 Uniform Load:					1111
	$\Delta_{yr1} \coloneqq \frac{5 \cdot W_h \cdot L^4}{384 \cdot E_r \cdot I_{ytotr}}$			$\Delta_{yr1}=0.466$	in Modeled as a simple sp	an
	$\Delta_{xr1} \coloneqq \frac{5 \cdot W_v \cdot L^4}{384 \cdot E_r I_{xtotr}}$			$\Delta_{\rm XII} = 0$	in	
	$\Delta_{allr} := \frac{L}{96}$			$\Delta_{allr} = 0.75$	in Per ASTM Specification	n E985
	$M_{yrmax} \coloneqq \frac{W_{h} \cdot L^2}{K_1}$			M _{yrmax} = 2700	lb-in	
	$M_{xrmax} \coloneqq \frac{W_{v} \cdot L^2}{\kappa_1}$			M _{XIIDAX} = 0	lb-in	
Þ	· ·				······	
	$f_{bry1} \coloneqq \frac{M_{yrmax}}{S_{yr}}$			f _{bry1} = 8282	psi	
	$\mathbf{f_{brx1}} \coloneqq \frac{\mathbf{M_{xrmax}}}{\mathbf{S_{xr}}}$			$\mathbf{f}_{DTX1}=0$	psi	
~						
C	ase 2 - Point Load:					
	$\Delta_{yr2} := \frac{P \cdot L^3}{K_3 \cdot E_r \cdot I_{ytotr}}$			$\Delta_{yr2} = 0.361$	in	
	$M_{yrmax2} \coloneqq \frac{P \cdot L}{K_2}$			Myrmax2 = 2880	lb-in	
	$\mathbf{f_{bry2}} \coloneqq \frac{\mathbf{M_{yrmax2}}}{\mathbf{S_{yr}}}$			fbry2 = 8834	psi	
	F _{bry1} := (F _{bry1} ·1.33) if IBC = F _{bry1} otherwise	= 1		F _{bry} = 25000	psi	

Calculation Results:_____

$Int_{r1} := \left(\frac{f_{brx1}}{F_{bry}}\right) + \left(\frac{f_{bry1}}{F_{bry}}\right)$	$Int_{r1} = 0.33$					
$Int_{r2} := \frac{f_{bry2}}{F_{bry}}$	$Int_{\underline{r2}}=0.35$					
RAILS := "OK" if $\frac{\max(\Delta_{yr1}, \Delta_{a})}{\Delta_{a}}$ "FAIL" otherwise	$\frac{\Delta_{xr1}, \Delta_{yr2}}{\ln r} \le 1 \land \left(\frac{f_{brx1}}{F_{bry}}\right)$	$+\left(\frac{\text{fbry1}}{\text{Fbry}}\right) \le 1 \land \frac{\text{fbry2}}{\text{Fbry}} \le 1$	ILS = "OK"			
DICE	105 School Creek Trail	Project Description:	Job No:	- *	R11-10-240	
<u>RICE</u> ENGINEERING	Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	F1 A
ENGINEEKING Fax: (920)845-1048		RMR 80KD System	Date:	10/24/11	Rev:	
Template: REI-MC-5707	REI-MC-5707 www.rice-inc.com		Chk By:		Date:	

Post Analysis:	$\mathbf{E}_{\mathbf{p}} \coloneqq \mathbf{E}_{\mathbf{r}}$		Guardrai	"F" Analys	SHT
$\Delta_{xp1} := \frac{W_h \cdot L \cdot (h - L_{st})^3}{3 \cdot E_p \cdot (I_{xp})}$		$\Delta_{\rm xt}$	01 = 0.701	in in	F1 B
$\Delta_{xp2} := \frac{P \cdot 0.85 \cdot (h - L_{st})^3}{3 \cdot E_{p} \cdot (I_{xp})}$			= 0.397	in	
Max Deflection:					
$\Delta_{tot} \coloneqq \frac{W_{h} \cdot L \cdot \left(h - L_{st}\right)^{3}}{3 \cdot E_{p} \cdot I_{Xp}} + \frac{W_{h} \cdot L \cdot \left[h^{3} - \frac{1}{3}\right]}{3 \cdot \left[E_{p} \cdot I_{x}\right]^{3}}$	$\frac{3 - (h - L_{st})^3}{sp + (E_p \cdot I_{st})]}$	Δ_{to}	t = 1.768	in	
$\Delta_{\text{allp}} \coloneqq \frac{h}{12}$		Δ_{al}	lp = 3.5	in Pe	er ASTM E985
Case 1 - Uniform Load:					
$\mathbf{M}_{\mathbf{X}\mathbf{p}} \coloneqq \left(\mathbf{W}_{\mathbf{h}} \cdot \mathbf{L} \cdot \mathbf{h} \right) + \mathbf{W}_{\mathbf{V}} \cdot \mathbf{L} \cdot \boldsymbol{\Delta}_{tot}$	$M_{xpmax} \coloneqq 0.5 \cdot M_{xp} \cdot q1 + M_{xp} q2 + M_{xp} \cdot q3$	M _{XI}	omax = 12600	lb∙in	
$\mathbf{M}_{\mathbf{X}\mathbf{p}2} \coloneqq \mathbf{W}_{\mathbf{h}'}\mathbf{L}\cdot\left(\mathbf{h}-\mathbf{L}_{\mathbf{s}\mathbf{t}}\right) + \mathbf{W}_{\mathbf{v}'}\mathbf{L}\cdot\Delta_{\mathbf{X}\mathbf{p}}$	$M_{xpmax2} := 0.5 \cdot M_{xp2} \cdot q1 + M_{xp2} q2 + M_{xp2} \cdot q3$	M _{XI}	omax2 = 8400	lb∙in	
Case 2 - Point Load:					
$M_{\text{xpmax4}} \coloneqq P \cdot (h - L_{\text{st}}) \cdot 0.85$		M _{XĮ}	omax4 = 4760	lb•in	
$M_{xpmax3} := (P \cdot h \cdot 0.85)$		M _X	omax3 = 7140	lb-in	
Max Post Stress:					
$f_{\text{Opx}} \coloneqq \frac{\max(M_{\text{Xpmax2}}, M_{\text{Xpmax4}})}{S_{\text{Xp}}}$		f _{bpx}	<u>k</u> = 25767	psi	
$F_{bpx} := \begin{cases} F_{bpx1} \cdot 1.33 & \text{if IBC} = 1 \\ F_{bpx1} & \text{otherwise} \end{cases}$		Fbp	x = 25000	psi	
Max Post/Stub Combined S	Stress:				
$f_{bpx2} := max(M_{xpmax}, M_{xpmax3}) \cdot (I)$	$\frac{I_{xp}}{xp + I_{st} \cdot S_{xp}}$	fbp	<u>2 = 24755</u>	psi	
Max Stub Stress:		Fbp	_x = 25000	psi	
$f_{bst} := max(M_{xpmax}, M_{xpmax3}) \cdot \overline{(I_{xpmax}, M_{xpmax3})}$	$\frac{I_{st}}{I_{st} + I_{st} \cdot S_{st}}$	fbst	= 20222	psi	
Calculation Results:		Fbs	t = 25000	psi	
$\mathrm{Int}_{p1} := \max\!\!\left(\frac{\mathrm{fbpx}}{\mathrm{Fbpx}}, \frac{\mathrm{fbpx2}}{\mathrm{Fbpx}}, \frac{\mathrm{fbst}}{\mathrm{Fbst}}\right)$		Intp	₀₁ = 1.03 3%	Over OK	
POSTS := "OK" if $Int_{p1} \le 1.034$	$\frac{\max(\Delta_{xp1}, \Delta_{xp2}, \Delta_{tot})}{\Delta_{allp}} \le 1$	P	OSTS = "OK"]	
"FAIL" otherwise	05 School Creek Trail Project Description:		lok Mar		11.10.010
<u>RICE</u> ENGINEERINGI	Luxemburg, WI 54217 hone: (920)845-1042 Fax: (920)845-1048 RMR 80KD Syst	tem	Job No: Engineer: Date:	JDB S	11-10-24O heet No: F1 B ev:
Template: REI-MC-5707	w w w .rice-inc.com		Chk By:		


Chk By:


Date:

REI-MC-5707

www.rice-inc.com

Template:

Chk 3/8" Dia. Set Screws @ Splice:

Use (2) - 3/8" Dia. S.S. Set Screws per Splice
Cond "CW", Fy= 65 ksi
Ok By Inspection - Shear Loads at Splice Only

$T := R_{max}$	T = 300	lb
$T_{all} := 3100 \cdot \frac{0.145}{0.341}$	$T_{all} = 1318$	lb

Use (1) - 3/8" Dia. S.S. Set Screws per "Tang" Cond "CW", Fy= 65 ksi

 in^2 Chk Splice Piece: A := 0.035 $f_v := \frac{V_{splice}}{A}$

 $L_{v} = 5714$ psi

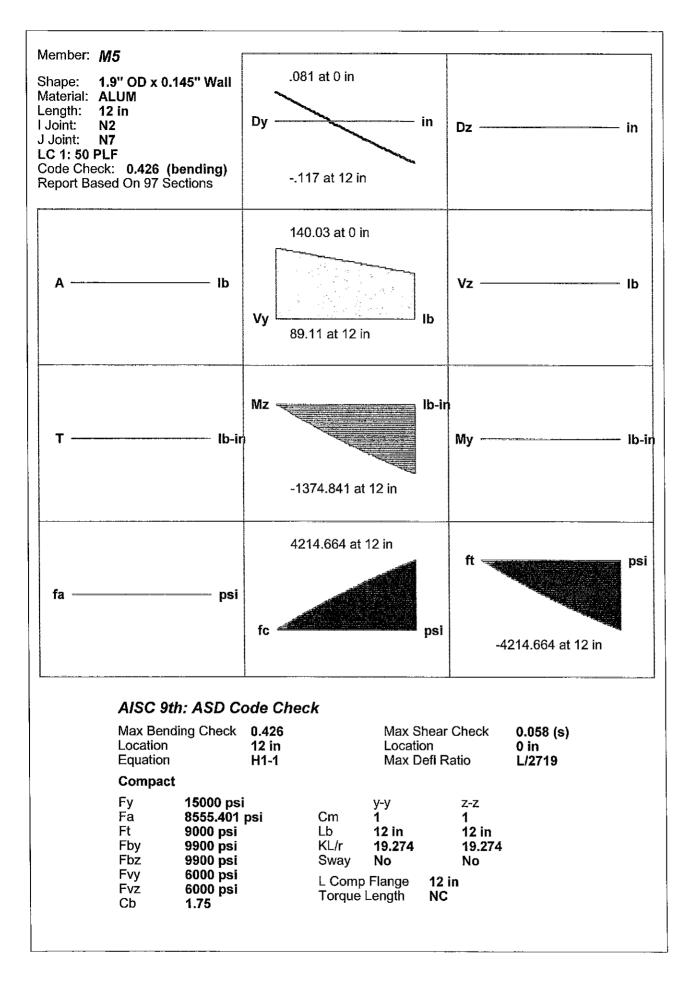
 $F_v := 12000$ psi

Use Aluminum Splice Piece, As Shown 6105-T5 or 6061-T6 Alloy

Chk Screw @ Tang/Post :

$$V := R_{max}$$

V = 300lb

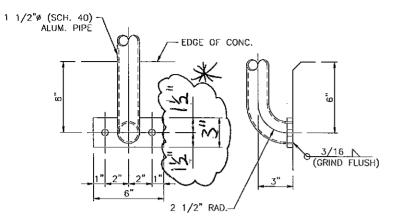

```
V_{all2} := 2148 \cdot 0.333
```

 $V_{all2} = 715$ 1b

<u>Use (1) - #17 S.S. TEK Screw</u>
300 Series S.S.
ITW Buildex or Better

<u>RICE</u> ENGINEERING		105 School Creek Trail	Project Description:	Job No:		R11-10-24O	
		Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	M 1
		Fax: (920)845-1048	RMR 80KD System	Date:	10/24/1 1	Rev:	
Template:	REI-MC-5741	www.rice-inc.com		Chk By:		Date:	

See week to week	Oct 25, 2011 at 3:13 PM 6 ft Splice Loads.r3d
Z Z X Iorthun Market Sector Sopre Results for LC 1, 50 PLF Results for LC 1, 50 PLF	Joe Bauer 6 ft Rail Lengths


ASSUME GROUT FILLED CMU **DESIGNED BY OTHERS**

Wall Rail Post Bracket	SHT
Analysis	M2

(Reaction From RISA Model)

R_{max} := 113 lb

 $M_{max} := 2287$ lb·in

CUSTOMER NOTE! FILL VOID CAVITY IN CMU WITH GROUT © ALL RAIL MOUNTING LOCATIONS.

