WEAVER CONSTRUCTION MANAGEMENT, INC. 3679 S. Huron St., Suite 404 Englewood, CO 80110 Phone: (303) 789-4111 FAX: (303) 789-4310

SUBMITTAL TRANSMITAL

		December 15, 2011 WCM Submittal No: 05500-005.B	
PROJECT:	Harold Thompson Reg Birdsall Rd. Fountain, CO 80817 Job No. 2908	gional WRF	
ENGINEER:	GMS, Inc. 611 No. Weber St., #3 Colorado Springs, CO 719-475-2935 Roger S	80903	
OWNER:	Lower Fountain Metro Sewage Disposal Dist 901 S. Santa Fe Ave. Fountain, CO 80817 719-382-5303 James	rict	
CONTRACTOR:	Rocky Mountain Railings 11839 E. 51st Ave. Denver, CO 80239		
Load Testing and S	tructural Calculations. ation Basin/Digester St	esponse to GMS's review of 05500-001.A - ructure, Clarifiers and Pumping and	
SPEC SECTION: 05500 - Metal Fabrications PREVIOUS SUBMISSION DATES: 11/28/11			
CONTRACTOR'S STAMP methods, techniques, & sa	afety precautions & programs in	NO ewed by WCM and approved with respect to the means, incidental thereto. Weaver General Construction also tuments and comprises on deviations thereto:	
Contractor's Stamp	:	Engineer's Stamp:	
Date: 12/15/11 Reviewed by: H.C. (X) Reviewed With () Reviewed With	nout Comments		

December 15, 2011

Weaver Construction 3679 S. Huron St. Suite 404 Englewood, CO. 80110

Re: Harold D. Thompson R.W.R.F. & Lower Fountain Metro. S.D.D - R2027

Subject: Response Letter

This is Rocky Mountain Railings response to GSM. Inc's review comments,

Comment #1

GMS, Inc. is in receipt of the shop submittal identified as 05500-005 which was followed by Shop Submittal No. 05500-005A. Based upon our review of Submittal No. 05500-005A, this submittal supersedes the initial submittal of 05500-005. Therefore, the comments below apply to Submittal No. 05500-005A.

Response #1 Acknowledged

Comment #2

A certification from ATEC Associates, Inc. was provided for load testing of the aluminum handrail titled, TABCO 2500 CONSTRUCITON. The testing data was provided on February 7, 1986. We question whether the certification provided is applicable to this handrail and if there is data more current than 25-year old data. Several pages following the certification is a letter provided by Rocky Mountain Railings, Inc. stating as of January 1, 2007, they have changed the aluminum alloy being used for the Schedule 40 pipe. Since this change was instituted in January 2007, we question the validity of the certification letter prepared in 1986

Response #2

Attached is test data that was done on 8/12/2009 for another project that we worked on. The loads required per the specification are congruent.

Comment #3

We acknowledge the use of the aluminum alloy 6105-T5 and take no exception to the use of this material.

Response #3 Acknowledged

Comment #4

Reference is made to Marson stainless rivets in the shop submittal. No rivets are to be used in the fabrication and installation of the handrail system proposed for use at the LFMSDD HDTRWRF.

Response #4

No reference was made to said specific company and the mention of a blind rivet has been removed from the submittals.

Comment #5

H.B. Tenemecol: No Exceptions Taken

Response #5 Acknowledged

Comment #6

Hilti HIT-RE 500 epoxy adhesive anchoring system: No Exceptions Taken

Response #6 Acknowledged

Comment #7

Design calculations: No Exceptions Taken

Response #8 Acknowledged

Sincerely, Danny Brown Rocky Mountain Railings dbrown@rockymountainrailings.com

LOADS TESTINGS AND STRUCTURAL CALCULATIONS

FOR

GUARD RAILINGS

W.P.C.P. PHASE II DIGESTERS 12 13 14 15 & 16 SAN JOSE, CALIFORNIA

ROCKY MOUNTAIN RAILINGS 11939 EAST 51ST AVENUE DENVER, COLORADO 80239

> PROJECT NUMBER R1376

ROY E. WOOTEN and ASSOCIATES
• CONSULTING ENGINEERS •

ROY E. WOOTEN and ASSOCIATES

• Consulting Engineers • wootenrp@aol.com 7585 West Arkansas Avenue, Suite 206, Lakewood, CO 80232, Ph. (303)980-8603 Fax (303)980-8647

August 12, 2009

Mr. Scot Hooper Rocky Mountain Railings 11939 East 51st Avenue Denver, Colorado 80239

REFERENCE:

RMR NO. R1376

SAN JOSE, CALIFORNIA

Dear Mr. Hooper,

At your request, full size tests were conducted on August 7, 2009 as required by the City of San Jose, California. The purpose of the tests is to verify the adequacy of rails, posts, fittings and bases associated with the subject project. The tests were conducted at the facilities of Reliance Industries, LLC, 10790 W. 50th Avenue, Wheat Ridge, Colorado 80033, specifically, lead engineer Daniel Adam in conjunction with you and me as coordinates and observers. The following tests were conducted with results tabulated:

- 1. Post and Base Connections 1-1/2" Ø schedule 40, 6005-T5 with 12" standard stiffeners in 16E 5"x 5", four (4) hole base mounts with ½" Ø T 316 stainless steel machine bolts anchored to a W10 x 33 steel beam. Posts were spaced 12'-0 apart and loads applied with a calibrated hydraulic ram system. Ram was supported on a pipe to minimize the dead load influence to the system. Deflections were measured to the nearest 1/16" and compared with calculated deflections assuming a fixed base condition. Measure deflections at all loads, i.e., 200 lb., 250 lb., and 300 lb. were 2 + times greater than calculated loads as would be expected due to minor looseness in pipe-to-base mount fitting. Also some rotation of the fitting occurs as load is applied and the base collar and ½" plate deflects due to bolt spacing, 3-1/2" x 3-1/2". See 16E drawing sketches.
- 2. Post and Base Connections West post is 1-1/2" Ø schedule 80 in 16 H 5" x 8" four (4) bolt base; East post is unstiffened 1-1/2"Ø schedule 40 in 2-5/8" x 7" 2-bolt 11C base. Posts are spaced 12'-6 o.c. and bases anchored to the W10 x 33 beam with 1/2" Ø T 316 stainless steel machine bolts. Anchor bolt spacing of 16H base is 6-1/4" x 3-1/2"; Bolt spacing of 11C base is 4-3/8". Hydraulic ram is supported on pipe to negate dead load influence. Loads of 200 lbs, 250 lbs, and 300 lbs. were applied and overall lengths of deflected posts measured and individual post deflection calculated by inverse I ratio. These proportioned measured deflections were compared to fixed base calculated deflections. Measured proportioned deflections were 2-3/4 + times calculated deflection for Schedule 80 posts, all loads and 2-

3/4 +/- for 200 lb. and 250 lb. load on Schedule 40 post. At 300 lbs., Schedule 40 post measured deflection jumped to 3-3/8 times calculated. The 11C base fitting went from elastic stress range into plastic and ¼" measured permanent base plate deformation was measured. The increased measured deflection of both posts and bases is probably due to the winder bolt spacing allowing more rotation of the ½" thick base plate/collar sections as compared to Test 1.