Chk Aluminum Base Plate:

Chk	Aluminun	n Base F	late:					$f_W := \frac{T}{A_W}$			$f_W = 2151$	psi
	LI := 6	in	D1 ;= 1	in							F _W := 6500	psi
	L2 := 3	in	D2:≂ 3	in								
	t := 0.5	in						<u>Use 3/10</u>		l around ler alloy	as noted	
	L:= L1 - (2	2·D1)	1	L = 4	in		Chk	(Bolts to (Grout Fille	d CMU:		
	$P := \frac{M_{max}}{d}$]	P = 1204	lb			$V_b := \frac{R_{max}}{2}$			V _b = 57	lb
	M _{p1} := 0.5-1			M _{p1} = 602	in•lb			$\mathbf{T}_{\mathbf{b}} := \frac{\mathbf{M}_{\mathbf{n}}}{2 \cdot (0.5 \cdot \mathbf{n})}$	$\frac{1}{1}$ $\frac{1}$	nax 2)	$T_b = 953$	lb
	M _{pl2} := 0.5-	·P·(1.05)]	Mpl2 = 632	in•lb			$T_{all} := min(11)$	00 1975 0 5)	_,	$T_{a 1} = 988$	lb
	$t_{req1} := \sqrt{\frac{1}{1}}$	M _{p1} .6 12000).L2	1	t _{req1} = 0.317	in			Vall := min(14			$V_{all} = 1378$	lb
	$t_{req2} := \sqrt{\frac{1}{(2)}}$	M _{pl2} .6 28000)-L2	1	t _{req2} = 0.212	in	¥		$I_{b} := \left(\frac{T_{b}}{T_{all}}\right)^{1}$	$+\left(\frac{v_b}{v_{all}}\right)^1$.67	$l_b = 0.95$	
	$I_2 := \frac{\max(t_1)}{t_2}$	req1,treq2) t		I <u>2</u> = 0.63	¥	Xk Notei Anchor				-HY 150	ded Rods MAX SD Ad	dhesive
	Use 1	1/2" x 6" 6061-T		. Plate	A	Size			End Dista Embedmer	nce: 4"		
			10	05 School C	reek Trail	Project Desc	ription:		Job No:		R11-10-240	
<u> KI</u>	<u>CE</u> ENCINI			uxemburg, \ hone: (920)&					Engineer:	JDB	Sheet No:	M2
	ENGINE	LEKING		Fax: (920)84		RMF	R 80KD S	ystem	Date:	10/24/11	Rev:	
Temp	late:			ww.rice-	inc.com				Chk By:		Date:	

Chk weld to base plate:

 $A_W := t_W(\pi \cdot 0.5 \cdot d)$

M_{max}

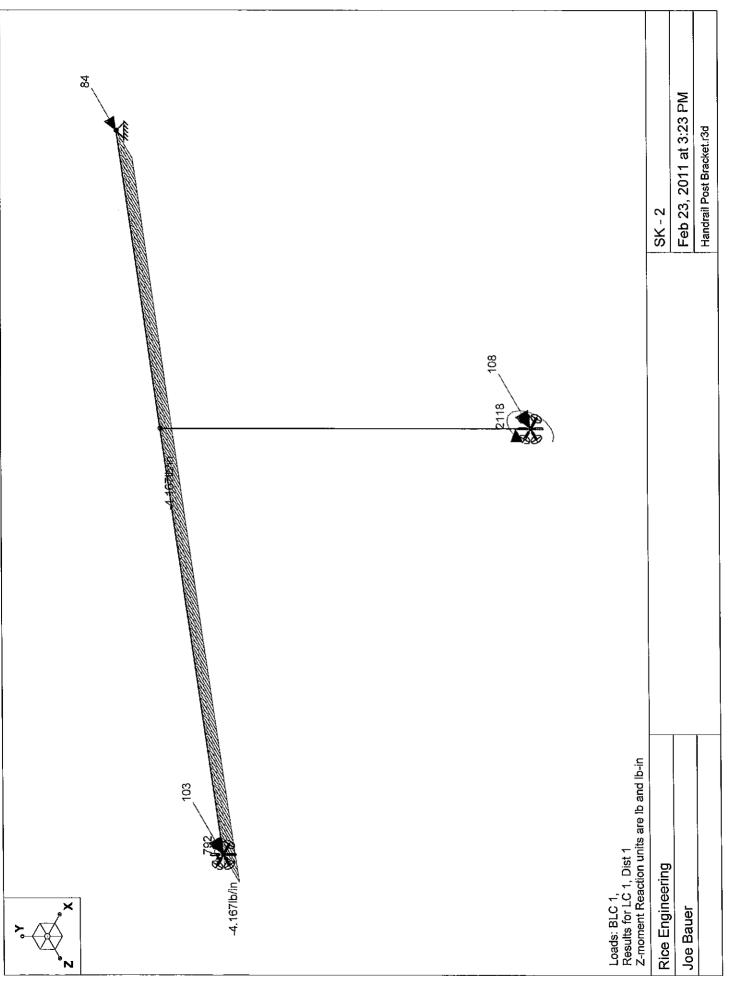
ď

in (thickness of weld)

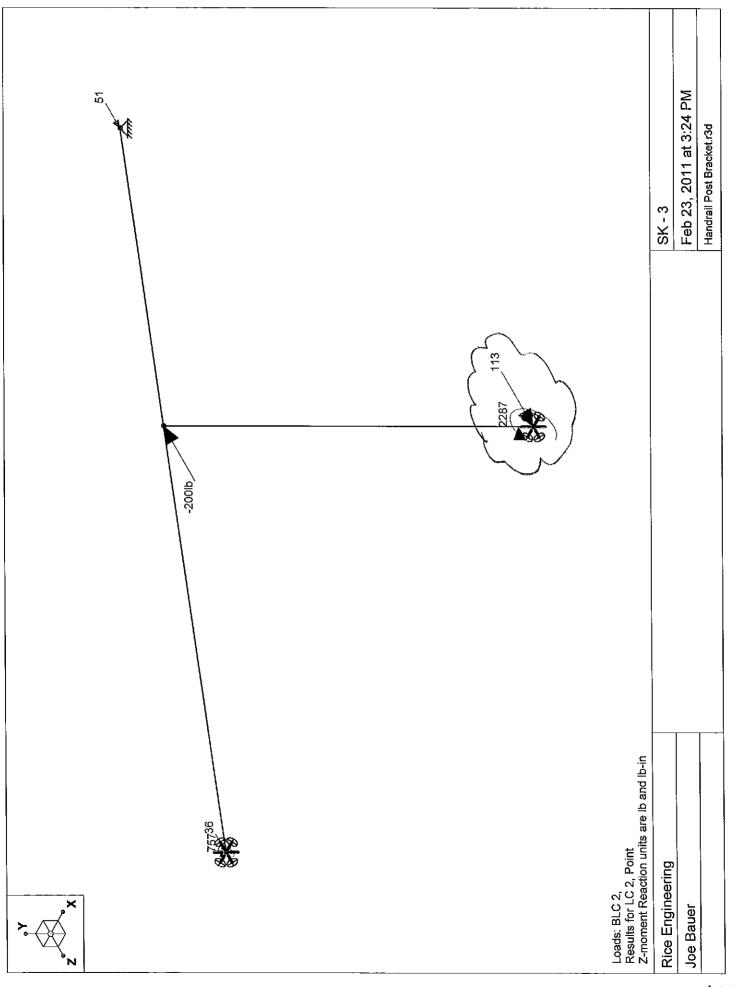
in²

lb

 $A_{W} = 0.56$


T = 1204

in (stub depth)


tw:= 0.1875

d := 1.9

T :=

.

<u> Pipe Handrail</u>	!		ese calculations formed by Juliu			al test data	Wall or Grab Rail	SHT	· .	
		<i>,</i>	·····		,		Analysis	М3	М3	
Input Variable										
$F_{\mathbf{H}} := 50$	<u>1b</u> ft	Load Case 1	(Uniform Load)							
F V := 0	<u>lb</u> ft	Simultaneous	s Ventical Uniform	n L. oa d						
P := 200	lb	Load Case 2	(Point Load)							
L := 72	in	MAX BRA	CKET SPAC	ING (d	ci to ci)	Note: B	Sracket Spacing ted to 5'0" and verned by the	_		
Number of R	ailing S	pans:			Ì	is lini	Led to 5'0" and	lis		
1 span	レ					1 0 0 0 0 0		1	\	
2 span	ম					not go	verned by the	(ail)	/ -	
3 or more spa	ans 🗸						,			
Railing Se	ection:				(
T 11/4" S	ichd. 40				\rightarrow					
🗍 1 1/4" S	chd. 80				<u>V</u>		<u> </u>			
🗹 1 1/2" S	ichd. 40									
1 1/2" S	ichd. 80					-	ф			
1 1/2" tu										
2" Schd										
2" Schd										
Railing Ter	nper:									
✓ 6105-	T5 or 6061	-T6								
6063 -	Т5									
\ 4/3 ir	icrease a	llowed						ations below re automatic		
Railing Pro	operties						Computational Fac	tors		
kr= jyr=	0.31 0.31						$K_1 := (8 \cdot q1) + (8 \cdot q2) + (8 \cdot q2)$		K1 = 8	
Sxr=	0.326	5								
Syr= R=	0.326						$K_2 := (4 \cdot q1) + (5 \cdot q2) + ($		K ₂ = 5	
t=	0.145	?					$K_3 := (48 \cdot q1) + (66 \cdot q2) \cdot q_3$	⊦ (87·q3)	K3 = 66	
E _r := 10100000	psi									
$I_{xtotr} := I_{xr}$	I _{xtotr} :	= 0.31 in ⁴		R _r						
$\mathbf{I_{ytotr}}\coloneqq\mathbf{I_{yr}}$	^I ytotr :	= 0.31 in ⁴	S _{R1} ≔	t _T	S _{R1} = 6.55					
DICT		105 Scho	ol Creek Trail	Project	Description:		Job No: R11-	-1 0-24O		
RICE		Luxembu	rg, WI 54217		•					

DICE			Project Description:	Job No:		R11-10-24O	
<u>RICE</u> Engineering		Luxemburg, WI 54217		Engineer:	JDB	Sheet No:	M3
		Phone: (920)845-1042	RMR 80KD System	Ligilicet.	JDB	Sheet NO.	MS
		Fax: (920)845-1048		Date:	10/24/11	Rev:	
Template:	REI-MC-5702	w w w .rice-inc.com		Chk By:		Date:	

Railing Analysis: Case 1 Uniform Load:	$W_h := \frac{F_H}{12}$	$W_V := \frac{F_V}{12}$	[Wall or Grab Rail Analysis	SHT M3 A
$\Delta_{yr1} := \frac{5 \cdot W_{h} \cdot L^{4}}{384 \cdot E_{r} \cdot I_{ytotr}}$			Δ _{yr1} = 0.466	in Modeled as a sir	nple span
$\Delta_{\mathbf{X}\mathbf{\Gamma}\mathbf{I}} := \frac{5 \cdot \mathbf{W}_{\mathbf{V}} \cdot \mathbf{L}^4}{384 \cdot \mathbf{E}_{\mathbf{\Gamma}} \mathbf{I}_{\mathbf{X} \text{totr}}}$			$\Delta_{\rm Xrl} = 0$	in	
$\Delta_{\text{allr}} \coloneqq \frac{L}{96}$			$\Delta_{allr} = 0.75$	in Per ASTM E98:	5
$\mathbf{M}_{\mathbf{yrmax}} \coloneqq \frac{\mathbf{W}_{\mathbf{h}} \cdot \mathbf{L}^2}{\mathbf{K}_1}$			M _{yrmax} = 2700	lb-in	
$M_{xrmax} := \frac{W_{v} L^2}{K_1}$			M _{xrmax} = 0	lb∙in	

$f_{bTy1} \coloneqq \frac{M_{yTmax}}{S_{yT}}$	f _{bry1} = 8282	psi
$f_{brx1} \coloneqq \frac{M_{xrmax}}{S_{xr}}$	$f_{brx1} = 0$	psi

Case 1 Point Load:

$\Delta_{yr2} := \frac{P \cdot L^3}{K_3 \cdot E_r I_{ytotr}}$	$\Delta_{\rm yr2}=0.361$	in
$M_{yrmax2} \coloneqq \frac{P \cdot L}{K_2}$	M _{yrmax2} = 2880	lb·in
$f_{bry2} \coloneqq \frac{Myrmax2}{S_{yr}}$	$\mathbf{f}_{bry2} = 8834$	psi
$F_{bry} := (F_{bry1} \cdot 1.34)$ if IBC = 1	$F_{\rm bry} = 25000$	psi

 $F_{bry} := \begin{cases} (F_{bry1} \cdot 1.34) & \text{if IBC} = 1 \\ F_{bry1} & \text{otherwise} \end{cases}$

Calculation Results:_____

$$Int_{r1} := \left(\frac{f_{brx1}}{F_{bry}}\right) + \left(\frac{f_{bry1}}{F_{bry}}\right) \qquad Int_{r1} = 0.33$$

$$Int_{r2} := \frac{f_{bry2}}{F_{bry}} \qquad Int_{r2} = 0.35$$

$$RAILS := \begin{bmatrix} "OK" & \text{if } \frac{max(\Delta_{yr1}, \Delta_{xr1}, \Delta_{yr2})}{\Delta_{allr}} \le 1 \land \left(\frac{f_{brx1}}{F_{bry}}\right) + \left(\frac{f_{bry1}}{F_{bry}}\right) \le 1 \land \frac{f_{bry2}}{F_{bry}} \le 1$$

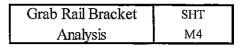
$$RAILS := \begin{bmatrix} "OK" & \text{if } \frac{max(\Delta_{yr1}, \Delta_{xr1}, \Delta_{yr2})}{\Delta_{allr}} \le 1 \land \left(\frac{f_{bry1}}{F_{bry}}\right) \le 1 \land \frac{f_{bry2}}{F_{bry}} \le 1$$

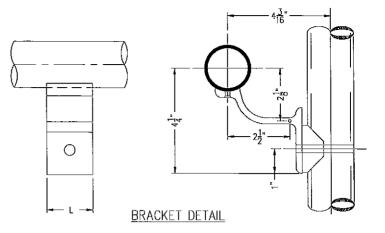
$$RAILS := \begin{bmatrix} "OK" & \text{if } \frac{max(\Delta_{yr1}, \Delta_{xr1}, \Delta_{yr2})}{\Delta_{allr}} \le 1 \land \left(\frac{f_{bry1}}{F_{bry}}\right) \le 1 \land \frac{f_{bry2}}{F_{bry}} \le 1$$

<u>RICE</u>			Project Description:	Job No:		R11-10-24O	
		Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	M3 A
ENGINEERING	Fax: (920)845-1048	RMR 80KD System	Date:	10/24/11	Rev:		
Template:	REI-MC-5702	w w w .rice-inc.com		Chk By:		Date:	

Inputs:

$L_{\rm S} \coloneqq 60$	in	(bracket span)	A := 3.0	in
$w_h := 0$	plf	(horiz uniform load)	B := 2.125	in
w _v := 50	plf	(vert uniform load)	C := 2.5	in
P := 200	lb	(conc. load)	D := 1.0	in
Fb := 28000	psi	(Allowable Stress)	H:= 4.25	in
			L := 2	in


t := 0.25


in

4/3 Stress Increase Allowed

Horizontal Uniform Loading:

$\mathbf{R}_1 \coloneqq \frac{\mathbf{w}_{\mathbf{h}} \cdot \mathbf{L}_{\mathbf{S}}}{12}$	$R_1 = 0$	lbs
$M_1 := \mathbf{B} \cdot \mathbf{R}_1$	M1 = 0	in-lb

Vertical Uniform Loading:

$R_2 := \frac{w_v \cdot L_s}{12}$	$R_2 = 250$	lbs
$M_2 := C \cdot R_2$	$M_2 = 625$	in-lb
$M_{b1} \coloneqq M_1 + M_2$	M _{b1} = 625	in-lb

Concentrated Loading:

Use Aluminum Rail Bracket,

6105-T5 or 6061-T6 Alloy, 2" Long

$M_{b2} := P \cdot B$	M _b 2 = 425	in-lb	Anchorage to Post	Horizontal Load (Case):
			$M_3 := H \cdot P$	M3 = 850 in-ll	b
$\mathbf{M}_{b} := \max \left(\mathbf{M}_{b1}, \mathbf{M}_{b2} \right)$	Mb = 625	in-Ib	$T_p \coloneqq \frac{M_3}{0.85D} + P$	$T_{\mathbf{p}} = 1200$ lbs	
$F_{b1} := (F_{b} \cdot 1.34)$ if IBC = 1			$V := \max(R_2, 200)$	V = 250 lbs	i
$F_{b1} := (F_{b} \cdot 1.34) \text{ if } IBC = 1$ $F_{b} \text{ otherwise}$			$T_{all} := 3100 \cdot \frac{0.145}{0.341}$	$T_{all} = 1318$ lbs	ł
				Vall := 1614 lbs	I
$t_{req} \coloneqq \sqrt{\frac{6M_b}{F_{bl} \cdot L}}$	$t_{req} = 0.26$	in	$I_{b} := \left(\frac{T_{p}}{T_{all}}\right)^{2} + \left(\frac{V}{V_{all}}\right)^{2}$	$I_{b} = 0.85$	
Interaction:			<u>Use (1) - 3/8" Di</u>	a. S.S. Thru Bol	<u>Its</u>
$I := \frac{t_{req}}{t}$	I = 1,04 < 5	<u>5% Over OK</u>	Cond "CW	", Fy= 65 ksi	
1 <u>t</u>	1 - 1,04 <u>- (</u>		Duralist to Oral D	"	