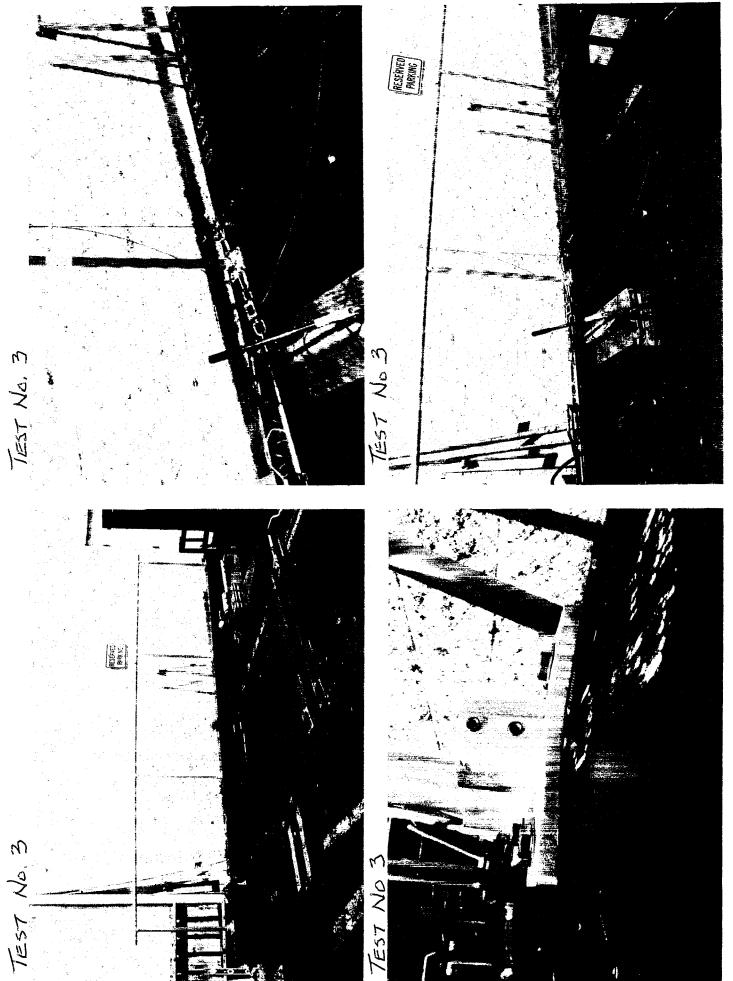
3. Continuous Top Rail Splice/Expansion Joint Connection – Top rail is 1-1/2" Ø Sch 40, 6005 TS connected to four 1-1/2" Ø posts, 3 spaces at 6'-0 o.c. and 8" overhang each end. West rail length is 12"-2 and east rail length is 7'-2. Splice/expansion joint is standard 6" from east mid post. Test loads of 300 plus pounds are applied to middle 6'-0 span at 6", 1'-6, 2'-6, 3'-6, 4'-6 and 5'-6 from west mid post. Center deflection was measured to nearest 1/16" as each load was recorded and visual inspection of the splice/expansion joint to check for displacement. Only visual displacement was observed at 340 lb. load applied just west of joint, i.e., 5'- 5-7/8". Splice joint flat head #20 screws removed from west side to form expansion joint condition then reloaded to 340 lb. Maximum vertical displacement was less than 1/64" visually, approximately the fit differential between the ID of the rail and the OD of the fitting, i.e., 1.610" vs 1.596".

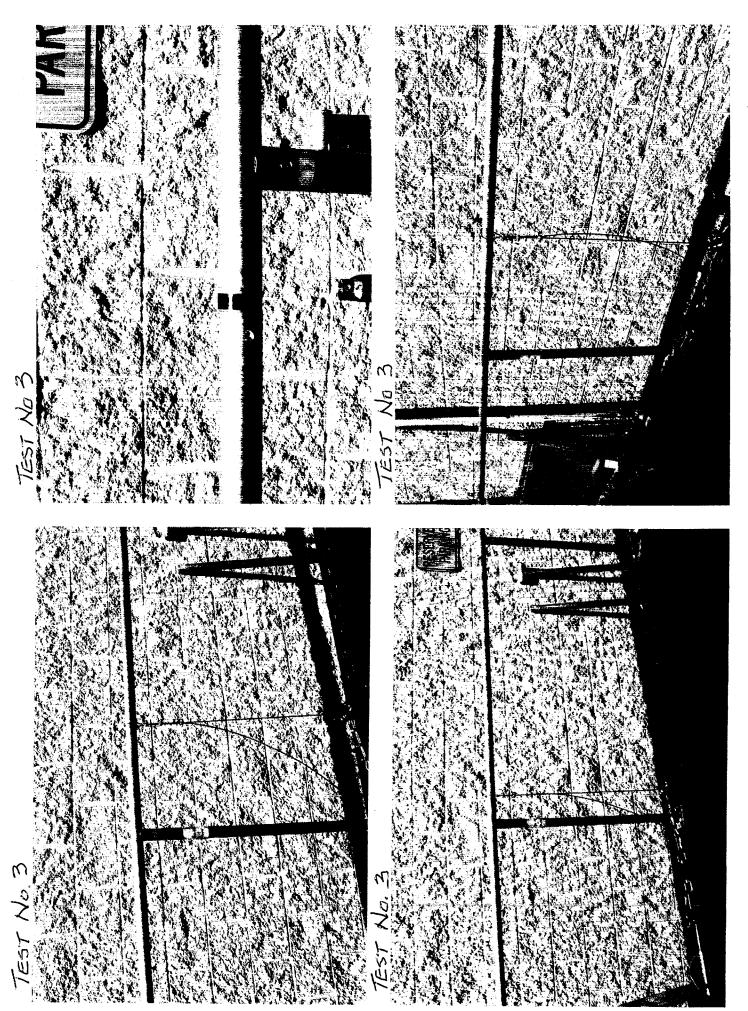
In summary, the results of the tests substantiate the calculated performance of the products, rails, posts, fittings, anchorages, connectors, etc., of the Rocky Mountain Railing System for the San Jose, California W.P.C.P., Phase II Project, Job No. R1376. We did not test post installed concrete anchors since these are special proprietary products requiring ICC testing and approval for each Supplier's systems. Base mount 11C is not part of the San Jose package but was tested to check the calculated performance.

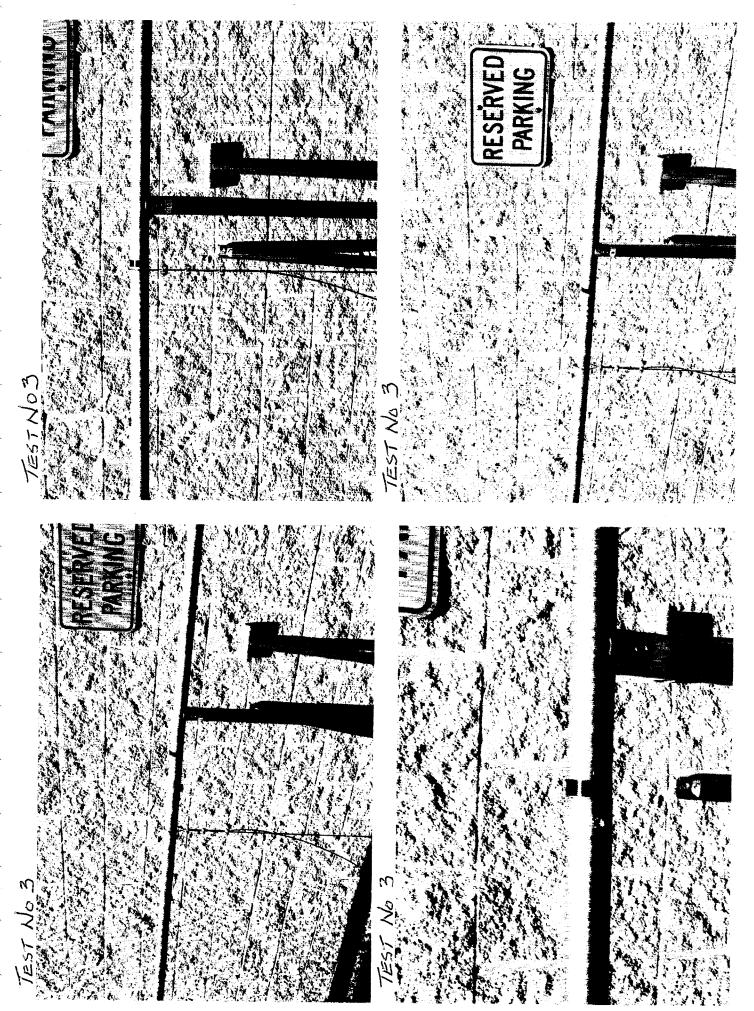
Since both, 16E and 16H, four (4) bolts base mount fittings are being considered for the project and both previously submitted for review and comment, the final acceptance will be by the City of San Jose personnel individual preference. Both are adequate. Actual field deflections will be less than those measured since global geometry, i.e., used on circular tanks, will allow deflections to be resisted by axial tension or compression of the top rail system.