Bracket to Grab Rail Screws:

Use (2) #1/4-20 S.S. Fasteners "OK" per inspection

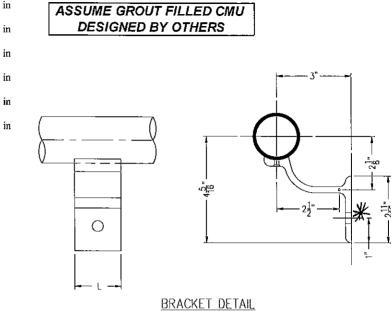
DICE		Project Description:	Job No:		R11-10-240	
RICE ENGINEERINGLuxemburg, WI 54217 Phone: (920)845-1042			Engineer:	JDB	Sheet No:	M4
ENUTIVEEKINU	Fax: (920)845-1048	RMR 80KD System	Date:	10/24/11	Rev:	
Template:	w w w .rice-inc.com		Chk By:		Date:	

Inputs:

 $R_1 := \frac{w_h \cdot L_S}{12}$

 $M_1 := B \cdot R_1$

L _s := 60	in	(bracket span)	A := 2.5	in
w _h := 0	plf	(horiz uniform load)	B := 2.125	in
w _v := 50	plf	(vert uniform load)	C := 2.5	in
P := 200	lb	(conc. load)	D:= 1.0	in
Fb := 28000	psi	(Allowable Stress)	H:= 4.313	in
			L := 2	in
4/3 Stre	ss Inc	rease Allowed	t := 0.25	in


 $R_1 = 0$

 $M_1 = 0$

lbs

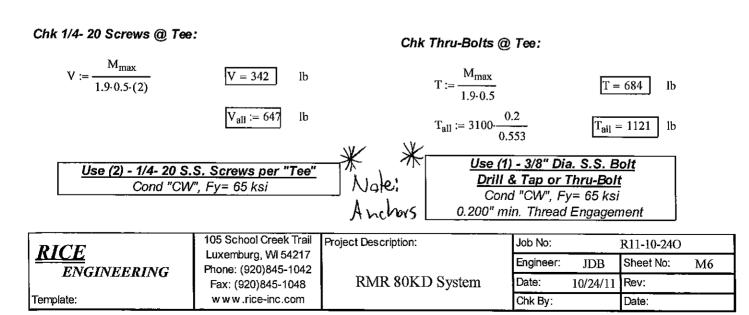
in-lb

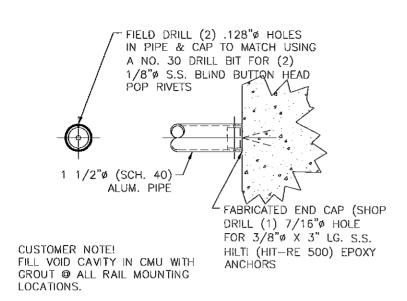
Wall Rail Bracket	SHT
Analysis	M5

Vertical Uniform Loading:

Horizontal Uniform Loading:

$\mathbf{R}_2 \coloneqq \frac{\mathbf{w}_{\mathbf{V}} \cdot \mathbf{L}_{\mathbf{S}}}{12}$	$R_2 = 250$	lbs
$M_2 := C \cdot R_2$	M ₂ = 625	in-lb


Wall Anchorage (Horizontal Load Case):


Concentrated Loading:			$M_4 := max(P \cdot H, R_1 \cdot H, R_2 \cdot A)$	M4 = 863	in-lb
$M_3 := P \cdot max(B, C)$	$M_3 = 500$	in-lb	$T_p := \frac{M_4}{D \cdot 0.85} + P$	T _p = 1215	lbs
			$\mathbf{V} \coloneqq \max(\mathbf{R}_2, 200)$	V = 250	lbs
$\mathbf{M}_{\mathbf{b}} \coloneqq \max \left(\mathbf{M}_1, \mathbf{M}_2, \mathbf{M}_3 \right)$	M _b = 625	in-lb		T _{all} := 1319	lbs
				V _{all} := 2181	lbs
$F_{b1} := (F_{b} \cdot 1.34)$ if IBC = 1 F_{b} otherwise			$I_{b} := \left(\frac{T_{p}}{T_{all}}\right)^{1.67} + \left(\frac{V}{V_{all}}\right)^{1.67}$	$I_b = 0.9$	
$t_{req} := \sqrt{\frac{6 \cdot M_b}{F_{bl} \cdot L}}$	$t_{req} = 0.26$	in Note: Anchor Size	End D	HIT-HY 150 Distance: 4" istance: 4"	
Interaction:		Size	Embed	ment: 4-1/2"	
$I := \frac{t_{req}}{t}$	I = 1.04 < 5	5% <u>OK</u>	Bracket to Grab Rail	Screws:	
Use Aluminum Wall Bi 6105-T5 or 6061-T6 All	•		Use (2) #1/4-20 S.S. Fa "OK" per inspection	steners	
	105 Schoo	ol Creek Trail Project Des	cription		R11-10-24O

DICE	105 School Creek Trail Project Description:		Job No:		R11-10-240)	
<u>RICE</u> <u>ENGINEERING</u> Luxemburg, WI 54217 Phone: (920)845-1042			Engineer:	JDB	Sheet No:	M5	
ENGINEEKING	Fax: (920)845-1048	RMR 80KD System		Date:	10/24/11	Rev:	
Template:	w w w .rice-inc.com		Chk By:	Chk By:			

80KD--35E

WALL MOUNT END CAP

Chk Fasteners:

Use (2) 1/8" Dia. S.S. Blind Button Head Pop Rivets (OK By Inspection)

Chk End Cap:

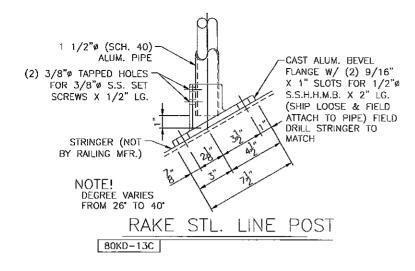
Use End Cap as shown (OK By Inspection)

Chk Anchors: (Assume Grout Filled CMU)

$$R_{max} := 200 \quad lb$$

$$V := \frac{R_{max}}{1} \qquad \boxed{V = 200} \quad lb$$

$$V_{all} := 1419 \qquad \boxed{V_{all} = 1419} \quad lb$$


$$\underbrace{Use (1) - 3/8" Dia. S.S. Threaded Rod w/}_{HUT}$$
HUT: HIT-RE 500 MAX SD or HIT-HX 150 MAX Add

Hilti HIT-RE 500 MAX SD or HIT-HY 150 MAX Adhesive 3-3/8" Min. Embedment 4" Min. Edge Distance $V_{all2} := 380$ lb

Use (1) 1/4" Dia. S.S. Hilti Kwik Bolt 3
(300 Series S.S.)
1-1/8" Min. Embedment
4" Min. Edge Distance

<u>RICE</u> Engineering	105 School Creek Trail	Project Description:	Job No:		R11-10-24O	
	Luxemburg, WI 54217 Phone: (920)845-1042	RMR 80KD System	Engineer:	JDB	Sheet No:	M7
	Fax: (920)845-1048		Date:	10/24/11	Rev:	
Template:	w w w .rice-inc.com		Chk By:		Date:	

OR

2 Bolt Raked	SHT
Base Plate	M8

Actual Loads:

L _r := 60	in	Rail Length
h := 42	in	Rail Height

 $R_1 := 4.17 \cdot (L_r) = 250$ lb

 $M_1 := max(R_1 \cdot h, 200 \cdot 0.85 \cdot h) = 10508$ in lb

 $M_{max1} := cos(32deg) \cdot M_1 = 8912$ in lb

d := 2.5 in (sleeve dia.)

Maximum Loads:

R_{max} := 250 lb

 $M := R_{max} \cdot 42 = 10500 \quad \text{ in lb}$

 $M_{max} := \cos(32 \text{deg}) \cdot M = 8905$ in lb

 $\sigma_{max} := 14182$ psi

Based on Algor Model

psi

 $s_{eff} \coloneqq \frac{M_{max}}{\sigma_{max}} = 0.63 ~~in^3$ Based on Algor Model

Chk Aluminum Base Plate:

L1 := 7.5	in	D1 := 1	in
L2 := 2.5	in	D2 := 1.25	in
t := 0.5	in		

M_{max1} $\sigma_{actual} = 14193$ psi $\sigma_{actual} :=$ Seff

 $I_2 = 1$

 $\sigma_{ail} \coloneqq \frac{1.3 \cdot (18000)}{1.3 \cdot (18000)}$ $\sigma_{all} = 14182$ 1,65

σactual l<u>2</u> := σali

Use Cast Aluminum Base, as shown 535 casting alloy, Fu= 35 ksi min.

Note: Model based on 5'-0" max post spacing measured along rail and a post height of 3'-6" See next page for worst case Algor model results

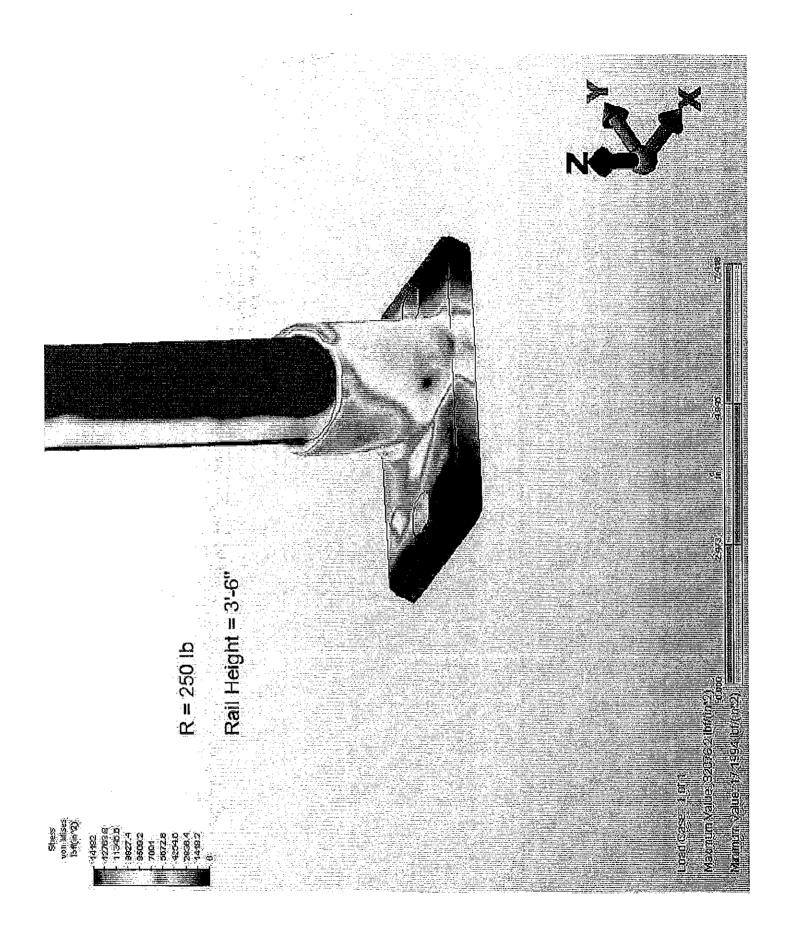
<u>RICE</u> Engineering	105 School Creek Trail	Project Description:	Job No:		R11-10-240	
	Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	M8
	Fax: (920)845-1048	RMR 80KD System	Date:	10/24 /11	Rev:	
Template:	w w w .rice-inc.com		Chk By:		Date:	

Chk shear on shoe wall:

$P := \frac{M_{max1}}{0.67 \cdot (2.375)}$	P = 5600	lb
$f_{\mathbf{V}} \coloneqq \frac{\left(P + R_{\max}\right)}{2 \cdot (0.315) \cdot (2)}$	$f_V = 4643$	psi
$F_V \coloneqq \frac{0.57 \cdot (18000)}{1.65}$	F _V = 6218	psi
$I := \frac{f_V}{F_V}$	I = 0.75 <u>She</u>	ear Stress "C

Chk Bolts to Steel Stringer:

$V_b := \frac{R_{max}}{2}$	Vb = 125	lb
$T_b := \frac{M_{max1}}{2 \cdot (0.5 \cdot L2)}$	$T_b = 3565$	lb
Vali := 0.196-23094	$V_{all} = 4526$	lb
$T_{all} := 0.142 \cdot 40000 \cdot \frac{0.3125}{0.456}$	T _{all} = 3893	lb


Use (2) - 1/2" Dia. S.S. Thru-Bolts

or Drill & Tap w/ 5/16" Min. Thread Engagement

300 Series, Fy= 65 ksi Minimum

$$I_{3} \coloneqq \left(\frac{V_{b}}{V_{all}}\right)^{2} + \left(\frac{T_{b}}{T_{all}}\right)^{2}$$