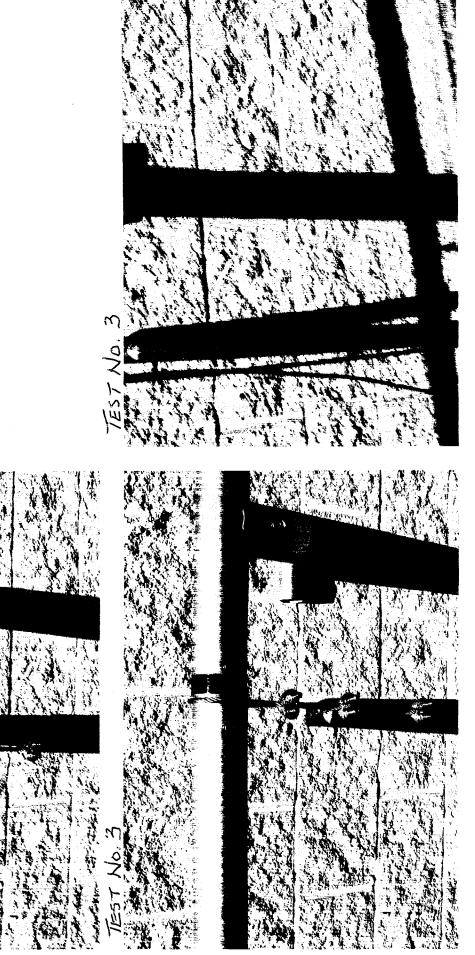
Let me know if any clarification or additional backup data is requested.

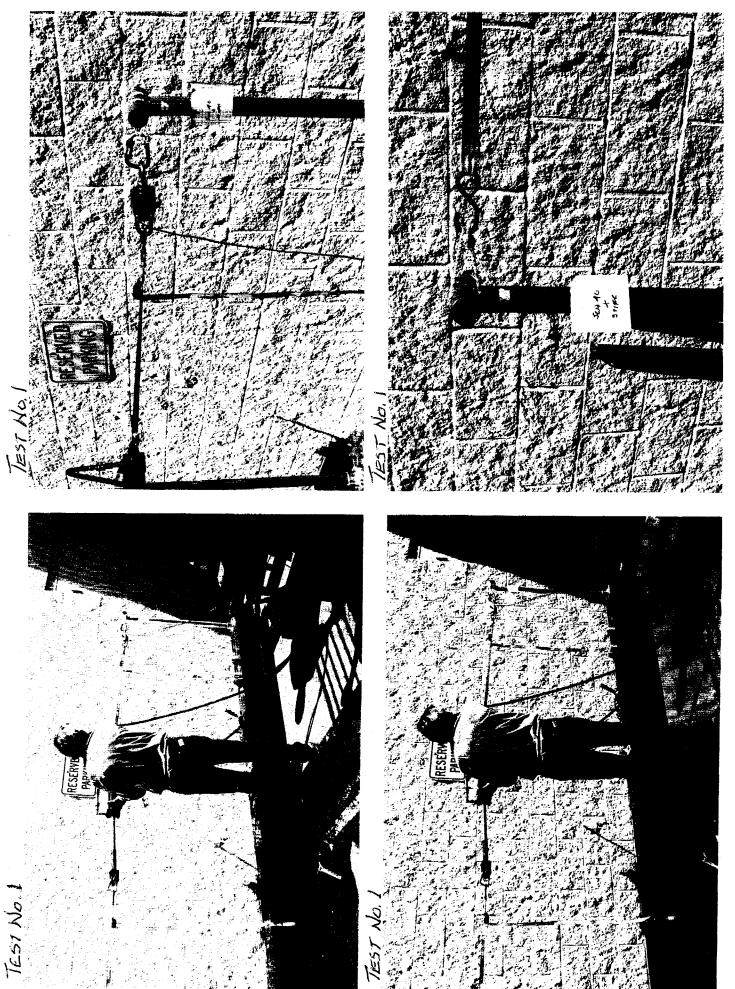
Very truly yours,

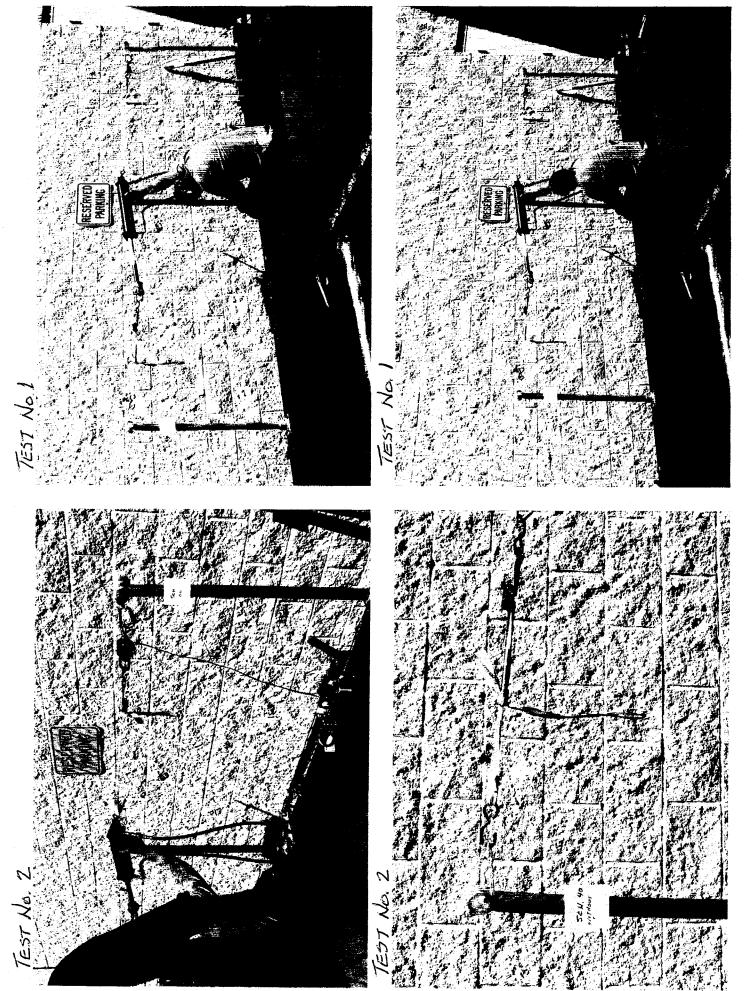

Roy E. Wooten, P.E.