 $I_3 = 0.84$

Spec Sheet

SHT

S1

Nominal Thread	lominoi D A(3) A(7) Allowable				Alloy Groups 1/2 and 9/ Condition CW Allowable Shear Bearing (Pour			nde) Minimum Material Thicknoss la Equil Tonélle Copechy of Pasiene (In.)				
Diomolor & Thread/Incli	Diamutur (inch)	Areo (Sq. In.)	Root Area (Sq. in.)	(Poundo)	Singlo (Peunda)	Double (Pounds)	1/8* 51, A36	1/6° AL 6053-TS	1/0° Al. 0053-TG	Ajë	006 3- 75	16063-T
#8-52 #11-32 #10-24 #12-24	0,1380 0,1640 0,1960 0,2160	0.0091 0.0140 0.0175 0.0242	0.9678 0.0124 0.0162 0.0214	364 560 700 968	100 285 351 494	360 573 702 968	1201 1427 1653 1870	270 328 340 432	414 492 570 848	0.126 0.162 0.170 0.250	0,274 0,368 0,372 0,450	0.19(0.251 0.255 0.255 0.321
1/4-20 1/16-18 0/0-16	0,2500 0.3125 0.3750	0.0318 0.0524 0.0775	0.0260 0.0469 0.0699	1272 2096 \$100	647 1083 (1514	1293 2106 3229	2175 2719 3262	500 625 730	750 938 1125	0.226 0.284 0.341	0,541	0.36) 9.45) 0.55;
7/18-14 1/2-13 9/15-12	0,4376 9,5080 9,5625	0. 1083 0. 1419 0. 1819	0.0661 0.1292 0.1684	4252 5676 7270	2219 2784 3843	4439 - 5967 - 7688	3606 4350 4894	675 1000 1125	1313 1500 1888	0.395 0.495 0.510	4-6-3 9-2 R 	0.64 0.74 0.83
5/0-11 2/4-10 7/6-0 1-8	0,6250 0,7500 0,8750 1,0300	0.2260 0.3345 0.4817 0.0357	0.2071 0.3091 0.4285 0.5630	0040 11289 16582 20442	4783 6023 6352 10970	9556 12046 16703 21944	8437 6525 7612 8700	1250 1500 1750 2000	1875 2250 2625 3200	0.553 0.590 0.685 0.779	777 444 192 274	0.92 0.90 1.12 1.27
		ι qu	DIAMET Tru S/8* 3	ER /4° and Over	A(R)	= 0.7654(D -	- <u>1.2289</u>) N	2	For Dlâm	iabars 3/4° and	Över:	
F, (Min: U J F, (Min: To F (Allown)	ltimoto Tensile ensile Yaiki SiQ bla Taraile Sire	Strenguh) 1:0. engen) <u>65</u> ese) (0. es) (0.	200 pel 8 200 psi 4 200 psi 4	5,000 psi 5,000 psi 0,750 psi	÷	= 0.7654 D			A	llowebie tenslo	F. = 0.75F _y xn = 0.76F, j/	4(S)]
0.000	1 C & 44	an a chair		· · · · · ·			0,40F			I	F. = <u>0.75</u> ₇ 3 F,	
					Allown	to basion = F _y =	0.40F_JAQ <u>0.40</u> F _q A	5)]	Allowabi	a shadi (Singi	0) * <u>0,73</u> F,1 ₁ 5	46) -
					Alovable she			(印)				

In Tables 9 thru 15, 1st Group Type and Condition Definitions 200 pages 22 or 20


TABLE 27	TEKS -	-

Nominal Thread	D Nominel Thread	K Basic Minor	A(R) Thread	Allowable Tension	Allowabl	e Shear	Bez	ring (Pou	nda)		Material Thic lo Capacity c (in.)	
Dinmoler & Thread/Inch	Diamster (Inch)	Diameter (Inch)	Root Area (Sq. In.)	(Pounds)	Singl a (Pounds)	Double (Pounde)	1/8* 51. A36	1/8" AJ. 6063-75	1/8' Al. 6063-T6	A36	6063-TS	6063-TE
#8-20 #8-18 #10-18 #12-14	0.1390 0.1540 0.1900 0.2160	0.0997 0.1257 0.1309 0.1849	0.0078 0.0124 0.0152 0.0214	312 496 608 856	180 296 351 494	360 573 702 953	1201 1427 1653 1879	276 328 300 432	414 492 570 64B	0.112 0.147 0.155 0.182	0.240 0.329 0.328 0.403	0,174 0.235 0.238 0.289
1/4-14 5/16-12 3/8-12	0.2500 0.3125 0.3750	0.1887 0.2443 0.2 9 83	0.0280 9.0469 0.0699	1120 1876 2796	647 1083 1614	1293 2166 3229	2175 2719 3262	500 625 750	780 938 1125	0.205 0.260 0.313	0.439 0.627 0.763	0.323 0.416 0.505
Sy (Malaneur Sy (Nalaneur	n Tereslie, Yjeld	ille, Sirengshi, Birengshi,	55) *****	90 0 991	Where: A(R) K	≈ Thined Ro = Basic Minc	ot Area, s: r Clameto	ція. r, in.		kowable tensio	Fy = 0.40 ₁ /3	, ,-

DICE		105 School Creek Trail	Project Description:	Job No:		R11-10-240	
RICE ENGINEERING Template: REI-MC-5200		Luxemburg, WI 54217 Phone: (920)845-1042		Engineer:	JDB	Sheet No:	S1
		Fax: (920)845-1048	RMR 80KD System	Date:	10/24/11	Rev:	-
		w w w .rice-inc.com		Chk By:		Date:	

304 SS & CARBON TAPPERS

PRODUCT REPORT NO. 040601

	304 Series Electro Zinc Part #	Description	Gamoon Steel	
1874200 1875200 1877200 1879200 1880200 1881200 1886200 1887200	1863000 1864000 1866000 	14 x 3/4" HWH W/ BD Type A Tappers 14 x 1" HWH W/ BD Type A Tappers 14 x 1-1/2" HWH W/ BD Type A Tappers 14 x 2" HWH W/ BD Type A Tappers 14 x 2-1/2" HWH W/ BD Type A Tappers 14 x 3" HWH W/ BD Type A Tappers 17 x 3/4" HWH W/ BD Type A Tappers 17 x 1" HWH W/ BD Type A Tappers	2,500 2,500 1,500 1,000 1,000 2,500	2,500 2,500 2,000 1,500 1,000 750 2,000 2,000

Performance Data

With B	onded	的合规的	語。 PUI	LOUTH	Alues	(avg. Ibs	uluma	e) 👘	
Wa	sheres	Gauge	26	24	22	20	18	16	14
Fast	tener	Thickness	0.018	0.024	0.030	0.036	0.048	0.060	0.075
11	Tuno A	Drill Size	1/8"	5/32"	5/32"	3/16"	3/16"	#7	# 7
14	4 Type A		191	252	336	371	545	694	884
Fact		Gauge	26	24	22	20	18	16	14
Fastener		Thickness	0.018	0.024	0.030	0.036	0.D48	0.060	0.075
17 T 0	Drill Size	1/8"	5/32*	5/32"	3/16"	#2	#2	1/4"	
17	Type A	1.4.14	263	307	425	475	559	791	

			-						
mine			BRUD	OVERN	ALUES	(avg.slb	siuluma	te) de la	
. Wa	sher	Gauge	26	24	22	20	18	16	14
Fas	tener	Thickness	0.018	0.024	0.030	0.036	D.048	0.060	0.075
14 Type A	Drill Size	1/8"	5/32"	5/32"	3/16"	3/16"	#7	#7	
14	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		595	827	1093	1341	1931	2229	2696
Encl	anar	Gauge	26	24	22	20	18	16	14
газ	tener	Thickness	0.018	0.024	0.030 0.036 5/32" 3/16" 1093 1341 22 20 0.030 0.036	0.036	0.048	0.060	0.075
17 1	Type A	Drill Size	1/8"	5/32*	5/32"	3/16"	#2	#2	1/4"
17	i she y	e el sub-	565	792	970	1100	1556	1813	(2065)

wih We	Sonded sher	ing SH	EARVA	LUES	vg.lbs	ultimate)))
Fas	stener	Gauge	26-14	24-14	22-14	20-14	18-14
14	54 T A	Drill Size	#7	#5	#2	#2	0.234
14	Туре А	~ 1.25 T_{c}	534	704	863	1245	2120
Fas	stener	Gauge	26-18	24-18	22-14	20-14	18-14
17	57 T A	Drill Size	#2	1/4"	1/4"	1/4"	1/4"
и,	Туре А		454	1013	1264	1544	1294

304 S	SFASTENERVA	UES (avg flbs u)	limate)
Fastener	Tensile	Shear	Torque
(dia-tpi)	(lbs min.)	(avg. <u>lbs</u> ult.)	(min. in (bs)
14-10	2684	(21,48)	127
17-9	NA	NA	229

CARBON S	TEELEFASTENE	RVALUES tavgill	sultimate)
Fastener (dia-tpi)	Tensile (lbs min.)	Shear (avg. lbs ult.)	Torque (min. in Ibs)
14-10	4060	2600	150
17-9	5000	2750	173

- **Tools and Techniques**
 - A standard screwgun with a depth sensitive nosepiece should be used to install Tappers. For optimal fastener performance, the screwgun should be a minimum of 6 amps and have an RPM range of 0-2500.
 - Adjust the screwgun nosepiece to properly seat the fastener.
 - New magnetic sockets must be correctly set before use. Remove chip build-up as needed.
- The fastener is fully seated when the head is flush with the work surface.
- Overdriving may result in torsional failure of the fastener or stripout of the substrate.
- The fastener must penetrate beyond the metal structure a minimum of 3 pitches of thread.

1349 West Bryn Mawr Avenue Itasca, Illinois 60143 630-595-3500 Fax: 630-595-3549 www.itwbuildex.com

C 2007 ITW Buildex and Illinois Tool Works, Inc.

HIT-HY 150 MAX Adhesive Anchoring System 4.2.4

HIT-HY 150 MAX Allowable Loads for Threaded Rods in Grout-Filled Concrete Masonry Units (ASTM C 90 Block) 1, 2, 3, 4

Embedment Depth in. (mm)	Distance from Edge in. (mm)	Tension ⁵ Ib (kN)	Shear ⁵ Ib (kN)
	4 (101.6)	1100 (4.9)	1419 (6.3)
3-3/8 (86)		1188 (5.3)	1419 (6.3)
		1319 (5.9)	2181 (9.7)
4-1/2 (114)			2338 (10.4)
			2650 (11.8)
	4 (101.6)		3238 (14.4)
5-5/8 (143)	> 20 (508)	2313 (10.3)	
		1975 (8.8)	2756 (12.3)
6-3/4 (172)		3050 (13.6)	3481 (15.5)
	Depth in. (mm) 3-3/8 (86) 4-1/2 (114) 5-5/8 (143)	Depth from Edge in. (mm) in. (mm) $3-3/8$ (86) 20 (508) $4-1/2$ (114) 20 (508) $5-5/8$ (143) 4 (101.6) 20 (508) 4 (101.6) 20 (508) 4 (101.6) $5-5/8$ (143) 4 (101.6) 20 (508) 4 (101.6)	Endbedment from Edge Tension ⁵ Depth in. (mm) lb (kN) 3-3/8 (86) 4 (101.6) 1100 (4.9) 220 (508) 1188 (5.3) 4 -1/2 (114) 220 (508) 1581 (7.0) 5 -5/8 (143) 4 (101.6) 1713 (7.6) 220 (508) 2313 (10.3) 4 (101.6) 1975 (8.8)

HIT-HY 150 MAX Ultimate Loads for Threaded Rods in Grout-Filled Concrete Masonry Units (ASTM C 90 Block) 1, 2, 3, 4

Our Finote -				
Anchor Diameter	Embedment Depth in. (mm)	Distance from Edge in. (mm)	Tension ⁵ Ib (kN)	Shear ⁵ Ib (kN)
in. (mm)		4 (101.6)	4400 (19.6)	5675 (25.2)
3/8 (9.5)	3-3/8 (86)	> 20 (508)	4750 (21.1)	5675 (25.2)
		4 (101.6)	5275 (23.5)	8725 (38.8)
1/2 (12.7)	4-1/2 (114)	20 (508)	6325 (28.1)	9350 (41.6)
1/2 (12/1)			6850 (30.5)	10600 (47.2)
5/8 (15.9)	5-5/8 (143)	4 (101.6)	9250 (41.1)	12950 (57.6)
3/0 (10.0)		≥ 20 (508)	7900 (35.1)	11025 (49.0)
3/4 (19.1)	6-3/4 (172)	4 (101.6)	12200 (54.3)	13925 (61.9)
(ויפו) אי ו ט	、 /	≥ 20 (508)		L

1 Values are for lightweight, medium weight or normal weight concrete masonry units conforming to ASTM C 90 with 1500 psi grout

conforming to ASTM C 476. 2 Embedment depth is measured from the outside face of the concrete masonry unit.

3 Values are for anchors located in the grouted cell, head joint, bed joint, "T" joint, cross web or any combination of the above.

4 Values for edge distance between 4 inches and 20 inches can be calculated by linear interpolation.

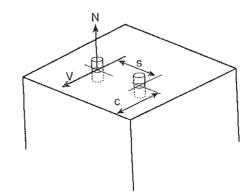
5 Loads are based on the lesser of bond strength, steel strength or base material strength.

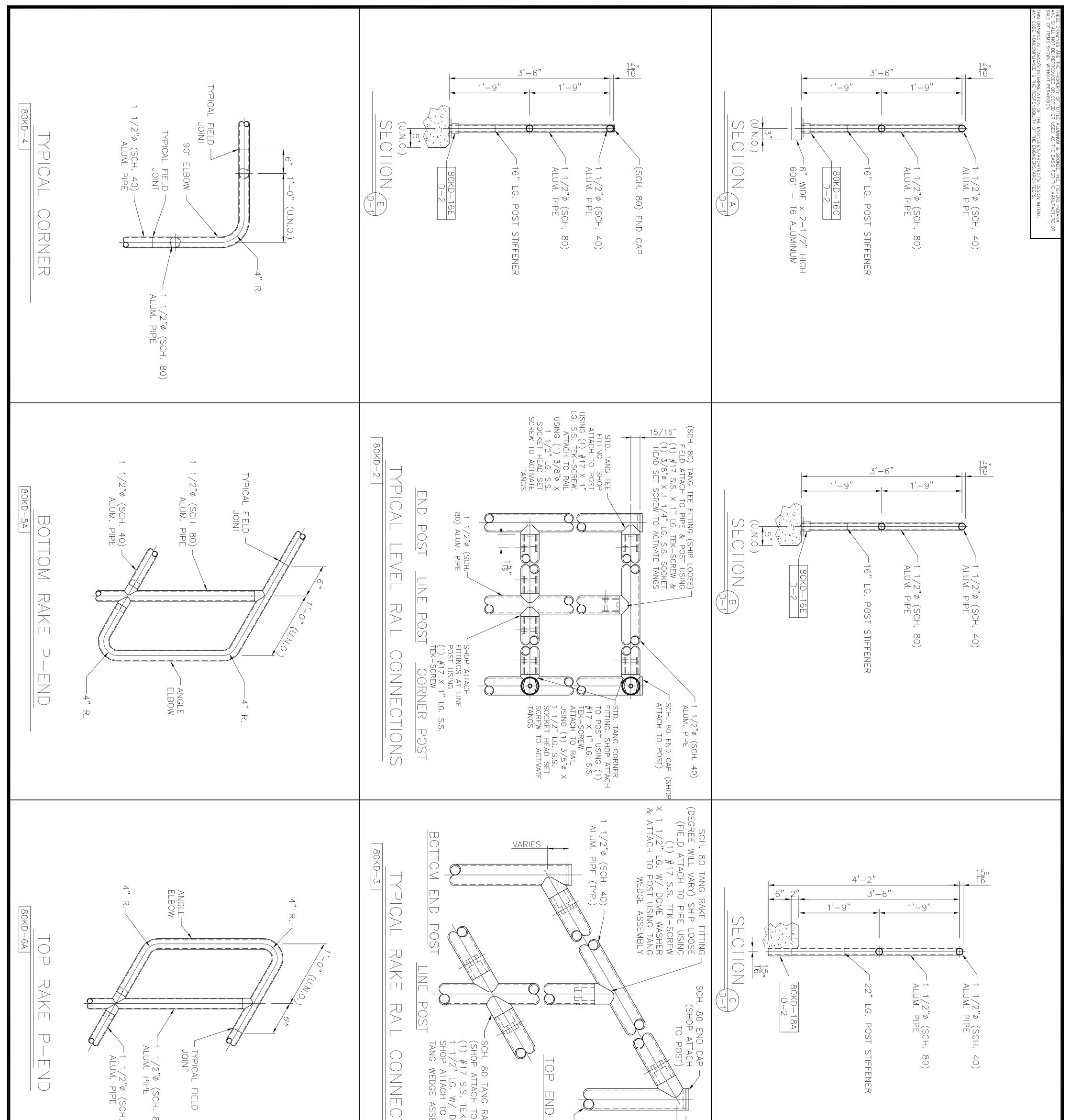
Anchor Spacing and Edge Distance Guidelines for Grout-Filled Block

Influence of Anchor Spacing and Edge Distance

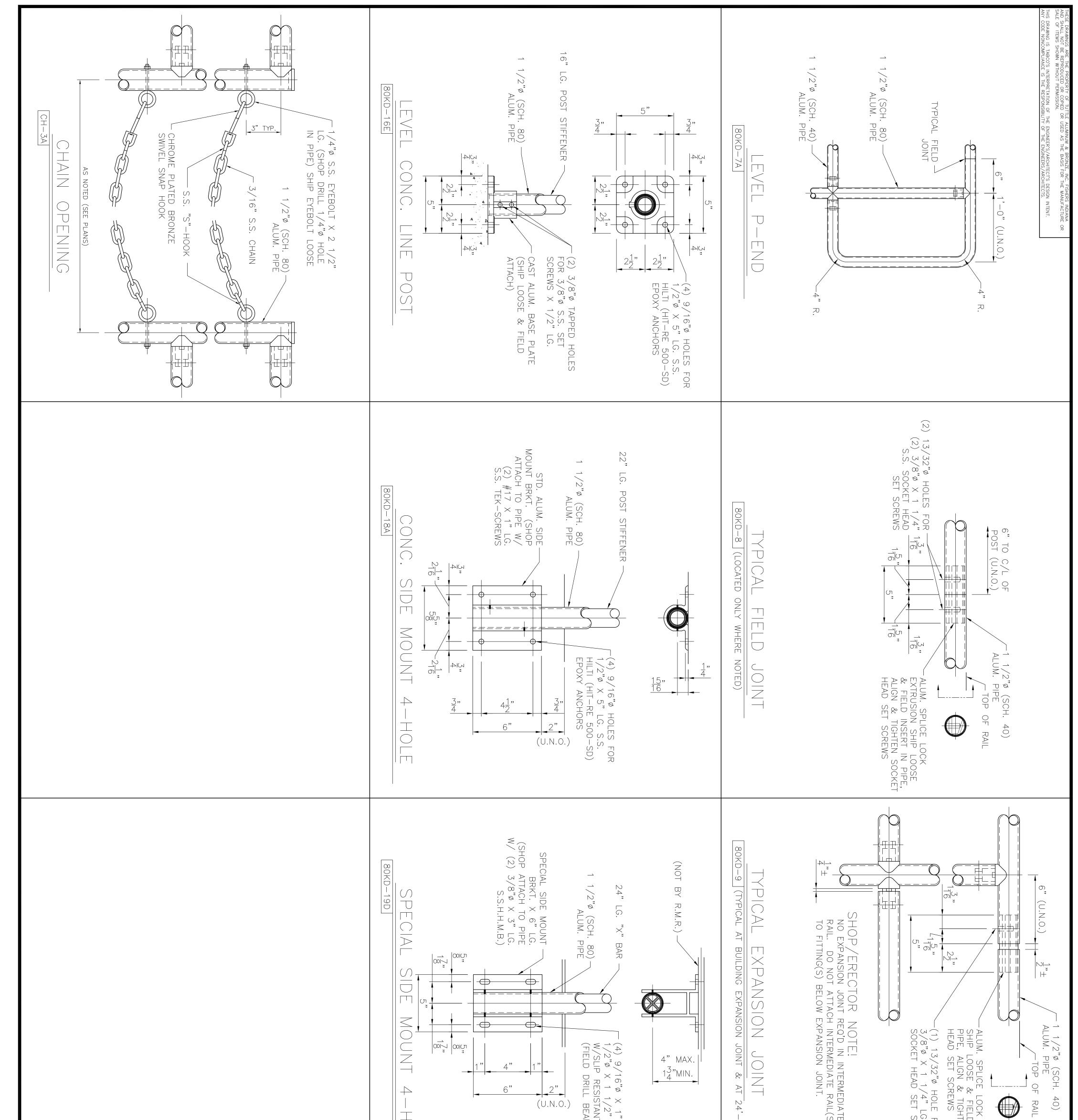
Anchor	in.	3/8	1/2	5/8	3/4
	(mm)	(9.5)	(12.7)	(15.8)	(19.1)
h _{rem}	in.	3-3/8 (86)	4-1/2 (114)	5-5/8 (143)	6-3/4 (172)

h_{aa} = standard embedment depth

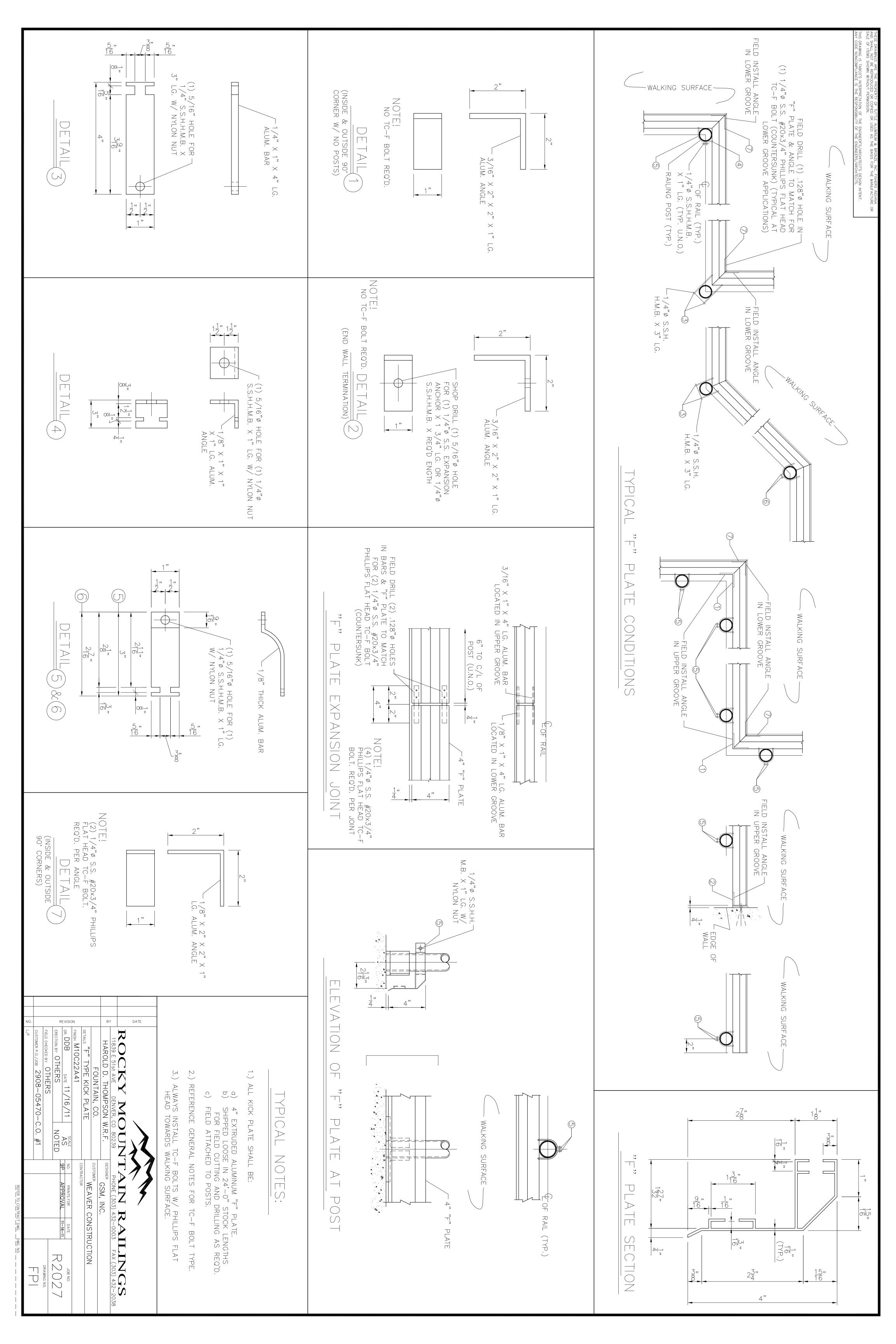

Edge Distance for Shear and Tension: Grout Filled, Normal Weight and Lightweight Block

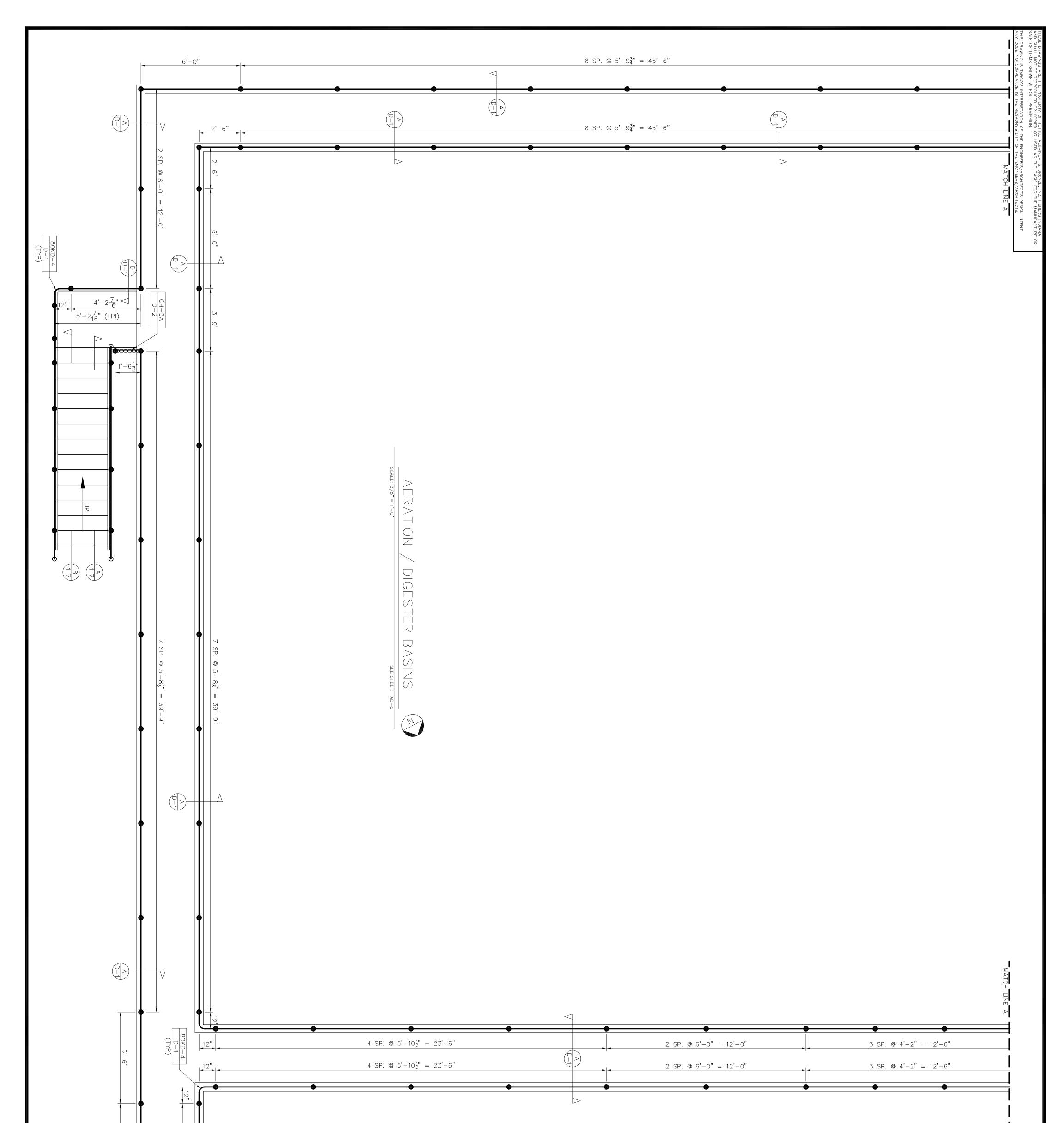

= 20 in. (508 mm) minimum from free edge $\mathbf{C}_{\mathbf{r}}$

= 4 in. (102 mm) minimum from free edge C

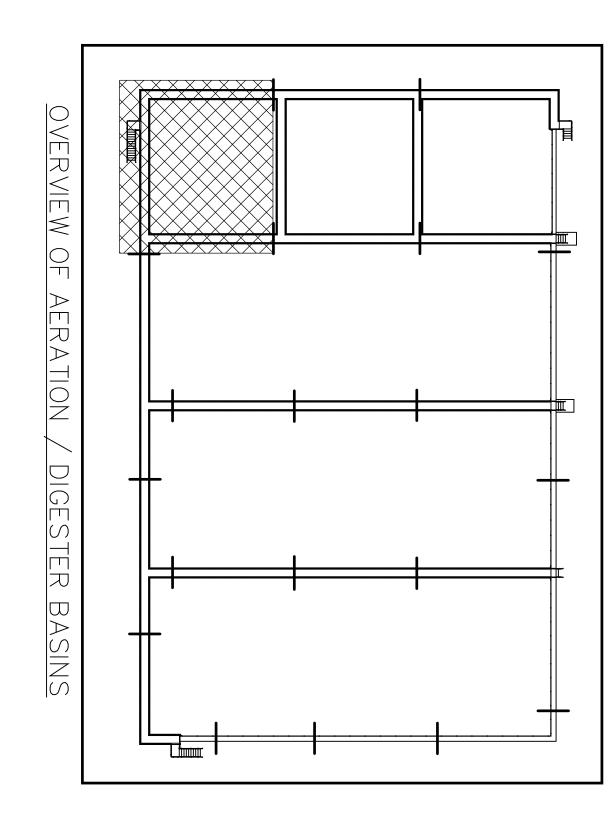

Anchor Spacing for Shear and Tension: Grout Filled, Normal Weight and Lightweight Block