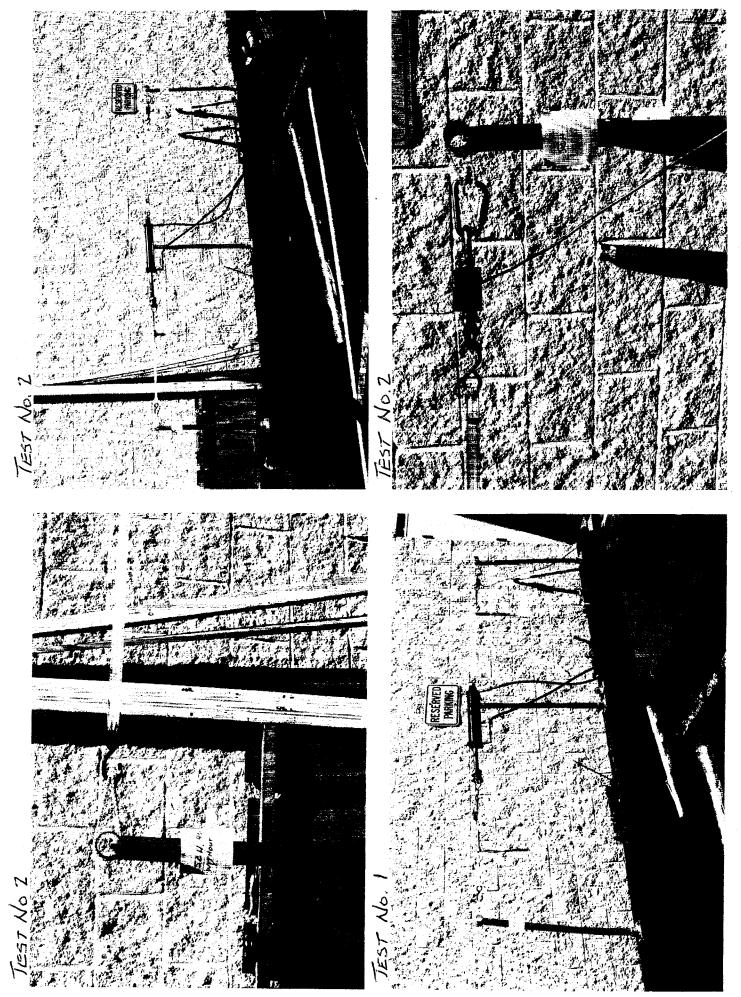

Attachments

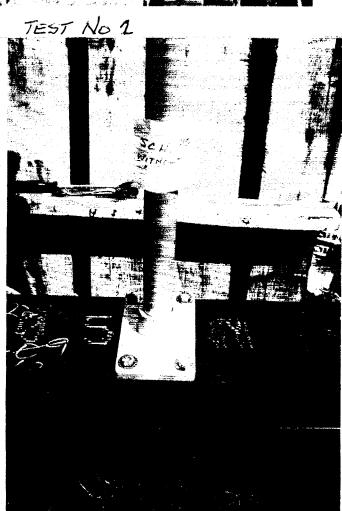

Consulting Engineers 7585 W. Arkansas Ave., #206 Lakewood, Colorado 80232 (303) 980-8603

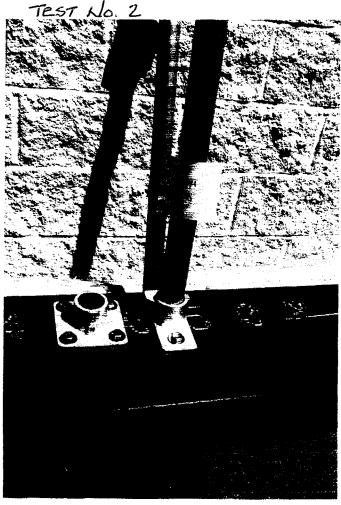

SHEET NO.		OF /	
CALCULATED BY	REWI	0 DATE08	111/09

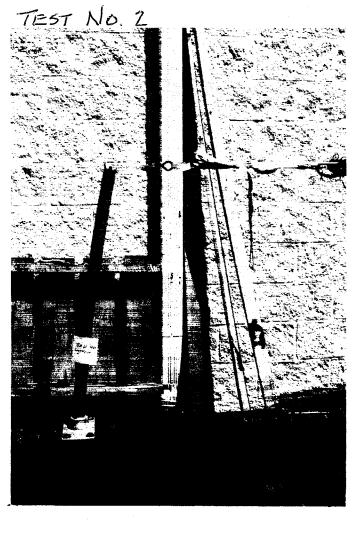

W10 x 33 X Za2-0 6-0 (0-0 6-0 1-0 16 H 8"x5" 16 E 5"×5" VIEW 12-0 TEST Na PA PA PH DEFLA CALC A 21/2" 1.22" 200/6 W. 3/8 25016 1.53" 16 E 5"x5" 16 E 5"X 5" 334" 1.83" 30016 24 ELEVATION 12-6 TEST NO. 2 _ PH PH CALC A 37/4" 200/6 1.251 3,0 434 1.563 250H 54" 554 40 476" 164 11 C 25/8" X 7 11 1.876" 300B B" X5" 50+40 1.6250 SCH 40 20010 <u></u>2 5%" ELEVATION 2501b 2.030" 81/4" 300 lb 2.437" 6'-0 O.K. 33 = 18'-0 TEST No 3 1126 6-6 SPLICE ZO DEFL, E. R Lono 3401b 0 0 1/4" 1 m 32016 3/811 3 3201h 16 H 16 E 14E-3/8" 3201 <u>"</u>Q 3/1/2 5 350B EVATION 340B 6 0 SPLICE 340/3 EXP. JONE 0