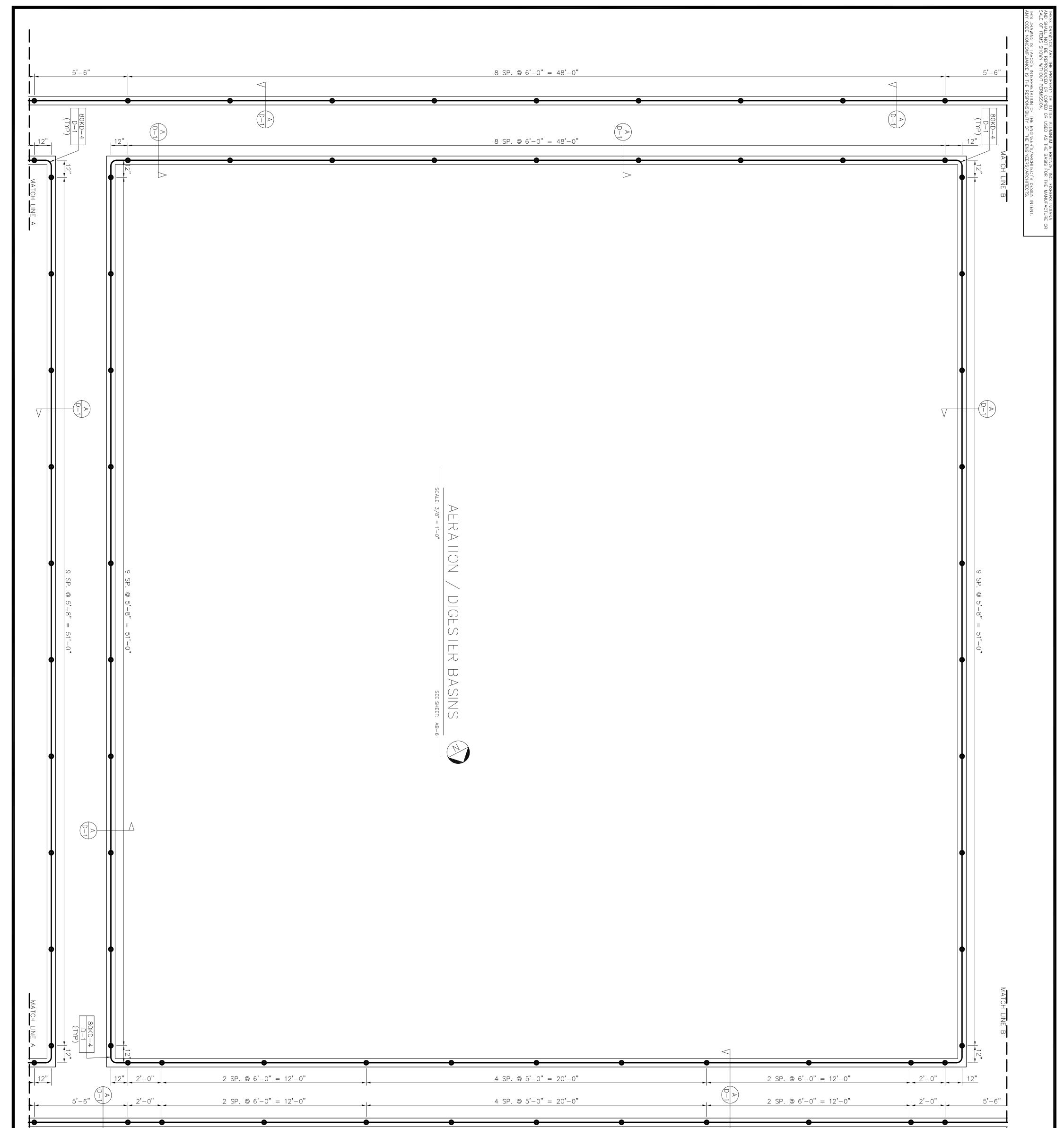
= s_{ax} = One (1) anchor per cell (max), and 8 in. (203mm) (min) S.,

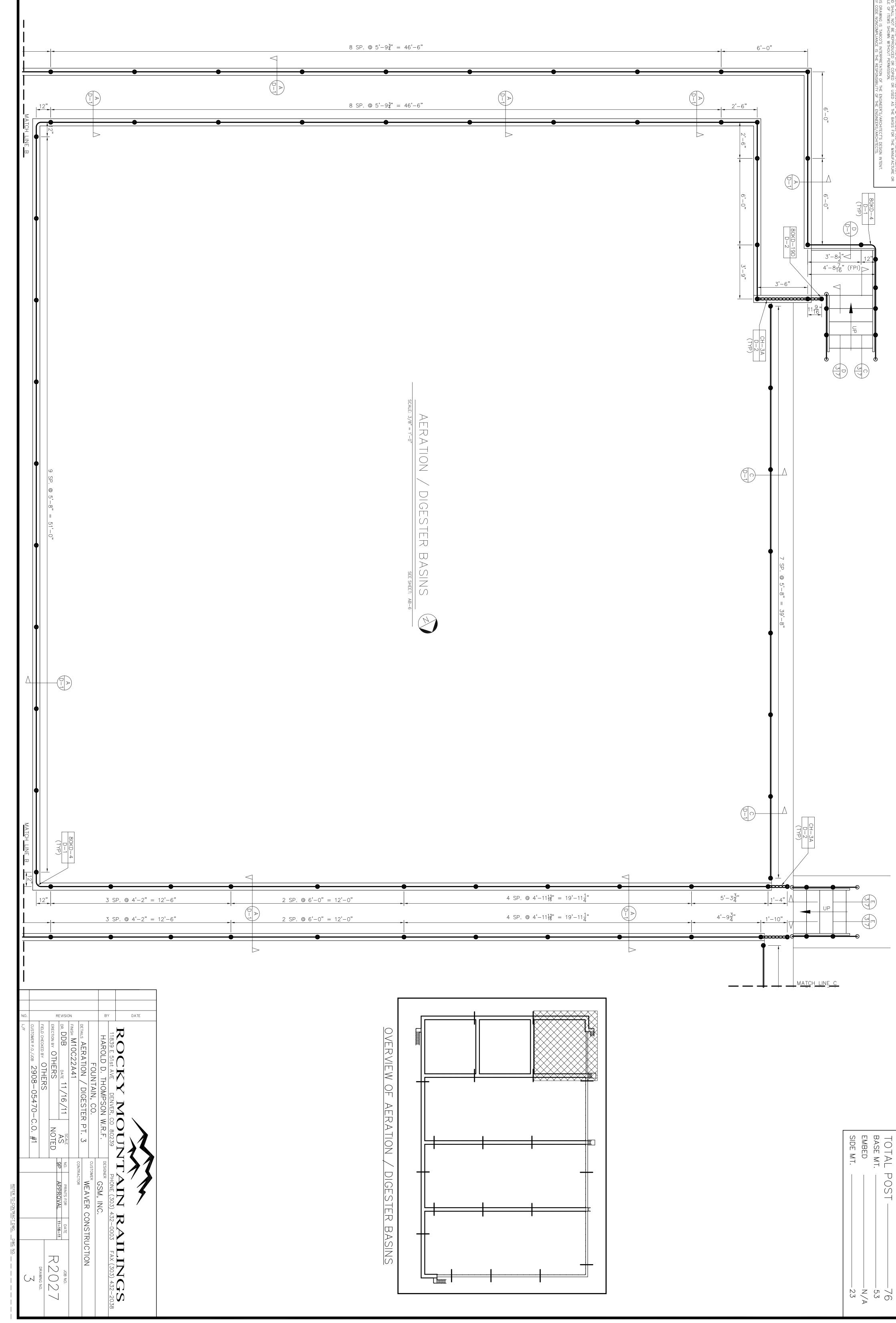


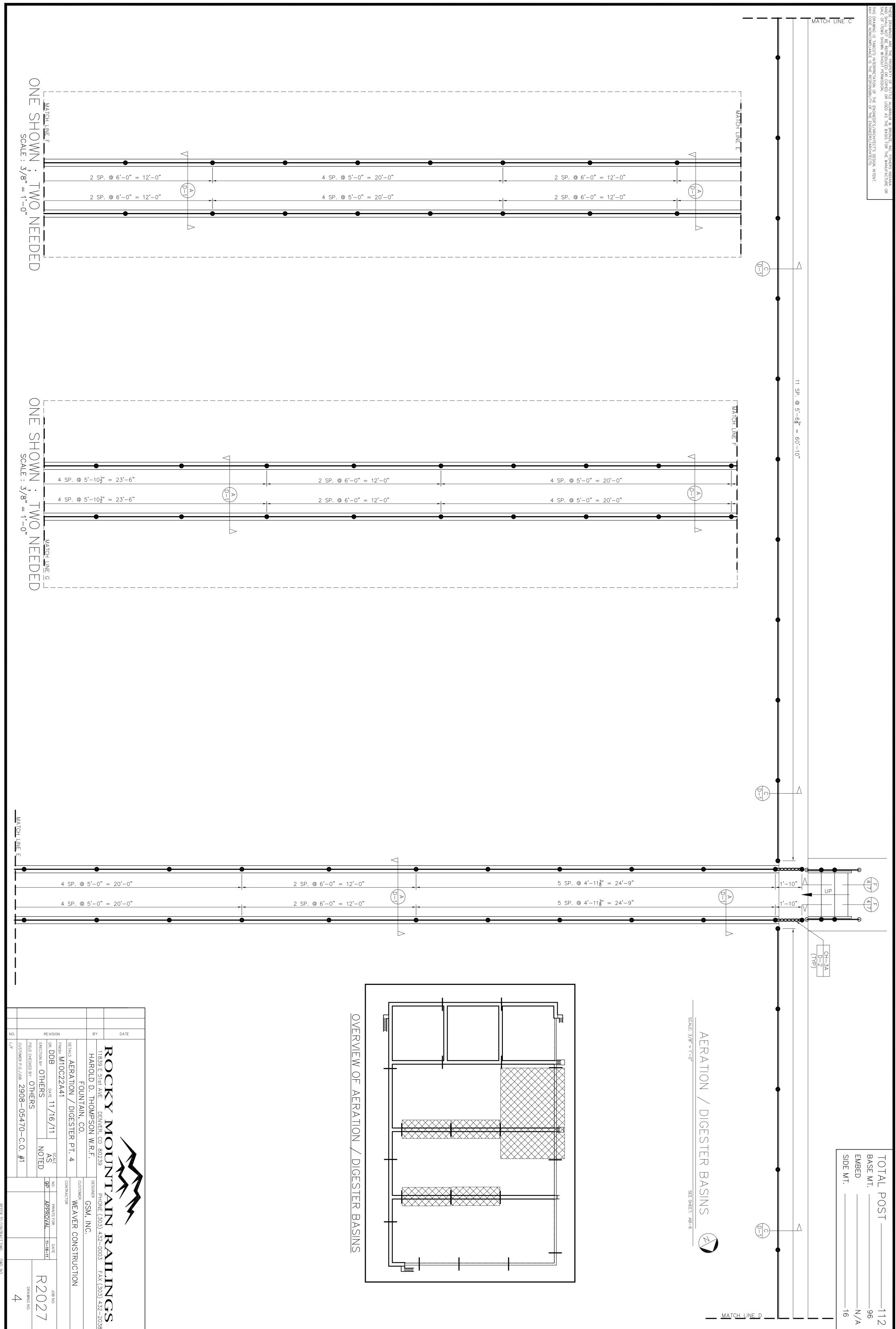


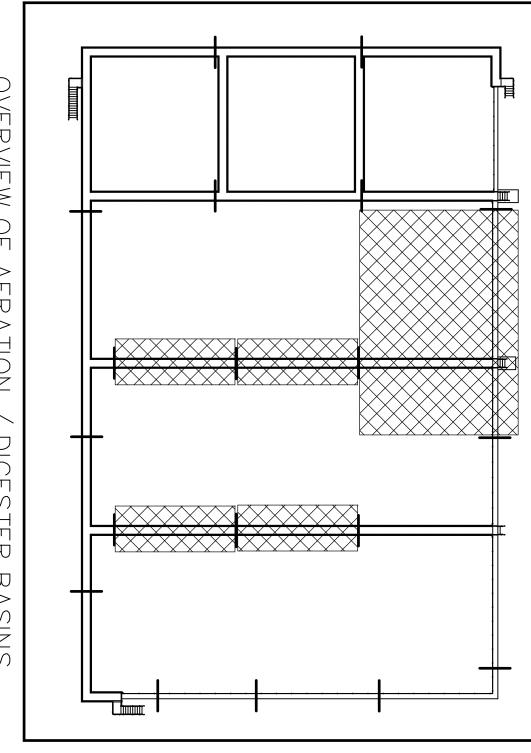
. 80) 40)	O POST USING SEMBLY) SEMBLY	VARIES ALUM. PIPE VARIES VARIES VARIES	
REFER TO CULT TAIL REFER TO CONTRACT ON TAILINGES TIB39E 51st AVE DEIVER, C0 8023 PHONE (303) 432–003 FAX GOS) 432–2038 TIB39E 51st AVE DEIVER, C0 8023 PHONE (303) 432–2033 FAX (303) 432–2038 TIB39E 51st AVE DEIVER, C0 8023 PHONE (303) 432–2033 FAX (303) 432–2038 THAROLD D. THOMPSON W.R.F. DEIVEN GSM, INC. FOUNTAIN, CO. OUSTORER CONTRACTION DEFINLS 8000 KNOCK DOWN CUSTORER CONTRACTION DEFINLS 8000 KNOCK DOWN CONTRACT CONTRACT NILED DEFINLS ROUSTRUCTION CONTRACT OUNTRACT NOTHERS OUNTRACT DEFINING NO. DEFINING NO. COLSPON" OTHERS OPENNIC NO. DEFINING NO. DEFINING NO. DEFINING NO. DEFINING NO. DEFINING NO. DEFINING NO.	ESICES G T TT	 GENERAL NOTES! BokD-1 1) ALL RAIL TO BE OF MECHANICAL CONSTRUCTION U.N.O 2) ALL RAILS TO BE FABRICATED FROM 1 1/2"¢ (SCH. 40) ALUMINUM PIPE (6105-T5 ALLOY). 3) ALL POSTS TO BE FABRICATED FROM 1 1/2"¢ (SCH. 80) ALUMINUM PIPE (6105-T5 ALLOY). 4) ALL COMPONENTS TO BE 6105-T5 ALLOY. 5) ALL FASTENERS (SELF TAPPING SCREWS, MACHINE BOLTS, EXPANSION ANCHORS, ETC.) TO BE STAINLESS STEEL. (TYPE 304) 	4'-3 ¹ / ₂ " 4'-3 ¹ / ₂ " 4''-3 ¹ / ₂ "

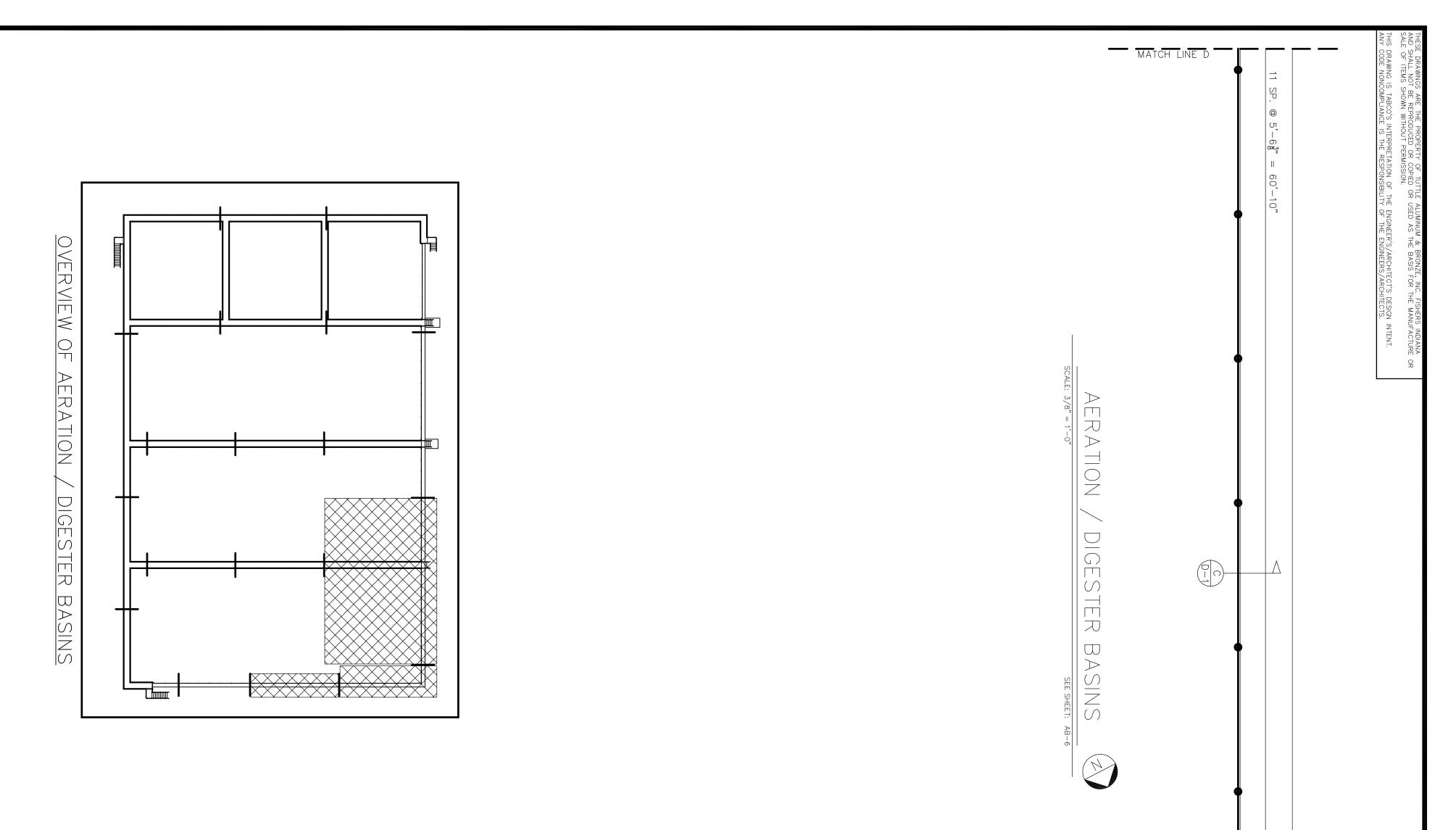

		1" LG. SLOTS FOR 2" LG. S.S.H.H.M.B. ANT FLANGE NUTS EAM TO MATCH)	,'-0" MAX. 0∕C)	ATE L(S)	CK EXTRUSION ELD INSERT IN HTEN SOCKET IG. S.S. SCREW
Image: Figure of the statement of	SPECIAL SIDE MOUNT 2-HOLE	(NOT BY R.M.R.) 24" LC. "X" BAR 24" LC. "X" BAR 1 1/2"ø (SCH. 80) NOSE LINE NOSE LINE SPECIAL SIDE MOUNT BRRT. (SHOP ATTACH TO PIPE (SHOP ATTACH TO PIPE (SHOP ATTACH TO PIPE (SHOP ATTACH TO PIPE (SHOP ATTACH TO PIPE (SHILL BEAM TO MATCH) S.S.H.H.M.B.) (SHILL BEAM TO MATCH) (SHILL BE		1 1/2" (SCH. 80) ALUM. PIPE $\frac{3}{4}$ (SHIP LOOSE & FIELD $\frac{3}{4}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{3}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{3}{2}$ $\frac{1}{2}$ $\frac{1}{2$	16" LG. POST STIFFENER 16" LG. POST STIFFENER 17" LG. POST STIFFENER 17" LG. POST STIFFENER 16" LG. POST STIFFENER 17" L

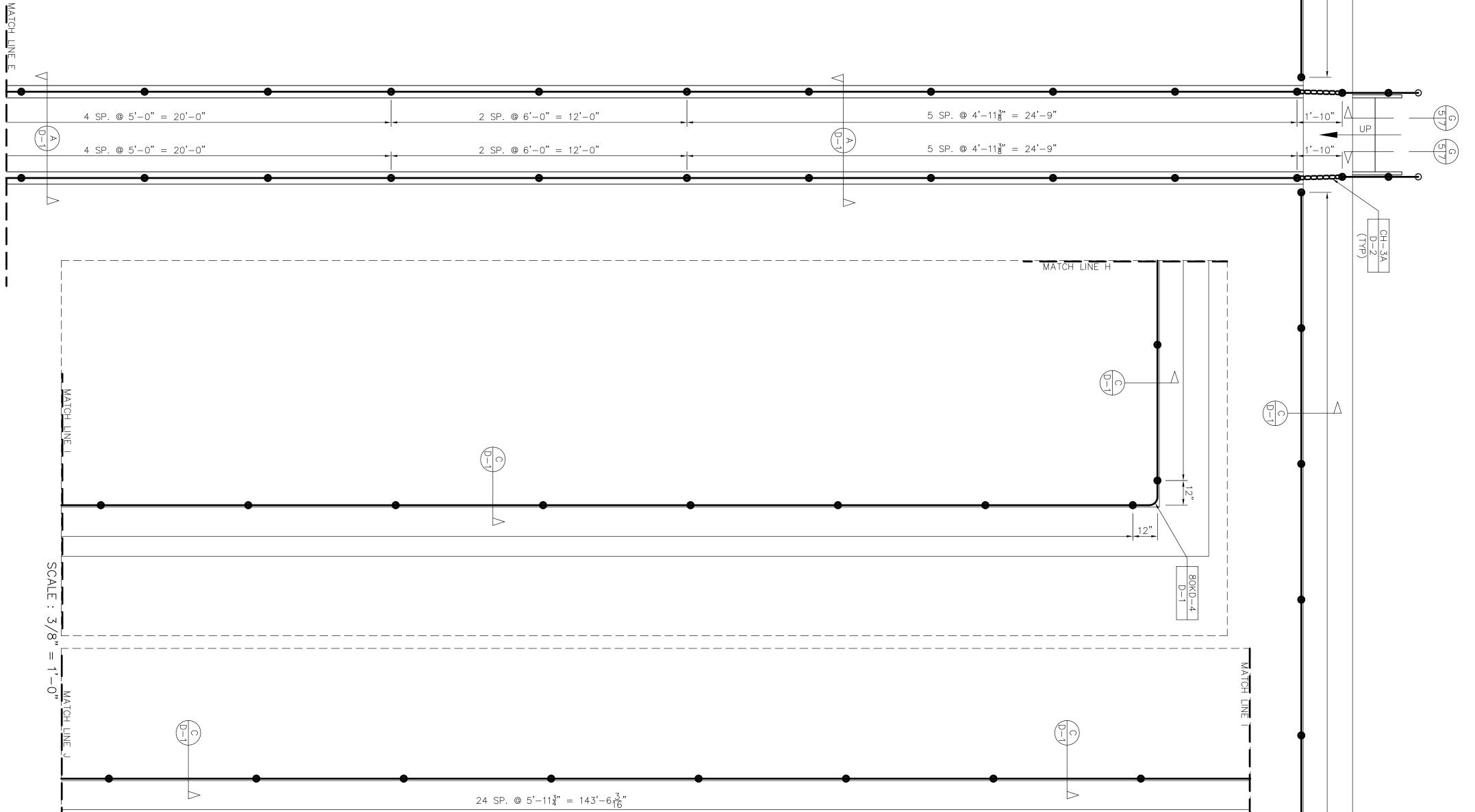


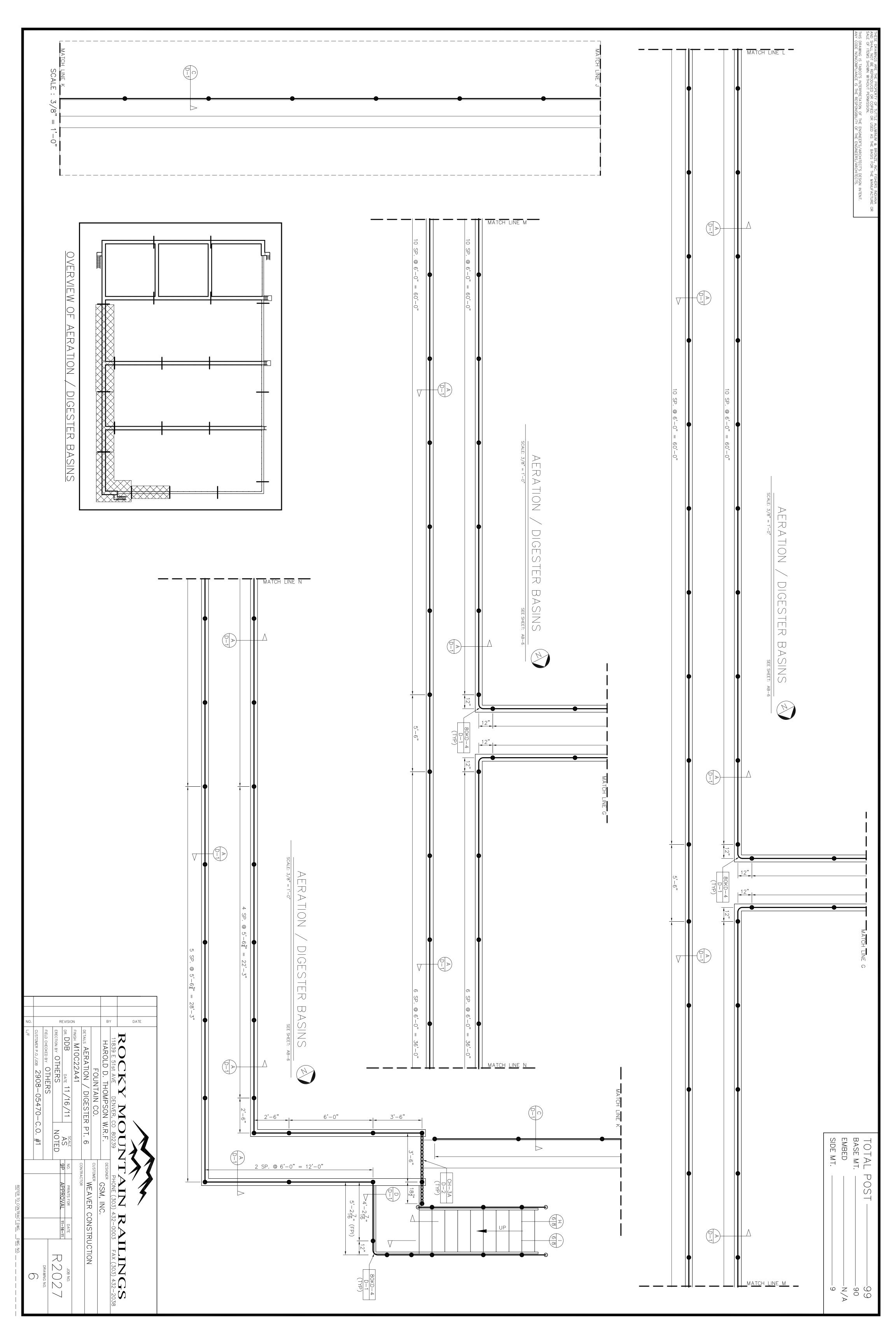

NO.			F	EVISIO	DN			B,	ŕ		DAT	ΓE
L/F	CUSTOMER P.O./JOB 2908-05470-C.O. #1	FIELD CHECKED BY OTHERS	ERECTION BY OTHERS NOTED	DR. DDB DATE 11/16/11 AS	FINISH M10C22A41	DETALS AERATION / DIGESTERS PT. 1	FOUNTAIN, CO.	HAROLD D. THOMPSON W.R.F.	11839 E 51st AVE DENVER, CO 80239	ROCKY MOUN		X
		DRAWING NO.		NO. PRINTS FOR DATE JOB NO. 9P APPROVAI 11-16-11)))				DESIGNER GSM, INC.	PHONE (303) 432-0003 FAX (303) 432-2038			