JOB RMR NO	. 1376, SAN JOS	EICA	20941
SHEET NO.		OF	
CALCULATED BY	REW	DATE_	3/12/09

	CHECKED BY DATE
W. P.C. P. PHASE I DIGESTERS	SCALE
DESIGN CRITERIA	MID RAILS
CODES - IBC 2006/2003. 05HA	1/2" 0 SCH + 0 - PRAX = 6'-0
ASCE 7-05/02 \$ CALIFORNIA	P= 200/b Mp= 1/4 (200/b)60=30094
BUILD CODE	FL= 300Fx 10 x/2"/1 /0,=261U3
	= 11,043 PSL & 24000POL VOX
LOADS	
1. TOP RAILS - 50 PLF OR 200 LB.	
2. MID RAILS - 200 LB.	COENER RAILS
3. CORNER RAILS - 200 lb	1/2" & SCH 40 SEE STANDARDS 25-KD-4
4. POSTS - MAX. OF 1.	
	POSTS I
MATERIALS SPECIFICATIONS	1/2" \$ SCH BO 6-0 MAX SPAENIG
1. RAILS, POSTS & FITTING 5 + 6005-75	WW = 50 PLF X6'0 = 300/6 4
2. CONNECTORS & ANCHORS - 7316 55	P = 200/B
3. CONCRETE - FE 4000 PSI	$h = 2.5'' - 2.2'' = 2.212'' \circ 2.202''$
	Mw= 300/8 x 26/2" = 7950 W.16
	F6= 7950 IN-16/0,412 M3
MATERIALS PROPERTIES	= 19296 PSL < 24000 PSL VER
SEE ATTACHED SHEETS	ANCHORAGE - 16H 8'X5" 4-12" & TO RODS
	TREAD = 300/6 XZ-5 X/2"/418"
	= 2110/b DR /055/b/TR, ROD
DESIGN - PER 2005/2000 ALLUMINIUM	SME ATTACHEN PREVIOUS JUSMITTALS
DESICN MANUALS - ALLOWARIE	1/2" \$ x 6" = MBGO TALLOW = 2633 /8/12 ROS
STRESS METHOD	FC = 3000PX TALLOW = 2505 /6/TA ROD
	Fic= Zucasos Tausa = 2428 1/1/TR. Ros
	ALSO 17-28-09 FZ 3000 ASI FOR 41/2" \$5" GYACO
TOP RAILS	- 16E 5"x5" 4-1/2" TR Roos
1/2" 0 SCH 40 RMAX = 6-0	TREOD = 300/b x 2 5 x 12 1/4"
W = 50ALF NW= 1/8 (SURLE) 6-0= 225 MB	= 2175 /h OR 1088 /h/TR ROD
P = 200 16 Mp = 1/4 (200 16) 6-0 = 300 = 1/4	SEE ATTACHED PREVIOUS SUBMITTALS
fb: MS = 500F1 12 x 121/ 0.324 IN3	FIC = 3000mi 1/2" \$ X4" SHB=D-TALL = 1897 11/72/201
= 11043 ASI < 24000 ASI VOX	1/2" d x 5" EDITSEN - TALL = 1955 18/20 RA
- 20 보는 14 보다 되었다	幸卒,其人, 【2012】 [1] [1] [2] [2] [2] [2] [2] [3] [3] [4] [4] [4] [4] [4] [4] [4] [4] [4] [4

JOB BMR	# R1	376.5	SAN JO	55E	(A)	2094	11
SHEET NO.		/		OF	1		
CALCULATED BY		REW		DATE_	7-	17-09	
				DATE			

(303) 980-8603	CHECKED BY DATE SCALE $1^{1/2}$ " = 1^{2} -0 1 7-28-09
SECONDARY CALCS FOR BASE MOUNT	SCALE
	T= C= 14-3/2
FITTING 16E 5"X5" W 4-12" X	= /2600 = 3.79"
CHEM BOND ANCHORS - NW- SONH X6'-0	= 3158 出
F'C = 3000 ASC = 300 Jb	
EMBED 1. 4"1 M= 300) 6×42"	D: 3/58/6.45 X5
ENBED 2, 5" = 12600 W.16	J-9= 44-0.52
	1 0-9= 47 2 -3.9911 T
1 WC - 200 - 1/2	
1. 4" EMBED - TBASIC = 380016	$T_{\Delta} = c = \frac{m}{d-a_{12}}$
Spacial 3/2" 4 0.78	[1] 마마마마마마마마마마마마마마마마마마마마마마마마마마마마마마마마마마마마
Eage Dist 24" - 0.64	72/4010/4/10
764 = 3000 B/MOX 78 X 645	= 2024/b
= 1897 16/Rdo	2= 2024 / 45 x320x 755
	= 0,20" d-ar 4.15"
TAG = 12600/6.W = 3.99"= 3158/b/	
DR 1579 16)+RDD OF	
	1M. 4/2"EMBED TBASIC= 4235 1/72.RXD
	500000 6147 - 0.881
	EXCE AST 249 0,589
2. 5" EMBED - TBASIC = 4495 B	TALL = 4235 X D. 951 X D. 589 = 2199 / 120
Sport 12 3/2" - 6.75	They = 2024:2- 1012 16/ TE ROD
EX= 057 24" - 0.58	5,F = 2198 1/200 = 1812 1/20 = 2.172
TALL= 4495 x.75 x 0.58 = 1955 10/2010	
VOK	
TACT = 1260010115 = 3.99 = 3158 16	2A. 5" EMPED TEASIC = 4495 15/7. RSD
OR 1579 16/ TZUR	SPACING 64" 0,362
	Eage D137 24" 0,539
	Tau, = 4495 x 0.862 x 0.537 = 2033 /20
DFOR FITTING 16H 8"X5" W4-2"0	TACT: 2024+ == 1012 10/20
CHEM BOND ANCHORES - A = ZOO16	S.F. 2088 + 1012 = 2,069 /ac
1. EMBED 4"Z"	
2. EMBED 5"	
ANCHORAGE BASED DW FOUDUACIOO	
PLUS OR POWER AC 100+13000 EPONT	
ACTES IVE SYSTEM.	

JOB RMR NO.	R1376	SAN	LOSE, CA.	
SHEET NO.			OF/	
CALCULATED BY	REW		DATE 7/2	7/09
AUFAUFA EN				

(303) 980-8603		DATE
	SCALE 34"= 1-0	
80-16 H TURNED 900		
FE = 3000psi		
1. 1/2" & X 4 1/2" LEMBED		
2.12" & X 5' EMBET =		
Tours p: 42" × 300 % + 7" = 1800 %		
DR 900 16/ T. ROD		
1. TEASIC= 4235/b/TEDO		
Sprack 31/2" - 0.74		
# 78'		
TAIL- 4235 X 0.74 X 0 41 4		
Not ACIONED		
2, TANSIC = 4495 16/TROD		
Sprenta = 3 2" 0:70		
ERIEDIST=1/8" - NOVERIFE		
Tacl= 4495 x 0.70 x 0.00 = 0		
NOT ACCOUNTED		
NOTE * WEDS TO BE MIN OF 2/8"		
TO GET ISLID CALCULABLE		
Loads_		
[22] [23] [24] [25] [25] [25] [25] [25] [25] [25] [25		

JOB ROCKY N	10UNTAIN RA	LINES STANDARDS
SHEET NO.		OF
CALCULATED BY	REW	DATE JULY 2008
CHECKED BY	R.B	DATE_ LIVLY 2008 DATE_ JAN.26, 2009

	(303) 980-8603	CHECKED BY R.B	DATE _JAN. 26, 2009
16 E		SCALE 1/4" = 131	
FOUR (4) HOL	E BASE MOUNT 6105-T	5"	2.11
		34" - 134" of	134"
A PROPERTIE	5		
	5" = 2.50 M2		4.3
	1/z')3 = 0.05208 M4		
5 = 1/2 (5)	2")2 = 0. 20833,N3	(A) (A)	1 5
M: 0.20833	3 m3 x 24000 psi . 5000 M. 16		
Re . 5000	÷ 15/6 = 5333 (b)		
P= W=533	30x4/10/4z1 = 516/b = 30x	μ	Ψ
	OR 6'-0 D'SOPIF	300/b 2.50	. 2
(B) PROPERTIE		2.4	
	2.45 - 1.92) = 1.6286 M2	1,92	
	2.40 - 192) · 0.9615,N+		
3 = 7/rus 0	96/5: 1.2" . 0.803/13		
		(B)	TI F F
M= 0.80131A	J3 x 24000: 19,230 , N.16		7/2
P=W= 192	30/(42-12)= 487/6 > 20	/b C	
	OR GOXSO	1t	
(C) PROPERTIE			
		SPECIAL ANCHORAGE FOR	
	2.54-1.92) 2.0135,12	4-12" d x G" EMBED TH	1 . 1
1 = 767 (2 4 I) 1/2	50-1.92) = 1.2504,N+	EPCXY BOND - POWED	
7/2 2	//.25" = /, 0000 /N	OR POWERS AC 100 + C	
Ma 1.000 /74	cero) = 2 4000 /4·/6	TBASIC = 5167 16 /1800	
		Spacine - 31/2" 0.7 EDGE DIST 214" 0.6	0 (=0.42 (5167)h)
7 = W : 274	42 - 3/8') . 580 / 7 zoo	EDGE (215), * 2'4" 0.6	$D \int \frac{1}{2} \frac{2170}{Rc0}$
	62.6.0x 50		
STANDALD L	1	TACT = 300 16 X42"+4	
	x 334 "BUERS" WEDGE ANCH	OR 1551 15/Rep.	2)70'"/Roo
	L-ES ESR-1532	SO REGIO	- VOX
		OSE WOO	
		AS E WOOD	
		Warman C.	