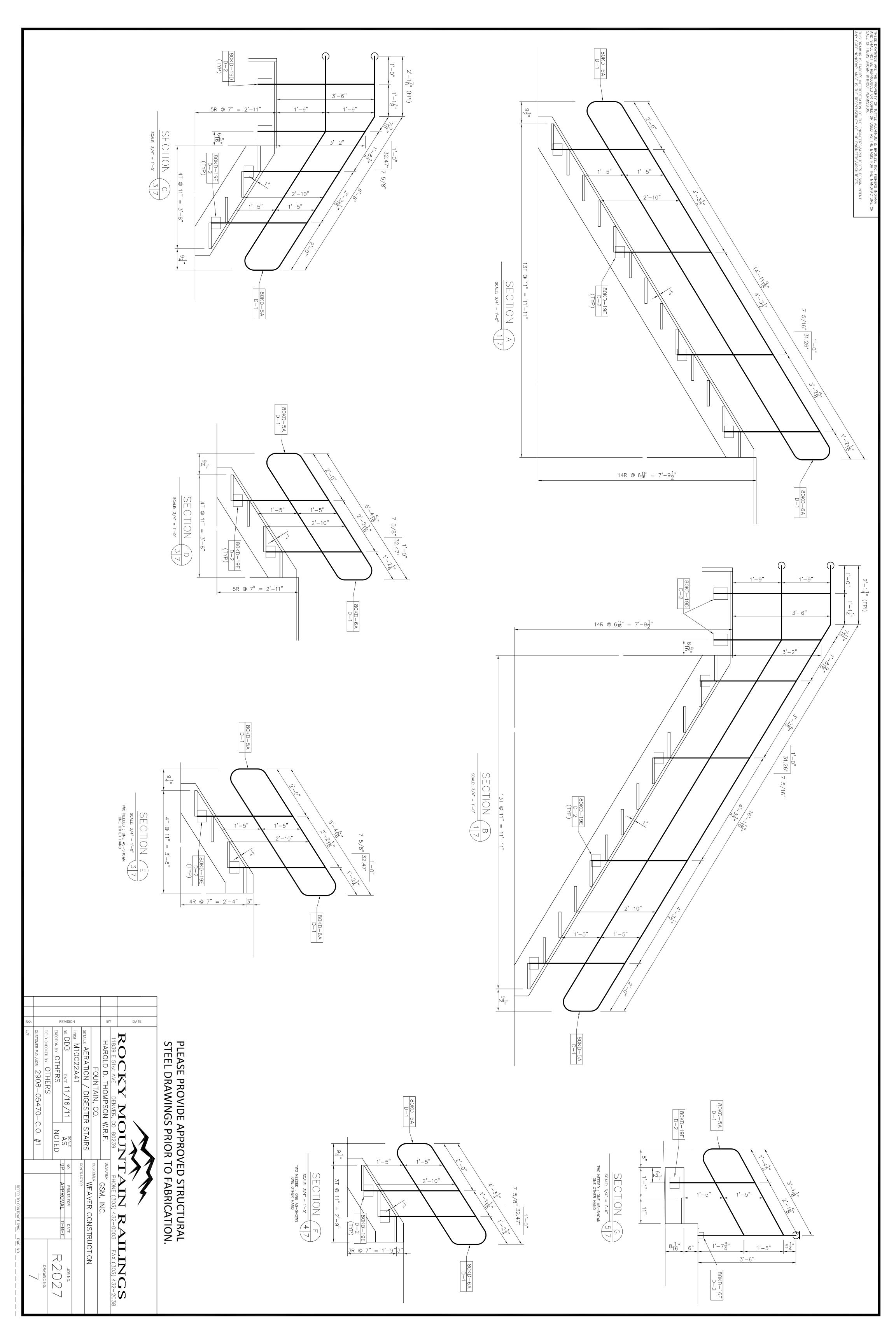

MATCH LINE L

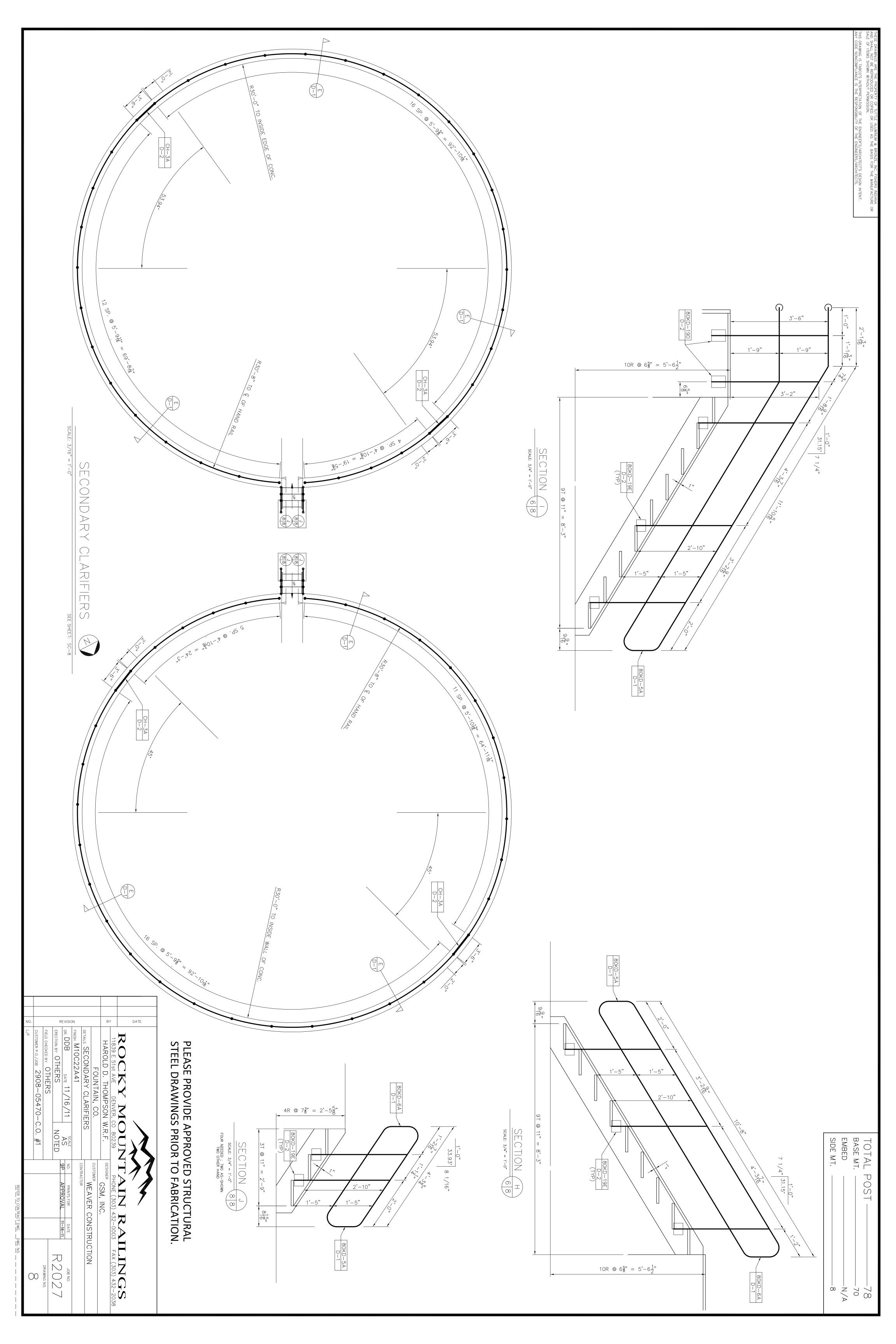


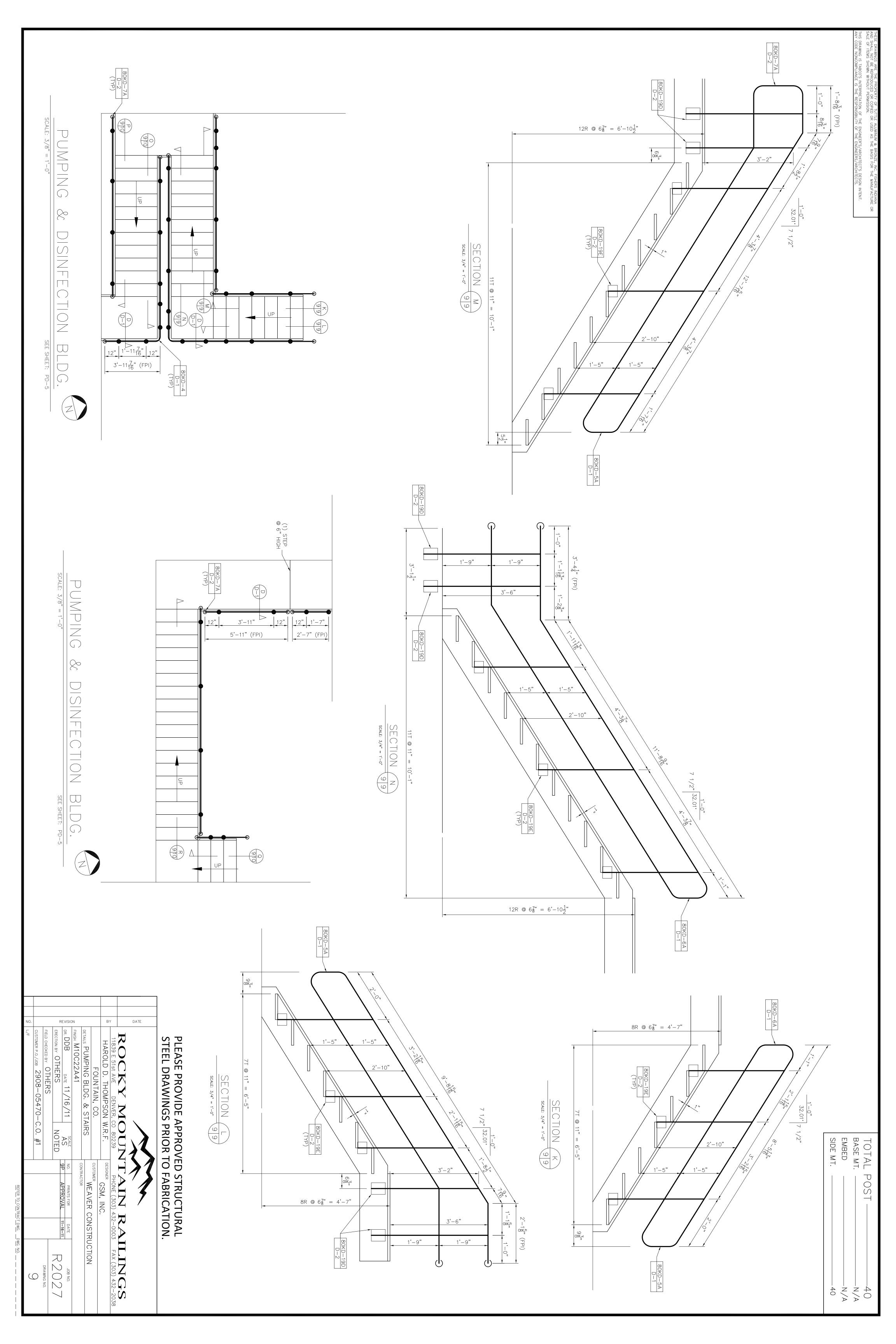


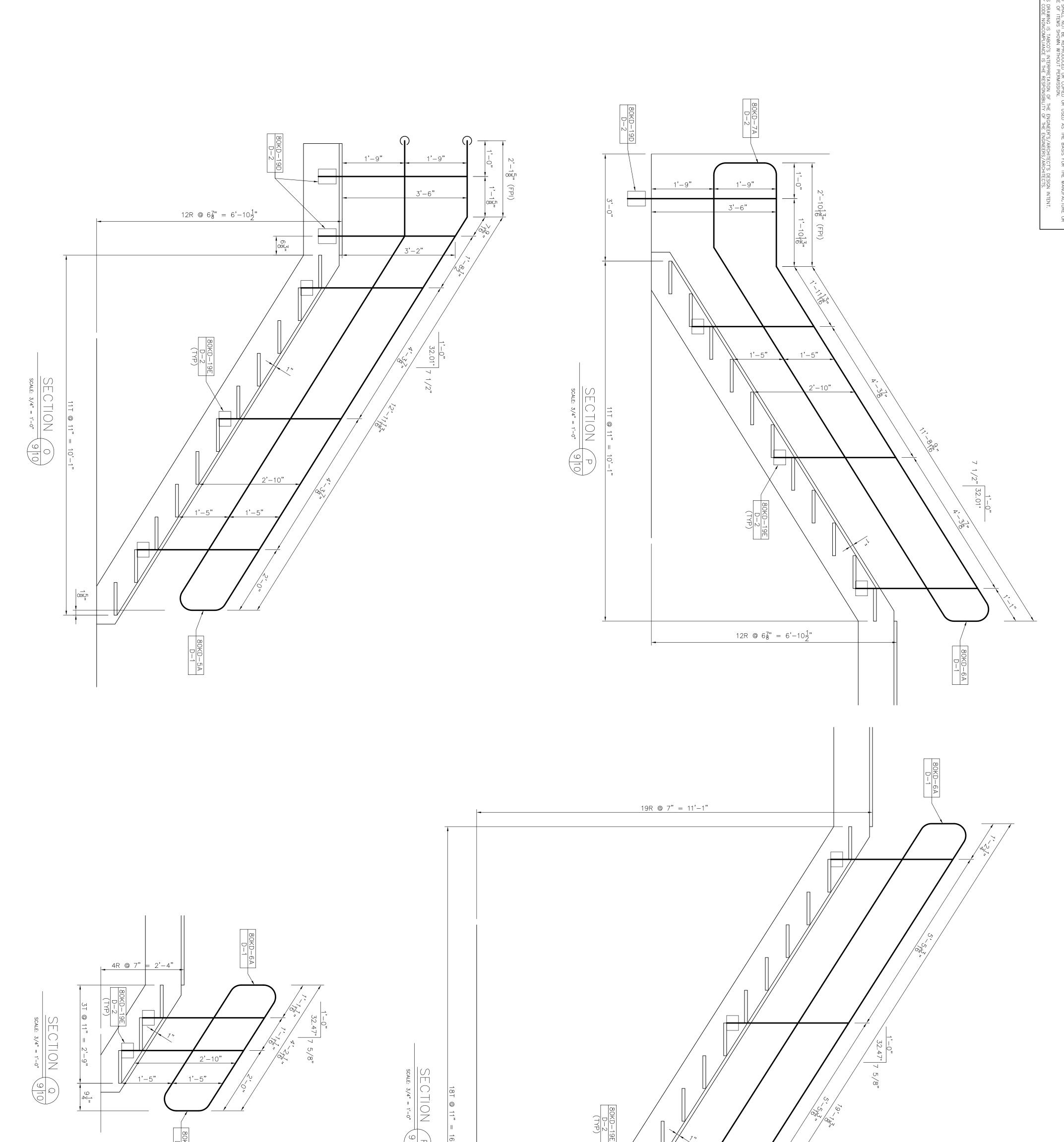

		OVERVIEW OF AERATION / DIGESTER BASINS		Date Date Date ROCKY MOUNTAIN RAILINGS 11839 E 51st AVE DENVER, C0 80239 PHONE (303) 432-0003 FOUNTAIN, CO. PETMIS AERATION / DIGESTER PT. 2	
--	--	--	--	--	--










ROCKY MOUNTAIN RAILIN ROCKY MOUNTAIN RAILIN HAROLD D. THOMPSON W.R.F. PHONE (303) 432-0003 FOUNTAIN, CO. PHONE (303) 432-0003 PHONE (303) 432-0003 FAX (30 PHONE (303) 432-0003 PHONE (303) 432-003			11 SP. @ 5'-6 $\frac{1}{8}$ " = 60'-7 $\frac{1}{16}$ "	TOTAL POST BASE MT EMBED SIDE MT
TAX (303) 432-2038	<u>Ma</u> t <u>ch line</u>	_H		61 24 N/A 37

OR USED

MANU

URE

R

	BOKD-5A D-1	
DATE ROCKY MOUN 11839 E 51st AVE DENVER, C0 80239 THURY DENVER, C0 80239 HAROLD D. THOMPSON W.R.F. FOUNTAIN, CO. FINISH M10C22A41 SCALE DB DATE RECTIONS FIELD CHECKED BY OTHERS CUSTOMER P.O., JOB 2908-05470-C.O. #1 NO. I/F	PLEASE PROVIDE APPROV STEEL DRAWINGS PRIOR	
PHONE (303) 432-0003 FAX (303) 432-2038 PESIGNER DESIGNER GSM, INC. CUSTOMER WEAVER CONSTRUCTION CONTRACTOR LE NO. PRINTS FOR DATE SG MEAVER CONSTRUCTION CONTRACTOR LE NO. PRINTS FOR DATE NOB NO. TO DRAWING NO. DRAWING NO. DRAWING NO. DRAWING NO. DRAWING NO. DRAWING NO. DRAWING NO. DRAWING NO. DRAWING NO.	OVED STRUCTURAL OR TO FABRICATION.	