JOB ROCK MO	UNTAIN	RA	ILIN	45 5	TANDI	V205
SHEET NO.			_ OF			
CALCULATED BY	REW		_ DATE_	JUNE	23 / 2	.000)
CHECKED BY	RGB			JUN:		
1/4" - 11		1, 12				/

8c-16H	SCALE 1/4" = 1"
FOUR (4) HOLE BASE MOUNT	8"
	78 378 378 76
(A) PROPERTIES	
AREA = 1/2" x 8" = 4.001N2	
I=/12(8)(/2")3 = 0.083314	**Z
5 = 16 (87(1/2")2 = 0.3333 M3	
M= 0.3353 x Z400072 = 8000 W.14	
RIMAX = 800014.16 + 15/1 = 8533/b 12	
Prof of 42" Post = 85 3316 × 416" = 42"-82516	▗▗ ▗ ॗ
(B) FROPERTIES	2.50
ARZA = T/4(2.387-1.92) = 1.5535 N2	238
I = 7/24 (2.39 - 192) = 0.9079 W+	1.92"
5 = Z/roo = 0.9079:1.19" = 0.7630113	
M= 0.7630N3 x 24000PSi = 18,310 N.16	
B= WH = 18310/(42'-24") = 464 16	
(C) A20PEZTIES	
AREA = T/4 (2.50-1.92) = 2.0135,N4	
I = 7/6+ (2.50 -1.92) = 1.2501 W4	RMR NO 1376
3 = F/rax = 1.2504/1,25" = 1.00031N3	@ PROPERTIES SAN JOSC. CA.
M= 1/2003,N3 x 24000 = 24,008,N.16	
PH = WH = 24003/42-12") - 519/6	$AREA = \frac{12^{2} \times 5}{12^{2}} = \frac{200 \text{m}^{2}}{200 \text{m}^{2}}$ $T = \frac{1}{12} \left(\frac{5}{12} \right) \frac{12^{2}}{12^{2}} = \frac{200 \text{m}^{2}}{12^{2}} = \frac{200 \text{m}^{2}}{12^{2}}$ $5 = \frac{1}{12} \left(\frac{5}{12} \right) \left(\frac{12^{2}}{12^{2}} \right) = \frac{200 \text{m}^{2}}{12^{2}}$
	5= 1/4(5)(1/2) = 2002213
	M= 0.2083 X 24000, = 5000 /W//b
STANDARD ANCHORS	Read = 50000 11 12 12 12 7000 11
4- 1/2" 0 x 374" "POWERS" WEDGE ANCHOR	= Pr/WH = 2000/b x 6.98" = 42" = 332 //
Psh Icc - =5 - ESR - 1532	- (11/10/4 - 1000/13 % E.70 - 42 - 372 / 1
	PROBABLY SHOULD BY LOAD
	TESTED FOR VERIFICATION OF
	CALCEN VACUES,
	CACICA VACUES

JOB ROCK	MOUNTAIN	RAI	LIN	<u>05</u> 5	STAL	DARDS
SHEET NO.	*		OF		/	
CALCULATED BY_	REW	<u> </u>	DATE	JUNE	23	12009

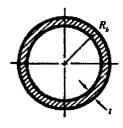

(303) 360-6603	CHECKED BY DATE
80-16H	SCALE 1/4" = 1"
FOUR (4) HOLE BASE MOUNT	8"
(A) PROPERTIES	
AREA = 1/2" X 8" = 4.00 NZ	
I=1/2 (8"(1/2")3 = 0.0833 N4	
5 = 1/2 (8) (1/2")2 = 0.3333 IN3	A) de
M= 0.33=3 x Z4000PE = 8000 IN-14	+ + + + + + + + + + + + + + + + + + + +
Runx = 870011.16 ×4/3 + 176" = 89876	
Propos 42" Pos = 8000 m lb x4/3 = 42" = 254/6	
	<u> </u>
(E) FROPERTIES	2.30
FREA = 17/4 (2.382-1.92) = 1,5535 W	2.38
I = 7/64 (2.35 - 1.92) + 0.9079 W+	1.92"
5 = Z/roo = 0.9079 : 1.19" = 0.7630113	
M. 0. 7630W' X 24000PSi = 18,310 N.16	(B)
R. = WA = 18310/4=-24") = 464 B	
(C) FLOPE 27 / ES	12/1/2
AZEA = 174 (2.50-1.92) = 2.0135 N2	
I. T/6+ (2,=0-1,92) = 1.2501 1N4	
5 = 7/ron = 1.7504/1,25" = 1.00031N3	SPECIAL ANCHORAGE FOR RMR # R 1376
M= 1.25031A)3 × 2+000 = 24,008/W./b	4-1/2" 0 x 6" EMBED THREADED RODS
PH = WH = 24008 (42- 12") - 579/6	EPOXY BOND - POWER AC 100 PLUS
	OR POWERS AC 100 + GOLD; F'E = 4000
	TANSIC = 5270 16/ROD
STANDARD FINCHORS	SARCING 614" 08157 1 100 (627 1)
+- 1/2" \$ X 374" FOWERS " WEDGE ANDE	05 EDGE DIOZ 24" 0,613) 1101
F52 ICC- E5- E5R-1532	$\frac{\partial S}{\partial S} = \frac{EOGED_{122}}{EOG} = \frac{243}{243} = \frac{2433}{EOG}$
S O REGIO	Trey= 300/6×42"= 4'8"
CONT. WOOKS	= 3054 16 or 1527 10/200 < 2633,
13.6,	VE
7237/sis	
SOUNAL ENTE	
1773/09	

Table 3.3-1 MINIMUM MECHANICAL PROPERTIES FOR ALUMINUM ALLOYS

ALLOY AND TEMPER	PRODUCT	THICKNESS RANGE In,	F _{tu} ksi	F _{ty} ksi	F _{ey} kai	F _m kai	COMPRESSIVE MODULUS OF ELASTICITY ² E (ksi)
052-O	Sheet & Plate	0.006 to 3.000	25	9.5	9.5	16	10,200
-H32	Sheet & Plate	All	31	23	21	19	10,200
-H34	Cold Fin. Rod & Bar	All	34	26	24	20	10,200
-H36	Drawn Tube	7 5.11					
-nao	Sheet	0.006 to 0.162	37	29	26	22	10,200
83-O	Extrusions	up thru 5.000	39	16	16	24	10,400
-H111	Extrusions	up thru 0.500	40	24	21	24	10,400
-H111	Extrusions	0.501 to 5.000	40	24	21	23	10,400
-0	Sheet & Plate	0.051 to 1.500	40	18	18	25	10,400
-H116	Sheet & Plate	0.188 to 1.500	44	31	26	26	10,400
-H32, H321	Sheet & Plate	0.188 to 1.500	44	31	26	26	10,400
-H116	Plate	1.501 to 3.000	41	29	24	24	10,400
-H32, H321	Plate	1.501 to 3.000	41	29	24	24	10,400
86-O	Extrusions	up thru 5.000	35	14	14	21	10,400
-H111	Extrusions	up thru 0.500	36	21	18	21	10,400
-H111	Extrusions	0.501 to 5.000	36	21	18	21	10,400
-0	Sheet & Plate	0.020 to 2.000	35	14	14	21	10,400
-H112	Plate	0.025 to 0.499	36	18	17	22	10,400
-H112	Plate	0.500 to 1.000	35	16	16	21	10,400
-H112	Plate	1.001 to 2.000	35	14	15	21	10,400
-H112	Plate	2.001 to 3.000	34	14	15	21	10,400
-H116	Sheet & Plate	Ali	40	28	26	24	10,400
-H32	Sheet & Plate	Ali	40	28	26	24	10,400
-1132	Drawn Tube	710	40				.0, .00
-H34	Sheet & Plate	All	44	34	32	26	10,400
-1134	Drawn Tube	e-str					
54-H38	Sheet	0.006 to 0.128	45	35	33	24	10,300
54-O	Extrusions	up thru 5.000	31	12	12	19	10,400
-H111	Extrusions	up thru 0.500	33	19	16	20	10,400
-H111	Extrusions	0,501 to 5.000	33	19	16	19	10,400
-H112	Extrusions	up thru 5.000	31	12	13	19	10,400
-0	Sheet & Plate	0.020 to 3.000	31	12	12	19	10,400
-H32	Sheet & Plate	0.020 to 2.000	36	26	24	21	10,400
-H34	Sheet & Plate	0.020 to 1.000	39	29	27	23	10,400
-1134 56-O	Sheet & Plate	0.051 to 1.500	42	19	19	26	10,400
-H116	Sheet & Plate	0.188 to 1.250	46	33	27	27	10,400
-H32, H321	Sheet & Plate	0.168 to 1.250	46	33	27	27	10,400
-H116	Plate	1.251 to 1.500	44	31	25	25	10,400
-H32, H321	Plate	1.251 to 1.500	44	31	25	25	10,400
-H116	Plate	1.501 to 3.000	41	29	25	25	10,400
-H32, H321	Plate	1.501 to 3.000	41	29	25	25	10,400
05-T5	Extrusions	up thru 1.000	38	35	35	24	10.100
61-T6, T651	Sheet & Plate	0.010 to 4.000	42	35	35	27	10,100
-T6, T6510, T6511	Extrusions	All	38	35	35	24	10,100
-T6, T651	Cold Fin. Rod & Bar	up thru 8.000	42	35	35	25	10,100
-76, 1651 -76	Drawn Tube	0.025 to 0.500	42	35	35	27	10,100
-T6	Pipe	All	38	35	35	24	10,100
63-T5,	Extrusions	up thru 0.500	22	16	16	13	10,100
∞-15, -T52	Extrusions	up thru 1.000	22	16	16	13	10,100
-T52 -T5	Extrusions	0.500 to 1.000	21	15	15	12	10,100
-T6	Extrusions & Pipe	All	30	25	25	19	10,100
66-T6, T6510, T6511	Extrusions	All	50	45	45	27	10,100
70-T6, T62	Extrusions	up thru 2.999	48	45	45	29	10,100
05-T5	Extrusions	up thru 0.500	38	35	35	24	10,100
51-T5	Extrusions	up thru 1.000	38	35	35	24	10,100
51-T6	Extrusions	up thru 0.750	42	37	37	27	10,100
63-T6	Extrusions	up thru 0.500	30	25	25	19	10,100
WW : W	FULL MINISTER					28	

F_{ix} and F_{iy} are minimum specified values (except F_{iy} for 1100-H12, H14 Cold Finished Rod and Bar and Drawn Tube, Alciad 3003-H18 Sheet and 5050-H32, H34 Cold Finished Rod and Bar which are minimum expected values); other strength properties are corresponding minimum expected values.

^{2.} Typical values. For deflection calculations an average modulus of elasticity is used; this is 100 ksi lower than values in this column.

TABLE 22 - PIPES

Nominal		Outside Diameter	Inside Diameter	Wall Thickness		Area				
Pipe	Schedule	OD	ID	t	Weight ²	A	,	s	ř	
Size	No.	in.	in.	in.	lb/ft	in²	in ⁴	in³	in.	R _b /
1 1/2	5	1.900	1.770	0.065	0.441	0.375	0.158		0.649	14.1
	10	1.900	1.682	0.109	0.721	0.613	0.247		0.634	8.2
	40	1.900	1.610	0.145	0.940	0.799	0.310		0.623	6.1
	80	1.900	1.500	0.200	1.26	1.07	0.391		0.605	4.3
	160	1.900	1.338	0.281	1.68	1.43	0.482		0.581	2.9
2	5	2.375	2.245	0.065	0.555	0,472	0.315	· · · · · · · · · · · · · · · · · · ·	0.817	17.8
	10	2.375	2.157	0.109	0.913	0.776	0.499		0.802	10.4
	40	2.375	2.067	0.154	1.26	1.07	0.666		0.787	7.2
	80	2.375	1.939	0.218	1.74	1.48	0.868		0.766	4.9
	160	2.375	1.687	0.344	2.58	2.19	1.16	0.980	0.728	3.0
2 1/2	5	2.875	2.709	0.083	0.856	0.728	0.710		0.988	16,6
	10	2.875	2.635	0.120	1.22	1.04	0.987		0.975	11.5
	40	2.875	2.469	0.203	2.00	1.70	1.53	1.06	0.947	6.6
	80	2.875	2.323	0.276	2.65	2.25	1.92	1.34	0.924	4.7
	160	2.875	2.125	0.375	3.46	2.95	2.35	1.64	0.894	3.3
3	5	3.500	3.334	0.083	1.05	0.891	1.30	0.744	1.21	20.6
	10	3.500	3,260	0.120	1.50	1.27	1.82	1.04		
	40	3.500	3.068	0.216	2.62	2.23			1.20	14,1
	80	3.500	2.900	0.300	3.55		3.02	1.72	1.16	7.6
	160	3.500	2.624	0.438	3.55 4.95	3.02 4.21	3.89 5.04	2.23 2.88	1.14 1.09	5.3 3 .5
3 1/2	5	4.000	3.834	0.083	1.20	1.02	1.96	0.98		
	10	4.000	3.760	0.120	1.72	1.46			1.39	23.6
	40	4.000	3.548	0.226	3.15		2.76	1.38	1.37	16.2
	80	4.000	3.364	0.318	4.33	2.68 3.68	4.79 6.28	2.39 3.14	1.34 1.31	8.3 5.8
4	5	4.500	4.334	0.083	1.35	1.15	2.81	1.25		
	10	4.500	4.260	0.120	1.94	1.65			1.56	26.6
	40	4.500	4.026	0.237	3.73	3.17	3.96	1.76	1.55	18.3
	80	4.500	3.826	0.337	5.18		7.23	3.21	1.51	9.0
	120	4.500	3.624	0.438	6.57	4.41 5.59	9.61 11.7	4.27 5.18	1.48 1.44	6.2
, j	160	4.500	3.438	0.531	7.79	6.62		5.18 5.90	1.42	4.6 3.7
5	5	5.563	5.345	0.109	2.20	1.87	6.95	2.50	1.93	
	10	5.563	5.295	0.134	2.69	2.29	8.43	3.03	1.92	25.0
	40	5.563	5.047	0.258	5.06	4.30	15.2	5.45		20.3
	80	5.563	4.813	0.375	7.19	6.11	20.7	7.43	1.88	10.3
	120	5.563	4.563	0.500	9.35	7.95	25.7 25.7	7.43 9.25	1.84	6.9
	160	5.563	4.313	0.625	11.4	9.70	30.0	9.25 10.8	1.80 1.76	5.1 4.0
6	5	6.625	6.407	0.109	2.62	2.23	11.8	3.58	2.30	
	10	6.625	6.357	0.134	3.21	2.73	14.4			29.9
	40	6.625	6.065	0.280	6.56	5.58	14.4 28.1	4.35	2.30	24.2
	80	6.625	5.761	0.432	9.88	8.4D	40.5	8.50	2.25	11.3
	120	6.625	5.501	0.562	12.6			12.2	2.19	7.2
	160	6.625	5.187	0.719	15.7	10.7 13.3	49.6	15.0	2.15	5.4
			41.41	U., 10	lid. (13.3	59.0	17.8	2.10	4.1

Type of Stress	Time of Manufacture at Class		Sec.				Table 2-20	
			3.4.	Allowable Stress	Stress	ALLOWARI 6	ALLOWARI E STRESSES FOR	-
TENSION, axial	Any tension member	gross section net section	-	21 19	12.5	BUILDING TY	BUILDING TYPE STRUCTURES	. <i>(</i>)
TENSION	Flat elements in uniform tension		2	19	8	6005-T5 Extrusions	Extrusions up through 1.000 in. thick	1. thick
IN BEAMS, extreme fiber,	Round or oval tubes	- ⊘() ⊙	3	54	6	6105-T5 Extrusions up through 0.500 in. thick	up through 0.500 i	. thick
net section	Flat elements in bending in their own plane, symmetric shapes		4	88	5	White bars apply to unwelded metal	d metal	
() () () () () () () () () ()	On rivets and bolts		2	39	25	Shaded bars apply to weld-affected metal	iffected metal	
BEATING	On flat surfaces and pins and on botts in slotted holes	otted holes	9	26	9	For tubes with circumferential welds, Sections 3.4.10, 3.4.12, and 3.4.16.1 apply for $R_b/t < 20$	welds, Sections 3.4.10,	.4.12, and
Type of Stress	Type of Member or Elen	lement	Sec. 3.4.	Allowable Stress, S & S,	'n	Allowable Stress, S ₁ < S < S ₂	S ₂ Allowable Stress, S ₂ S ₂	tress,
COMPRESSION IN COLUMNS,	All columns		•	ŧ	0	20.2 - 0.126 kUr	66 51100 /(kL/r)P	
axlal				ı	0	7.4 - 0.034 KLIT	144 51100 /(kL/r)²	
Whee was to be	Flat elements supported on one edge	11:1:1:	a	21	2.4	23.1 0.787 b/t	10 154 /(b/r)	
	Columis bucking about a symmetry axis		•	6 0	3.8	8.7 - 0.224 bit	(1/0)/ 58 61	
	Flat elements supported on one edge -	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	, a	21	2.4	23.1 - 0.787 b/t	12 1970 /(b/t)²	
	countris not oucking about a symmetry axis	İ	5	80	3.8	8.7 - 0.224 bit	26 1970 /(5/1)	
	Fiat elements supported on both edness	i I	d	2	9.2	23.1 – 0.247 b/t	33 491 /(b/t)	
COMPRESSION IN COLUMN		· · ·	b	80	5	8.7 - 0.070 b/t	62 271 /(b/t)	
ELEMENTS, gross saction	Flat elements supported on one edge and with stiffener on other edge	1[]	9.1			see Part IA Section 3,4.9.1	4.9.1	
	Flat elements supported on both edges and with an intermediate stiffener		9.2		,	see Part IA Section 3.4.9.2	4.9.2	
	Curved elements supported on both edges		Ş	73	1.4	22.1 - 0.799 \Aji	141 3190 (34)	$1+\frac{\sqrt{R_0/t}}{35}\Big ^2$
)	2	60	9.6	8.6 - 0.275 4Rvit	450 3190 (Pp) 1 + JR/1	+ (/R _V /t)

		1 111 1		21	24	23.9 - 0.124 Loff,	62	87000 /(L _b /r _p /²
	Single web shapes	11.1.	<u></u>	60	+	8.8 -0.034 LVr.	2	87000 /(LJ/r,)
		Ray C. R. P.		25	8	39.3 - 2.70 (RJI	81	Same as
	Round or oval tubes	100 P	면 -	<u>,</u>	8	15.2-0.764 (PL)	184	Section 3.4.10
IN BEAMS,	1	t	,	28	4	$40.5 - 0.927 \frac{d}{t} \sqrt{\frac{L_b}{d}}$	53	11400 $\sqrt{\frac{d}{4}} > \frac{L_b}{d}$
gross section	Solid rectangular and round sections	• p	2	. 01	61	137-0.182 4/5	8	11400 /(4) ² / ₂
				24	窓	23.9 - 0.238 (21.5°	1680	23600 / ^{2L₂S_c}
	Tubular shapes		<u> </u>		§	8.8 - 0.065 (21.5.	8070	23600 /21.5.
		1 1 1		21	6.5	27.3 - 0.930 bit	40	182 /(b/t)
	Flat elements supported on one edge		2	8 3.	G	10.3 - 0.265 b/t	**	to the state of th
		10-10-10-10-10-10-10-10-10-10-10-10-10-1	,	12	23	27.3 - 0.292 bit	æ	580 /(b/f)
NOMBBERGION	rial elements supported on boin edges	>	L	8	8	10.3 - 0.083 bit	88	320 ((5/4)
IN BEAM ELEMENTS,	I	œĴ		153	23	26.2 - 0.944 JAJI	141	3780 $\sqrt{\frac{R_0}{t}} / (1 + \frac{4R_0 H}{35})^4$
(alement in uniform	Curved elements supported on both edges	6	9	0.	80 C/J	10.1 - 0.325 4AJI	95	3780 (P.) (1+ (R.))
compression), gross section	Flat elements supported on one edge and with stiffener on other edge	<u>-[</u>	16.2			see Parl IA Section 3.4.16.2	1,4.16.2	
	Flat elements supported on both edges and with an intermediate stiffener	4	16.3			see Part IA Section 3.4.16.3	3.4.16.3	
			#	88	1.0	1 1.	1	4930 I(bil)*
IN BEAM	pall after three interesting	- - -		2 8	7 8 E	13.7 = 0.270 ht	\$ K	1520 /(htf)
(element in	Flat elements supported on both edges	\{\frac{1}{2}}	e	0	65	19.7 - 0.059 hit	128	881 (fht)
plane), gross	Flat elements supported on both edges	T T 4,	:	28	110	40.5-0.117 hit	173	3500 ((1/1)
	and with a longitudinal stiffener		2	Q	061	18,7 × 0.023 ht	8	2040 /(h/f)
SUEAD IN	Unstiffened flat elements supported		20	12	8	15.8 - 0.101 h/t	3	38700 /(h/t)²
ELEMENTS,	on both edges			ت	8	6.0 - 0.029 Mr	8 8	38/00 /(mt)*
gross section	Stiffened flat elements supported on both edges	I THE THE	2	- S	- 86	8.2 - 0.039 ast	8 8	53200 /(a _p /t)*